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3 Fachbereich Physik, Freie Universität Berlin - Arnimallee 14, D-14195 Berlin, Germany

received 5 December 2006; accepted in final form 28 February 2007
published online 27 March 2007

PACS 78.67.-n – Optical properties of low-dimensional, mesoscopic, and nanoscale materials and
structures

PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other charge-
density excitations)
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Abstract – We propose an explanation for the anomalous behaviour observed in the relaxation
dynamics of the differential optical transmission of noble-metal nanoparticles. Using the temper-
ature dependences of the position and the width of the surface plasmon resonance, we obtain a
strong frequency dependence in the time evolution of the transmission close to the resonance.
In particular, our approach accounts for the slowdown found below the plasmon frequency. This
interpretation is independent of the presence of a nearby interband transition which has been
invoked previously. We therefore argue that the anomaly should also appear for alkaline nano-
particles.
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Absorption and transmission of a laser beam by a metal-
lic nanoparticle unveil the properties of its conduction
electrons. The use of femtosecond lasers in pump-probe
spectroscopy then gives access to the electron dynam-
ics on extremely short timescales [1–6]. In particular, the
time dependence of the transmission spectrum during and
after the excitation by the pump laser allows to follow the
details of the electron relaxation.
In pump-probe experiments, a pump laser with a

wavelength much larger than the diameter of the nano-
particle couples to the centre of mass of the electron gas,
thereby exciting the surface plasmon mode. The collective
excitation decays on a very short timescale of the order
of 10 fs. Subsequently, electron-electron interactions lead
quite rapidly to the thermalisation of the electronic
system at an elevated temperature. Only on longer
timescales, of the order of 100 fs up to picoseconds, does
the electron-phonon coupling lead to an equilibration of
the electronic system with the lattice degrees of freedom.
In the case of noble-metal nanoparticles, this picture has
to be completed by the possibility of interband transitions
which are absent in alkaline nanoparticles.

In ref. [2] the relaxation of the differential transmission
spectrum of copper nanoparticles was found to exhibit
a slowdown close to the plasmon frequency. This feature
persists far beyond the lifetime of the plasmon excitation
and therefore was attributed to the slowdown of the energy
transfer from the electrons to the lattice for frequen-
cies close to the plasmon resonance. These considerations
lead to the following puzzle: How can the plasmon reso-
nance frequency play a role for relaxation processes which
occur on timescales much larger than the lifetime of this
excitation?
The s-d multiband transition, which for copper has its

onset close to the plasmon resonance, has been invoked
as a possible explanation of the unexpected slowdown. A
many-body effect based on the interband resonance scat-
tering of d holes with surface plasmons was proposed to
lead to a strong frequency dependence of the relaxation [7].
Subsequent experiments with silver nanoparticles also

found the slowdown in the transmission dynamics [4].
Firstly, these experiments demonstrated the generality of
the effect. Secondly, they established that the slowdown is
only found above an excitation threshold. Finally, because
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the interband transition in silver is far away from the
plasmon frequency [6], the explanation put forward in
refs. [7] does not apply.
In the present paper, we propose a generic explanation

of the observed frequency dependence of the transmis-
sion dynamics which does not rely on interband transi-
tions. Therefore it applies not only to copper, but also to
silver and even alkaline nanoparticles. Our mechanism is
based on recently derived results for the finite-temperature
corrections to the width and the position of the plasmon
absorption peak [8]. We show that the temperature depen-
dencies of the two quantities lead to an anomaly in the
evolution of the differential transmission spectrum with
decreasing temperature. In particular, a slowdown in the
relaxation of the optical transmission appears close to the
plasmon resonance.
The quantity that is measured experimentally is the

frequency-resolved time-dependent transmission Ton after
the excitation of the system by a pump laser pulse. Then,
the static equilibrium transmission Toff of the sample
measured in the absence of the pump is subtracted to
obtain the relative differential transmission [2,6]

∆T
T =

Ton−Toff
Toff

. (1)

Experimentally, the observed exponential decay of ∆T /T
with time allowed to extract a relaxation time which
as a function of frequency presents the above-mentioned
anomaly.
For the theoretical discussion we assume that after an

initial transient time of about 100 fs the electronic system
is thermalised with a time-dependent temperature T (t).
In thermal equilibrium, the differential transmission can
be related to the temperature-dependent absorption cross-
section σ(ω, T ) by [9]

∆T
T =− 3

2πa2
[σ(ω, T )−σ(ω, T0)] , (2)

where T0 is the temperature of the nanoparticle before
the excitation and a is its radius. This relation between
transmission and absorption holds when the reflectivity
of the sample is negligibly small, as is the case in typical
experimental situations with a low density of nanoparticles
embedded in a glassy matrix.
Assuming the Breit-Wigner form for the absorption

cross-section σ of a nanoparticle in the frequency regime
close to the plasmon resonance, we write

σ(ω, T ) = s(a)
γ(T )/2

[ω−ωsp(T )]2+ [γ(T )/2]2
. (3)

Here, ωsp(T ) is the temperature-dependent resonance
frequency of the surface plasmon excitation, γ(T ) is the
temperature-dependent width of the resonance, and s(a)
is a normalisation prefactor which depends on the radius
of the nanoparticle.

The knowledge of the temperature T (t) as a function of
time would give access to the time evolution of the differ-
ential transmission. In principle, T (t) could be obtained
for specific systems from a two-temperature model for the
heat transfer from the electronic system to the lattice [10].
However, we choose not to follow this route since our
explanation of the anomaly relies only on the fact that T (t)
is monotonically decreasing. The qualitative and generic
features do not depend on the system parameters entering
into the quantitative description but on the temperature
dependencies of ωsp and γ. For temperatures much smaller
than the Fermi temperature TF we can write

ωsp(T ) = ω
(0)
sp −ω(2)sp

(
T

TF

)2
, (4)

γ(T ) = γ(0)+ γ(2)
(
T

TF

)2
. (5)

The dependence of the positive quantities ω
(0)
sp , γ(0), ω

(2)
sp

and γ(2) on the system parameters is specified below
(eqs. (9)–(11)), but it is not needed for the following
qualitative discussion.
Inserting the Breit-Wigner form (3) of the resonance

into the expression (2) for the differential transmission,
one can see that a temperature-dependent shift of the
resonance frequency ωsp leads to an anomaly in the relax-
ation dynamics of the differential transmission. At a given
temperature, ∆T /T results from the difference between
two absorption curves which are shifted in frequency
with respect to each other and have different widths.
The frequency dependence of ∆T /T is obtained from
eqs. (2)–(5) and shown in fig. 1 for various temperatures.
For a given temperature, there exist two frequencies ωc1,2
where the differential transmission vanishes. In the limit
of small T/TF these frequencies can be approximated by

ωc1,2(T ) = ω
(0)
sp +ω

(2)
sp

γ(0)

γ(2)

×


1∓

√√√√1+
(
γ(2)

2ω
(2)
sp

)2(
1+
γ(2)

2γ(0)

(
T

TF

)2). (6)
∆T /T is negative for frequencies below ωc1 or above
ωc2, and positive between these two frequencies. As the

frequency ωc1 is very close to ω
(0)
sp , our assumption of

a Breit-Wigner lineshape which is a good description
close to the resonance does not represent an important
restriction. However, this is not the case for ωc2, which is

farther away from ω
(0)
sp . For the parameters chosen in fig. 1,

ωc2 lies at the far right of the shown frequency interval.
There, the detailed form of the absorption curve will be
important. It might for example play a role whether one
assumes the Breit-Wigner form (3) or the quasi-Lorentzian
that has been used in ref. [6] to fit the plasmon resonance
over a large frequency range. In addition, for the case of
copper the effects occurring around ωc2 will be masked by
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Fig. 1: The differential transmission for εF/�ωM = 1, εF/V0 =
0.5, kFa= 15, and T0 = 0 (corresponding to a sodium nanopar-
ticle with diameter 3.3 nm) is shown as a function of the
frequency ω. The temperatures are T/TF = 0.05, 0.035, and
0.02 for the solid, dashed, and dotted line, respectively. The
inset shows an enlargement of the region around ωc1, where
∆T /T changes sign.

the interband transition. Therefore we focus our discussion
on the anomalous behaviour close to ωc1.
When the temperature of the electronic system

decreases after the initial excitation, the position of the
absorption peak moves back towards its low-temperature
frequency. During this relaxation process, the differential
transmission is reduced in amplitude. The shift of ωc1
towards higher frequencies and the reduction in amplitude
have opposite effects on the differential transmission for
frequencies below ωc1. The contributions subtract and
lead to a slowdown of the relaxation. As an example, one
may consider the crossing of the solid and the dashed line
in the inset of fig. 1. Here, the differential transmission
at T/TF = 0.035 (dashed line) has the same value as at
the higher temperature 0.05 (solid line). In contrast, for
frequencies slightly above ωc1, the two effects add up and
the relaxation is accelerated. A very special dynamics
can occur at frequencies which are crossed by ωc1 during
the temperature relaxation. In such a situation, the
differential transmission goes through zero and changes
sign as the temperature decreases (see the inset in fig. 1).
For the example of alkaline nanoparticles, where only s-

conduction electrons are relevant and no interband transi-
tion is present in the frequency regime of the plasmon reso-
nance, we can show in detail how the mechanism presented
above leads to the anomaly in the transmission relax-
ation. For this purpose, we use the temperature depen-
dencies of the resonance frequency and of its width, which
have recently been calculated [8] for temperatures well
below TF.
In the approach of refs. [8] and [11], one decomposes the

Hamiltonian H =Hcm+Hrel+Hc describing the system
of N electrons in a spherical positive jellium into three
parts [12]. The surface plasmon is represented by the
centre-of-mass part Hcm = �ω̃Mb

†b, where b and b† are
the usual ladder operators of the harmonic oscillator.

Its frequency ω̃M = ωM(1−Nout/N)1/2 is reduced with
respect to the bare Mie frequency ωM = (4πnee

2/3me)
1/2

due to the so-called spill-out effect which accounts for
the fact that a fraction Nout/N of the electrons is found
outside the jellium sphere [13]. In the Mie frequency, e,
me, and ne denote the charge, mass, and bulk density of
the conduction electrons, respectively.
The relative coordinates constitute an environment

leading to the decay of the plasmon. Within a mean-
field approximation, one can write the corresponding
part of the Hamiltonian as Hrel =

∑
α εαc

†
αcα, where the

operators c†α populate one-particle states with energies εα
in the effective potential V (r). These degrees of freedom
are coupled to the plasmon by

Hc =Λ
(
b†+ b

)∑
αβ

dαβc
†
αcβ , (7)

where Λ= (�meω
3
M/2N)

1/2 and

dαβ = 〈α|
[
zΘ(a− r)+ za

3

r3
Θ(r− a)

]
|β〉 (8)

is a matrix element between two mean-field states. Θ(x)
denotes the Heaviside step function.
Approximating the self-consistent mean-field potential

by V (r) = V0Θ(r− a), using semiclassical techniques (for
details, see refs. [8,11]), and working up to second order
in T/TF, we obtain the expansions (4) and (5) for the
position of the plasmon resonance and its width, where

ω
(0)
sp

ωM
= 1− 3

8kFa
ξ0

(
εF

�ωM
,
εF

V0

)
, (9)

ω
(2)
sp

ωM
=
3

8kFa
ξ2

(
εF

�ωM
,
εF

V0

)
, (10)

γ(i) =
3vF
4a
gi

(
εF

�ωM

)
, i= 0, 2 . (11)

Here, we have introduced the auxiliary func-
tions [8,11,14,15]

ξ0(x, y) =
16x3/2

15π

[
ln

(
8kFa

3ηxg0(x)

)
− π
2
− 4
3

]

+
1

y

[
−
√
y(1− y)(2y+3)+3 arcsin√y

]
,

ξ2(x, y) =
4π

9
x3/2

[
ln

(
8kFa

3ηxg0(x)

)
− π
2
− 4
3

]

− 16
15π
x3/2
g2(x)

g0(x)
+
π2

3
(2− y)

(
y

1− y

)3/2
,

g0(x) =
1

12x2

{√
x(x+1)

(
4x(x+1)+3

)
−3(2x+1) ln

(√
x+
√
x+1

)
−Θ(x− 1)

[√
x(x− 1)

(
4x(x− 1)+3

)
−3(2x− 1) ln

(√
x+
√
x− 1

)]}
,
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g2(x) =
π2

24x

{√
x(x+1)(6x− 1)+ ln

(√
x+
√
x+1

)
−Θ(x− 1)

[√
x(x− 1)(6x+1)

+ ln
(√
x+
√
x− 1

)]}
.

εF, vF, and kF are the Fermi energy, velocity, and wave-
vector, respectively.
The dependence on x of ξ0 and ξ2 arises from the

coupling of the plasmon to the relative coordinates while
the dependence on y is due to the spill-out effect. Both
effects depend quadratically on temperature. The para-
meter η is a cutoff of order unity that appears because the
low-energy particle-hole excitations form the plasmon and
thus do not contribute to its damping [8,15]. For numerical
purposes we take η= 0.5. It is important to remark that
the finite temperature corrections scale as 1/a, and there-
fore become negligible for sufficiently large clusters. For a
quantitatively correct description of very small nanoparti-
cles (a� 1 nm), nonmonotonic size-dependent corrections
have to be added [16]. In the case of noble-metal nanopar-
ticles embedded in a glass matrix, the effect of the d elec-
trons and the dielectric mismatch at the border of the
nanoparticle should be taken into account [17]. In the
present context, the essential feature of the functions g2
and ξ2 is that they are positive. Therefore higher tempera-
tures lead to a redshift of the resonance and to an increase
of its width.
Numerical calculations within the temperature-

dependent time-dependent local density approximation
predicted a redshift of the resonance up to a system-
dependent temperature, followed by a blueshift at higher
temperatures [18]. This nonmonotonic feature has not
been observed experimentally to our knowledge and is not
captured by our low-temperature expansion. Systematic
studies of the frequency shift and plasmon width have been
carried out in gold [3] and silver [6] nanoparticles yielding
a decrease of both corrections with increasing pump-probe
time delay, i.e., decreasing electron temperature.
In fig. 1 we used the analytic results presented in eqs. (4)

and (5) for the temperature dependence of the plasmon
resonance to describe the evolution of the differential
transmission with decreasing electronic temperature. The
curves present the qualitative features of the experimen-
tally observed differential transmission of refs. [2] and [6].
As discussed after (6), the relaxation of the temperature
leads to an anomaly at frequencies close to the plasmon
resonance. We now investigate the properties of this anom-
aly in detail.
For different frequencies below (solid lines) and above

(dashed lines) the frequency ωc1 we show in fig. 2 the
relaxation dynamics normalized by the value at the maxi-
mum temperature TM = 0.05TF reached after the excita-
tion. An estimate for TM can be obtained by assuming
that the nanoparticle absorbs n photons from the pump
laser and increases its energy by about n�ωsp. Using the
low-temperature Sommerfeld expansion of the electronic
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Fig. 2: The differential transmission normalised to the value at
T/TF = 0.05 is shown as a function of temperature. The system
parameters are the same as in fig. 1. The solid lines correspond
to the frequencies ω/ω

(0)
sp = 0.9, 0.983 and 0.9847 from the

lower to the upper curve while the dashed lines correspond to
ω/ω

(0)
sp = 0.9852, 0.9854 and 0.9849 from the lower to the upper

curve. In the inset, the inverse of the relaxation parameter (14)
is shown as a function of the frequency for TM/TF = 0.05. The
frequencies of the solid lines in the main graph lie on the left
branch in the inset while the dashed lines lie on the middle
branch.

energy one gets the temperature [11]

TM

TF
�

√
9n�ωsp
πεF(kFa)3

+

(
T0

TF

)2
. (12)

For the sodium nanoparticle of fig. 1, one obtains for
n= 1 (n= 2) the temperature TM/TF ≈ 0.03 (0.04). This
corresponds to an electronic temperature of TM = 1100K
(1600K).
The curves in fig. 2 can be related to the experimentally

accessible decay rate

Γt =−
d

dt
ln

(
∆T
T

)
. (13)

In the case of an exponential relaxation, Γt is indepen-
dent of the time t. Since the differential transmission
depends on time only implicitly through its dependence
on temperature, the relaxation rate Γt can be expressed
as Γt =−TΓTd(lnT )/dt. The last factor on the right-hand
side corresponds to the relaxation rate of the electronic
temperature and requires the precise knowledge of the
time dependence T (t) of the temperature. While it deter-
mines the order of magnitude of Γt, the dynamics of the
relaxation process and in particular its frequency depen-
dence is characterized by

ΓT =
1

∆T /T
d

dT

(
∆T
T

)
. (14)

This rate is independent of the time dependence T (t) of
the temperature.
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In the sequel of the paper, we will use ΓT taken at
T = TM in order to describe the relaxation process. This
quantity is related to the slope of the differential trans-
mission at TM, i.e., at the right end of the curves shown in
fig. 2. The inverse of the relaxation parameter (14) is pre-
sented in the inset of fig. 2 as a function of the frequency.
For frequencies far away from the zeros of ∆T /T , the

relaxation parameter is almost frequency independent and
2(TMΓT )

−1 ≈ 1. The factor of two arises since the differ-
ential transmission is proportional to T 2 in this regime.
In contrast, a strong frequency dependence appears close
to ωc1. For frequencies slightly below ω

c
1 the initial slope

of the differential transmission is reduced and eventually
even changes sign. Therefore the inverse relaxation para-
meter exhibits a divergence. The increase of the differential
transmission with decreasing temperature for the upper-

most dashed curve (ω/ω
(0)
sp = 0.9849) can be traced back

to the shift of ωc1 which overcompensates the amplitude
relaxation for this value of ω (see the inset of fig. 1). For
frequencies slightly above ωc1 we obtain very large slopes
that decrease as we go further away from this frequency.
As shown in the inset of fig. 2, between ωc1 and ω

c
2 a region

appears where the relaxation parameter takes on values
comparable to those far away from the resonance. While
the anomaly around ωc2 resembles the one close to ω

c
1, its

quantitative description relies on less justified hypothe-
ses like the absence of an interband transition close to ωc2
and the validity of the Breit-Wigner form over a broad
frequency range.
In the experiment of ref. [2] on copper nanoparticles, a

differential transmission lifetime was observed at ω/ω
(0)
sp ≈

0.99 which is almost a factor of two larger than the life-

times found at ω/ω
(0)
sp ≈ 0.97 and 1.025. Using the initial

electronic temperature estimated to be about 800K [2] and
the parameters of the experiment kFa= 68 and εF/�ωsp =
3.2, we find that the frequency at which the lifetime is a
factor of two larger than far from the anomaly reproduces
quantitatively the experimentally observed value. In addi-
tion, the increase of the lifetime is present only inside a
very narrow frequency range whose width is smaller than
the separations of the experimental points. Thus, in agree-
ment with the experimental findings, a variation of the
frequency by only 2% can yield an enlargement of the
differential transmission lifetime by a factor of two.
In fig. 3 we present Γ−1T for the sodium nanoparticle

of figs. 1 and 2 as a function of the initial temperature
TM for various frequencies around ω

c
1(TM). Consistently

with our findings for the frequency dependence of ΓT , we
find for frequencies far from ωc1 (cf. the two lower curves)
an almost frequency-independent relaxation parameter
which only weakly increases with the maximum temper-
ature TM. On the other hand, for frequencies just below
ωc1 (cf. the uppermost curve), we see that Γ

−1
T is rapidly

increasing with TM beyond TM/TF = 0.03. For higher
initial temperatures TM, Γ

−1
T will eventually become

negative as discussed above.
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Fig. 3: The inverse relaxation parameter (14) for the same
system parameters as in fig. 1 is shown as a function of the
maximum electronic temperature TM in the nanoparticle. The
frequencies are ω/ω

(0)
sp = 0.9, 0.983, 0.9847, and 0.9849 from the

lower to the upper curve.

The results presented in fig. 3 can be compared with
experiments because the initial temperature TM is related
to the experimentally controlled pumping energy density
which determines the energy initially deposited in a
nanoparticle (see eq. (12)). By measuring the relaxation
rate on and off resonance, it was found in ref. [4] that
at an estimated average flux of one pump photon per
nanoparticle a transition from a frequency-independent
to a frequency-dependent relaxation rate occurs. Above
this threshold, the inverse relaxation rate on resonance
is significantly larger than off resonance. This scenario
is clearly reproduced by the theoretical results shown in
fig. 3. Consistently with the experimental findings, the
lifetime can be increased by a factor of two when the
number of absorbed photons is larger than one, i.e., for
TM/TF > 0.03.
While the slowdown of the transmission dynamics has

been measured, an acceleration has not yet been reported
in the literature. However, extracting the frequency-
dependent relaxation times close to the resonance is quite
difficult because there the initial value of ∆T /T used to
normalise the data is very small. Systematic experiments
measuring the differential transmission relaxation as
a function of frequency would nevertheless be highly
desirable in order to confirm unambiguously that the
mechanism we propose is at work.
In summary, we have shown that the relaxation

dynamics of the differential transmission of a nanopar-
ticle exhibits an anomaly close to the surface plasmon
resonance. This anomaly is due to the temperature
dependencies of the position and the width of the surface
plasmon resonance and manifests itself as a slowdown for
frequencies below the plasmon frequency. In addition, in
a narrow frequency window we find a faster relaxation.
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The slowdown of the relaxation of the differential trans-
mission close to the plasmon resonance has been observed
experimentally for copper and silver nanoparticles [2,4,5],
and several of the key findings are reproduced by our
approach, including the fact that the anomaly disappears
under weak excitations or for relatively large clusters.
The previously proposed explanation of the anomaly as

a size-dependent many-body effect based on the resonant
scattering of the d holes into the conduction band [7]
cannot be invoked in the absence of interband transitions
close to the surface plasmon resonance, as is the case for
silver nanoparticles. In contrast, the mechanism presented
here does not rely on interband transitions and applies to a
large variety of metallic nanoparticles. This demonstrates
that the interband transition is not essential for the
appearance of the relaxation anomaly. In particular, it
leads us to predict that a considerable slowdown of
the transmission relaxation should also be observable in
alkaline nanoparticles.
Our explanation does not invoke any special behaviour

of the electron dynamics at the plasmon frequency. In our
view, the relaxation of the electronic temperature fully
describes the cooling of the electron gas on timescales
which are larger than the lifetime of the surface plasmon.
The time evolution of this temperature may depend on
physical parameters, like the size of the nanoparticle [6,
19] or the medium in which it is embedded [20], but
the decreasing electronic temperature is not expected
to be influenced by the frequency at which the optical
transmission is detected. The anomaly with a strong
frequency dependence of the relaxation rate appears only
when the differential optical transmission is considered.
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