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Calculating the Berry curvature of Bloch electrons using the KKR method
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We propose and implement a particularly effective method for calculating the Berry curvature arising from
adiabatic evolution of Bloch states in k space. The method exploits a unique feature of the Korringa-Kohn-
Rostoker (KKR) approach to solve the Schrödinger or Dirac equations. Namely, it is based on the observation
that in the KKR theory the wave vector k enters the calculation only via the structure constants which reflect the
geometry of the lattice but not the crystal potential. For both the Abelian and non-Abelian Berry curvature we
derive an analytic formula whose evaluation does not require any numerical differentiation with respect to k. We
present explicit calculations for Al, Cu, Au, and Pt bulk crystals.
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I. INTRODUCTION

Over the past decade it has been realized that the Berry
curvature �n(k) associated with Bloch waves in solids can play
an important role in spin and charge transport by electrons.1,2

Consequently, a first-principles calculation of this qunatity was
highly desirable. Important examples where such calculations
have already been found useful are the anomalous Hall effect
(AHE)3–5 and the spin Hall effect (SHE).6–8 Particularly
insightful are those which focus on the integral of �n(k) over
the Fermi surface only. Following Haldane’s suggestion,9 it
was applied in Ref. 5.

The methodologies used in these calculations are based
on two distinct approaches. One is the evaluation of the
Kubo formula for the off-diagonal elements σxy of the static
conductivity.3,6–8,10 The other one uses the first-principles
Wannier representation of the Bloch states.4,5 In what fol-
lows, we present an alternative way constructed within the
framework of the KKR approach.11,12

Since the most interesting problems, where the above
curvature is relevant, concern the role of spin-orbit coupling,
we want to develop our approach for a fully relativistic
description of the electronic structure. To be more specific
we recall that for the Dirac Bloch wave of the conventional
form13

�nk(r) = eik·runk(r), (1.1)

the connection corresponding to the geometrical phase γn(k)
is defined as

An(k) = i

∫
ω

u
†
nk(r)∇kunk(r)dr, (1.2)

where the integral is over a unit cell of the volume ω. Then,
the corresponding curvature is given by

�n(k) = ∇k × An(k). (1.3)

In the above notation n is a band index and unk(r) is a periodic
four-component spinor function of r.

Here we shall demonstrate that KKR-based band theory
methods are particularly well suited for the task. Our cen-
tral point is that the KKR matrix, whose determinant is

conventionally used to find the energy bands, has its own
well-defined geometrical phases, connections, and curvatures.
As well as being easy to calculate, they are closely related to
those defined above. The root cause of this convenient feature
is the fact that such matrices depend parametrically on the
wave vector k and the energy E . Therefore, the geometry of
their eigenvalues and eigenvectors, in the k and E space, is
closely related to that associated with the periodic part of
the Bloch functions.2 There are three factors which make the
study of KKR matrices computationally efficient. First, by the
standards of first-principles electronic structure calculations
the ranks of KKR matrices are quite small. Typically, one is
dealing with 16×16 (Schrödinger equation) or 32 × 32 (Dirac
equation) matrices (if we assume one atom per unit cell).
Second, the crystal momentum k enters into the computation
only through the structure constants and their gradients with
respect to k. Furthermore, the structure constants depend
only on the geometrical crystal structure but not the crystal
potential. So, they are readily calculated, without taking
numerical derivatives, by using the so-called screened version
of the KKR method.14,15 Finally, the calculations can proceed
in the constant energy mode which is particularly efficient
when studying Fermi surface properties.

To demonstrate the efficiency and stability of the proposed
numerical procedures, we present explicit calculations of the
Berry curvature on the Fermi surfaces of Al, Cu, Au, and
Pt bulk crystals. In a fully relativistic theory the presence
of both space and time inversion symmetry forces every k
state to be twofold degenerate.16,17 As a consequence, we have
to deal with the so-called non-Abelian Berry curvature.18,19

The corresponding formalism is derived within this paper.
In order to illustrate the significance of such calculations
for the understanding of interesting physical phenomena,
we computed the intrinsic contribution to the spin Hall
conductivity for Pt and Au. We compare our results with
those obtained by other methods.7,20 Although these calcu-
lations were performed using the usual Fermi sea integration,
our formalism should be especially efficient for approaches
based on Haldane’s suggestion.9 According to Haldane the
calculations require the Berry curvature only on the Fermi
surface.
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We will introduce our theoretical framework for calculating
the above connection and the curvature in two steps. In Sec. II
we present an alternative for computing the group velocity

vn(k) = ∇kEn(k) (1.4)

of Bloch electrons, without taking the partial derivative with
respect to k numerically. In Sec. III we extend this approach
to the calculation of the Berry curvature in both Abelian
and non-Abelian cases. The example computations are shown
and discussed in Sec. IV. Note that in Secs. I– IV we use
atomic units with energy in Rydbergs. The results for the spin
Hall conductivity are presented in Sec. V. We conclude in
Sec. VI, and the appendices provide a detailed derivation of
the formulas used in the calculations.

II. CALCULATING THE GROUP VELOCITY FOR
BLOCH ELECTRONS

In this section we prepare the ground for our principle task
in Sec. III by outlining a simple, instructive way of computing
the group velocity vn(k). In addition, we introduce briefly the
relativistic KKR formalism.21,22 The basic idea for calculating
the group velocity was suggested by Shilkova and Shirokovskii
in Ref. 23. However, our procedure will follow a slightly
different route and hence will be described in detail below.

To be specific with regard to notation we use that of
Ref. 21. Here we restrict our consideration to the non-spin-
polarized case that means nonmagnetic systems. To simplify
the equations, we assume one atom per unit cell. Nevertheless,
the generalization to a lattice with a basis is straightforward.
In addition, we use the atomic-sphere approximation (ASA)
for the crystal potential in the Dirac equation.21

Then the Bloch wave corresponding to a band n can be
expanded around a site in the ASA sphere as

�nk(r) = ∑
Q

Cn
Q(k)�Q(En(k); r), (2.1)

where

�Q(E ; r) =
(

gκ(E ; r)χQ(er )

ifκ(E ; r)χQ̄(er )

)
(2.2)

are the scattering solutions of the Dirac equation for the spher-
ically symmetric potential at the energy E . They are written in
terms of the large and the small component, where gκ(E ; r) and
fκ(E ; r) are the corresponding radial functions.21,22 Here Q =
{κ,μ} and Q̄ = {−κ,μ} are abbreviations for the quantum
numbers κ and μ specifying the conventional spin-angular
eigenfunctions χQ(er ),13 where er = r/r .

When the multiple scattering ideas of Korringa11 and
Kohn and Rostoker12 are invoked, one finds that the energy
eigenvalues En(k) are given by those combinations of E and k
for which the determinant of the KKR matrix

MQQ′(E ; k) = Gs
QQ′ (E ; k)�tsQ′(E) − δQQ′ (2.3)

is zero. Note that the screened structure constants Gs
QQ′(E ; k)15

depend only on the crystal structure while the screened
�t-matrix describes the scattering at the local, self-consistent
effective one-particle potential. Therefore, �tsQ(E) is a func-
tion of energy E but not of k. This is the separation of
crystal structure and potential mentioned in the introduction.

Moreover, the more sophisticated, and physically more rel-
evant, spin-polarized version of the theory will retain the
formal structure with the difference that the �t-matrix will
be nondiagonal in Q.

An efficient way of finding the zeros of the KKR determi-
nant ||MQQ′(E ; k)|| is to solve the matrix eigenvalue problem

¯̄M(E ; k)C̄n = λnC̄n (2.4)

and to search for vanishing eigenvalues λn(E ; k). It can be
performed either in k space at constant energy or in E at fixed
k. In the above notation the components of the matrix ¯̄M and
the nth eigenvector C̄n = {Cn

Q(k)} are labeled by Q.
By means of the expansion coefficients C̄n, corresponding

to the band energy En(k), we could calculate the group velocity
evaluating

vn(k) =
∫

ω

�
†
nk(r)cα̂�nk(r)dr, (2.5)

with the relativistic velocity operator cα̂. As was shown
analytically by Shilkova and Shirokovskii23 this formula is
equivalent to Eq. (1.4). However, within the ASA approxima-
tion used in this paper, the expression [which follows from
Eqs. (2.1) and (2.5)]

vn(k) = C̄†
n(k)c ¯̄α(E)C̄n(k), (2.6)

where the elements of the vector matrix ¯̄α are defined as

( ¯̄α)QQ′(E) ≡
∫

ω

�
†
Q(E ; r)α̂�Q′(E ; r)dr, (2.7)

does not reproduce the results of the numerical differentiation
exactly. We will comment on this problem at the end of the
current section.

For now we turn to the central result of Ref. 23 which is
based on Eqs. (1.4) and (2.4) and derive a similar expression.
Technically, the solution would be easier if the matrix ¯̄M(E ; k)
were Hermitian. However, due to the expansion used, it is
not. An additional transformation, discussed by Kohn and
Rostoker12 and used in our previous papers based on Refs. 14
and 21, can provide a Hermitian KKR matrix.24 However, the
derivation of the Berry curvature described in Sec. III would
be more complicated due to the necessary normalization of
the basis functions. Thus, for clarity, we proceed to solve
Eq. (2.4) for a non-Hermitian matrix ¯̄M(E ; k). In short, we
find the right and left eigenvectors, C̄n(E ; k) and D̄n(E ; k),
respectively, such that the following conditions are fulfilled:
C̄

†
nC̄n = 1, D̄†

nD̄n = 1. We note that D̄†
nC̄n′ ∝ δnn′ , C̄†

nC̄n′ �= 0,
D̄

†
nD̄n′ �= 0, and D̄

†
nC̄n �= 1. Here C̄n and D̄n correspond to the

same eigenvalue λn. A straightforward algebra, summarized
in Appendix A, yields

vn(k) = −
D

†
n

(
∂ ¯̄M(E ;k)

∂k

∣∣
E=En(k)

)
Cn

(D†
nCn) ∂λn(E)

∂E
∣∣
E=En(k)

. (2.8)

This expression, being the main result of the current section,
is similar to the one obtained in Ref. 23 for the Hermitian
KKR matrix. It shows that having found the Bloch state
energy En(k), which provides the zero of the nth eigenvalue
λn(E ; k), one can calculate the velocity by evaluating the
above formula. For this purpose, the eigenvectors C̄n(E ; k)
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FIG. 1. (Color online) The absolute value of the Fermi velocity of
Cu (in a.u.) obtained using three different methods: (a) the numerical
derivative of the dispersion relation ∇kEn(k), (b) the expectation
value of the relativistic velocity operator given by Eq. (2.6), and (c)
implementation of Eq. (2.8).

and D̄n(E ; k) corresponding to λn(En(k); k) = 0 as well as the
partial derivative of ¯̄M(E ; k) with respect to k are required.
Since in the screened KKR method ∂ ¯̄M/∂k can be evaluated
analytically, the disadvantage of taking numerical derivatives
of the dispersion relation En(k) is avoided. Namely, it follows
from Eq. (2.3) that ∂ ¯̄M(E ; k)/∂k = [∂ ¯̄Gs(E ; k)/∂k]�ts(E).
Noting this, one can use the short-range feature of the screened
real-space structure constants ¯̄Gs(E ; R)15 to evaluate

∂ ¯̄Gs(E ; k)/∂k = i
∑

R

ReikR ¯̄Gs(E ; R) (2.9)

at each k point, separately. Consequently, the only nu-
merical derivative to be taken, by calculating the ve-
locity, is the one-dimensional derivative ∂λn(E ; k)/∂E .
Fortunately, this requires only modest computational
efforts.

In concluding this section, we report in Fig. 1 a comparison
between ∇kEn(k) as calculated by numerical differentiation,
by the use of Eq. (2.6), and by evaluating the formula of
Eq. (2.8). The calculations are performed for the electron states
on the Fermi surface of Cu. Significantly, the results based
on Eqs. (2.6) and (2.8) show a smooth appearance over the
Fermi surface, indicating their independence on the number
of k-mesh points. By contrast, the numerical derivative in
Eq. (1.4) strongly depends on the used k mesh. The other
noteworthy features of these results are the similarities and
differences of the velocities obtained by Eqs. (2.6) and (2.8). A
detailed analysis of these shows that the numerical derivative
of ∇kEn(k) converges to the result of Eq. (2.8) whereas for
the direct evaluation of the velocity operator by Eq. (2.6) a
maximal error of 4% remains. This effect was already dis-
cussed in the literature with respect to dipole transition matrix
elements.25,26 It was shown that the ASA approximation causes
difficulties in evaluating the off-diagonal matrix elements of
the relativistic velocity operator. The authors of Refs. 25 and 26
resolved the issue by rewriting the necessary formulas to get
numerically more stable results. The problem in evaluating
the expectation value of cα̂ was already discussed by Shilkova
and Shirokovskii who solved the problem by following the
line of arguments we have adopted here. They showed that
this method is perfectly stable. Here we confirm their results
for the case of non-Hermitian KKR matrices.

Finally, we point out that the method of calculating the
Berry curvature presented in the next section uses the same

techniques as considered above. Therefore, similar improve-
ments of accuracy and stability for the numerical results are
expected.

III. NEW ROUTE TO COMPUTE THE BERRY
CURVATURE

In this section the formalism for the calculation of the Berry
curvature within the KKR method is derived. We start with the
conventional (Abelian) case for An(k) and �n(k) (Secs. III A
and III B, respectively). Then we expand our consideration to
a general non-Abelian case (Sec. III C).

A. The connection for unk(r) via �nk(r)

Clearly, the periodic part unk(r) of the Bloch wave is
an eigensolution of the Schrödinger or Dirac equation with
Hamiltonian

Ĥk(r) = e−ik·rĤ (r)eik·r (3.1)

in which the wave vector appears as a parameter. Thus,
the arguments leading to Eqs. (1.2) and (1.3) are, by now,
conventional.2 However, whether the Bloch wave itself has
a geometrical phase, connection, and curvature in its own
right appears to be a different problem. The Hamiltonian for
�nk(r) does not depend on k, and the wave vector enters into
the discussion of Bloch waves only by defining the boundary
conditions. Although it has been noted,27 it was not clarified
whether a slowly changing boundary condition is exactly
equivalent (or has the same holonomy) to a slowly changing
parameter k in the theory of unk(r).

Another comment which concerns the above discussion is
that k of �nk(r) labels not only the energy eigenstate but also
the eigenvalues eik·R of the translation operators T̂R. Therefore,
it is not entirely free to act as a parameter. By contrast, unk(r) is
degenerate with respect to all translation operators and hence
its k is not obliged to label their eigenvalues. As a consequence,
they are free to be parameters in Ĥk(r). In other words, unk
is not in the same Hilbert space as unk′ and hence they do not
need to be orthogonal. In contrast, unk and umk with m �= n

reside in the same Hilbert space and are orthogonal to each
other.27

With these remarks in mind we note that the KKR, as
most band-theory methods, is designed to calculate �nk(r)
but not unk(r), in addition to the energy eigenvalue En(k).
Nevertheless, the Bloch function in the unit cell ω, as
given by Eq. (2.1), can be used to evaluate the connection
as

An(k) = i

∫
ω

�
†
nk(r)∇k�nk(r)dr+

∫
ω

�
†
nk(r)r�nk(r)dr. (3.2)

From the point of view of the above discussion it should be
stressed that the integrals in the above expression are over a
chosen unit cell only and they are not the usual matrix elements
between Bloch states. Clearly, such matrix elements would
feature integrals over all the space with the corresponding
orthogonality. In contrast, while integrating over a unit cell the
Bloch states are not orthogonal.

The purpose of writing An(k) in the form of Eq. (3.2) is not
to attribute it to the Bloch states, but to facilitate its calculation
using the local expansion of Bloch states given by Eq. (2.1).

075113-3



M. GRADHAND et al. PHYSICAL REVIEW B 84, 075113 (2011)

As will become apparent shortly, the two contributions on the
right-hand side of Eq. (3.2) correspond to different aspects
of the problem. Therefore, it is convenient to deal with them
separately. For easy reference we shall call the first term Ak

n(k)
and the second Ar

n(k).
Let us use the KKR expansion given by Eq. (2.1) and the

fact that the scattering states �Q(E ; r) can be normalized to 1
within a unit cell. Then, a straightforward calculation of Ak

n(k)
yields

Ak
n(k) = AKKR

n (k) + Av
n(k), (3.3)

where (a detailed derivation is given in Appendix B)

Av
n(k) = ivnC̄

†
n

¯̄�C̄n = −vnIm{C̄†
n

¯̄�C̄n} (3.4)

with

( ¯̄�)QQ′(E) = δQQ′

∫
w

�
†
Q(E ; r)

∂�Q′(E ; r)

∂E dr (3.5)

and

AKKR
n (k) = iC̄†

n∇kC̄n = −Im{C̄†
n∇kC̄n}. (3.6)

Here the matrix ¯̄� is diagonal because the angular part of
the KKR-basis set [Eq. (2.2)] does not depend on energy.
Clearly, the term given by Eq. (3.6) is similar to the standard
formula for the connection. It is associated with the eigenvalue
problem of Eq. (2.4) in the usual way1 and hence can be
regarded as a property of the KKR matrix ¯̄M(E ; k). This term
is purely real since C̄

†
n∇kC̄n is a purely imaginary quantity

due to the normalization C̄
†
nC̄n = 1. The other term, Av

n(k), is
always parallel to the group velocity and purely real due to the
anti-Hermitian property of the matrix ¯̄�.

Turning to the second term in Eq. (3.2) and using the local
expansion of Eq. (2.1) one readily finds

Ar
n(k) = C̄†

n(k)¯̄rC̄n(k), (3.7)

where the vectorial matrix ¯̄r is defined as

(¯̄r)QQ′(E) =
∫

ω

�
†
Q(E ; r)r�Q′ (E ; r)dr. (3.8)

Then the full connection is given by

An(k) = AKKR
n (k) + Av

n(k) + Ar
n(k), (3.9)

together with Eqs. (3.4), (3.6), and (3.7).
The next subsection is devoted to presenting a method

for calculating the curvature given by Eq. (1.3) within this
framework.

B. KKR formula for Abelian Berry curvature

It follows from Eq. (3.9) that the curvature can be
considered as a sum of the following contributions:

�n(k) = �KKR
n (k) + �v

n(k) + �r
n(k). (3.10)

We start with the first term of the right-hand side in the
equation above, namely �KKR

n (k) = ∇k × AKKR
n (k). This is

the curvature associated with the KKR eigenvalue problem of
Eq. (2.4). To deal with it, we note that

�KKR
n (k) = i∇kC̄

†
n × ∇kC̄n = −Im{∇kC̄

†
n ×∇kC̄n}. (3.11)

This is the standard form of the Berry curvature derived from
a matrix eigenvalue problem.1 However, because the KKR
matrix ¯̄M(E ; k) is not Hermitian, the algebra from here on
deviates somewhat from the usual procedures.1,2 In particular,
the completeness relation

∑
m C̄mC̄

†
m = ¯̄1 for ¯̄M(E ; k) being

Hermitian fails in our case. Instead, to transform Eq. (3.11)
into a computationally convenient form, we must use

N∑
m=1

C̄mD̄
†
m

D̄
†
mC̄m

=
N∑

m=1

D̄mC̄
†
m

C̄
†
mD̄m

= ¯̄1, (3.12)

where as before C̄m and D̄m are right and left eigenvectors
of ¯̄M(E ; k), respectively.28 Here the sum is going over all N

eigenstates of the matrix ¯̄M that has a dimension of N × N .
Substituting Eq. (3.12) into Eq. (3.11) the KKR curvature takes
the following form:

�KKR
n (k) = −Im

{∑
m

∇kC̄
†
nC̄m × D̄

†
m∇kC̄n

D̄
†
mC̄m

}
. (3.13)

The next move is to eliminate the derivatives ∇kC̄n in favor
of ∇k

¯̄M , similar to the case of the velocity formula in Eq. (2.8),
by studying the gradient of Eq. (2.4) with respect to k. The
details are given in Appendix C. Here we merely record the
result which facilitates the numerical evaluation �KKR

n (k) in
Eq. (3.13):

�KKR
n (k) = −Im

⎧⎨
⎩

∑
m�=n

1

D̄
†
mC̄m(λn − λm)

×
∑
k �=n

[C̄†
kC̄m − (C̄†

kC̄n)(C̄†
nC̄m)]

C̄
†
kD̄k

× (D̄†
k∇k

¯̄MC̄n)∗ × D̄
†
m∇k

¯̄MC̄n

(λ∗
n − λ∗

k)

}
, (3.14)

where

∇k
¯̄M = ∂ ¯̄G(E ; k)

∂k
�t(E)|

E=En(k)

+vn(k)

[
∂ ¯̄G(E ; k)

∂E �t(E) + ¯̄G(E ; k)
∂�t(E)

∂E

]∣∣∣∣
E=En (k)

.

(3.15)

It is reassuring to note that for a Hermitian KKR matrix ¯̄M ,
for which D̄i = C̄i and C̄

†
i C̄j = δij , Eq. (3.14) reduces to its

conventional form1:

�KKR
n (k) = −Im

⎧⎨
⎩

∑
m�=n

C̄
†
n∇k

¯̄MC̄m × C̄
†
m∇k

¯̄MC̄n

(λn − λm)2

⎫⎬
⎭ .

(3.16)

From the point of view of the present paper, Eqs. (3.14)
and (3.15) together are one of our two central formal
results. It expresses the contribution �KKR

n (k) to the Berry
curvature in terms of the left and right eigenvectors, the
group velocity, and k and E derivatives of the KKR ma-
trix. As will be demonstrated, these relations provide an
efficient way of calculating �KKR

n (k) similarly to the man-
ner of Eq. (2.8) done for the group velocity. The main
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difference is that now we need the total derivative ∇k
¯̄M

in Eq. (3.15) instead of the partial derivative ∂ ¯̄M/∂k used in
Eq. (2.8).

Let us consider the term �v
n(k) = ∇k × Av

n(k). A detailed
derivation performed in Appendix C finally gives the following
expression:

�v
n(k) = 2vn(k)

×Im

⎧⎨
⎩

∑
m�=n

[C̄†
n

¯̄�C̄m−C̄
†
n

¯̄�C̄n(C̄†
nC̄m)]D̄†

m∇k
¯̄MC̄n

D̄
†
mC̄m(λn − λm)

⎫⎬
⎭ ,

(3.17)

where the matrix ¯̄� is defined by Eq. (3.5). Due to the
cross vector product, this term does not contribute to the
Fermi surface integrals needed in calculations which follow
Haldane’s proposal.9

Returning to the contribution �r
n(k) defined in Eq. (3.10),

on taking the curl, one finds

�r
n(k) =

∫
ω

[(∇k|�nk(r)|2) × r]dr

= 2Re

{∫
ω

[�†
nk(r)(∇k�nk(r)) × r]dr

}
. (3.18)

Then, using the KKR expansion of Eq. (2.1) it follows
(Appendix C) that

�r
n(k) = 2 · vn(k) × Re{C̄†

n
¯̄rE C̄n} − 2

· Re

⎧⎨
⎩
∑
m�=n

[C̄†
n ¯̄rC̄m− C̄

†
n ¯̄rC̄n(C̄†

nC̄m)] × D̄
†
m∇k

¯̄MC̄n

D̄
†
mC̄m(λn − λm)

⎫⎬
⎭.

(3.19)

Here the vectorial matrix ¯̄r is given by Eq. (3.8), and the
vectorial matrix ¯̄rE is defined as

(¯̄rE )QQ′(E) =
∫

ω

�
†
Q(E ; r)r

∂�Q′(E ; r)

∂E dr. (3.20)

To summarize the above discussion, we note that the
formula for the full curvature [Eq. (3.10)] together with
Eqs. (3.14), (3.17), and (3.19) constitutes a basis for calcu-
lating the conventionally defined �n(k). Here we used the
eigenvectors and eigenvalues of the KKR matrix and the matrix
elements with respect to the local scattering states �Q(E ; r)
given by Eqs. (3.5), (3.8), and (3.20). Clearly, these quantities
are readily available in a KKR calculation which is aimed
at computing the wave functions as well as the dispersion
relation.21

An important point to mention is that the projection of
�n(k) along the group velocity

�n(k) · vn(k) = −vn(k) · Im

⎧⎨
⎩

∑
m�=n

1

D̄
†
mC̄m(λn − λm)

∑
k �=n

[C̄†
kC̄m − (C̄†

kC̄n)(C̄†
nC̄m)]

C̄
†
kD̄k

[D̄†
k(∂ ¯̄M/∂k)C̄n]∗ × D̄

†
m(∂ ¯̄M/∂k)C̄n

(λ∗
n − λ∗

k)

⎫⎬
⎭

− 2vn(k) · Re

⎧⎨
⎩

∑
m�=n

[C̄†
n ¯̄rC̄m − C̄

†
n ¯̄rC̄n(C̄†

nC̄m)] × D̄
†
m(∂ ¯̄M/∂k)C̄n

D̄
†
mC̄m(λn − λm)

⎫⎬
⎭ (3.21)

does not have any terms connected with the energy derivative.
This is then the second principle result of the current section.
Its significance is that no Fermi surface integral contains
energy derivatives. Therefore, for calculating the anomalous
Hall conductivity according to Haldane’s approach,9 one does
not need a numerical differentiation at all, since the partial
derivative ∂ ¯̄M/∂k has to be taken analytically according to
Eq. (2.9).

Up to now we discussed the conventional Abelian case
when there is no degeneracy of the electronic states. In the
next section we consider the Berry curvature in a general non-
Abelian case.

C. KKR formula for non-Abelian Berry curvature

As was discussed in detail by Shindou and Imura (Ref. 19),
the presence of degenerate Bloch bands makes the Berry
curvature non-Abelian. Since two covariant derivatives (with
respect to k) along different axes do not commute with each

other in the subspace spanned by the degenerate bands, the
Abelian description fails. Namely, in the case of an L-fold
degeneracy the Berry curvature is not any more a vector, but a
vector-valued matrix in L-dimensional space labeled �. Those
elements can be written as19,29

�ij (k) = i〈∇kuik| × |∇kujk〉
− i

∑
l∈�

〈∇kuik|ulk〉 × 〈ulk|∇kujk〉, (3.22)

where indices i and j mean any two states from the set
� = {1,2, . . . ,L} of the degenerate states. Below we derive
detailed expressions for the non-Abelian Berry curvature given
by Eq. (3.22) within the KKR method.

For typographical simplicity, in this subsection we use the
inner products which will always mean an integration over the
unit cell. Then, using the Bloch theorem, Eq. (3.22) can be
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rewritten as (omitting index k for the wave functions)

�ij (k) = i〈∇k�i | × |∇k�j 〉 + 〈∇k�i × r|�j 〉 − 〈�i |r × ∇k�j 〉 −
∑
l∈�

{i〈∇k�i |�l〉 × 〈�l|∇k�j 〉

−〈�i |r|�l〉 × 〈�l|∇k�j 〉 + 〈∇k�i |�l〉 × 〈�l|r|�j 〉 + i〈�i |r|�l〉 × 〈�l|r|�j 〉}. (3.23)

Similar to the previous subsection, we can generalize our separation of the Berry curvature into the following contributions:

�ij (k) = �k
ij (k) + �r

ij (k) = �KKR
ij (k) + �v

ij (k) + �r
ij (k). (3.24)

Here �k
ij (k) splits into

�KKR
ij (k) = i

∑
m/∈�

∑
k /∈�

[
C̄

†
kC̄m − ∑

l∈�(C̄†
kC̄l)(C̄

†
l C̄m)

]
(D̄†

k∇k
¯̄MC̄i)∗ × D̄

†
m∇k

¯̄MC̄j

C̄
†
kD̄k(λ∗

i − λ∗
k)D̄†

mC̄m(λj − λm)
(3.25)

and

�v
ij (k) = −i

{
vi ×

∑
m/∈�

[
C̄

†
i

¯̄�C̄m − ∑
l∈�(C̄†

i
¯̄�C̄l)(C̄

†
l C̄m)

]
D̄

†
m∇k

¯̄MC̄j

D̄
†
mC̄m(λj − λm)

+ vj ×
∑
m/∈�

[
C̄

†
m

¯̄�C̄j−
∑

l∈�(C̄†
mC̄l)(C̄

†
l

¯̄�C̄j )
]
(D̄†

m∇k
¯̄MC̄i)∗

C̄
†
mD̄m(λ∗

i − λ∗
m)

}
+ i[vi × vj ]

{
c̄
†
i

¯̄�E c̄j −
∑
l∈�

(c̄†i
¯̄�†c̄l)(c̄

†
l

¯̄�c̄j )

}
(3.26)

with the new matrix ¯̄�E defined as

( ¯̄�E )QQ′(E) =
∫

w

∂�
†
Q(E ; r)

∂E
∂�Q′(E ; r)

∂E dr. (3.27)

The last term in Eq. (3.24) can be written as

�r
ij (k) = vi ×

[
C̄

†
i
¯̄r†E C̄j −

∑
l∈�

(C̄†
i

¯̄�†C̄l)(C̄
†
l
¯̄rC̄j )

]
+ vj ×

[
C̄

†
i
¯̄rE C̄j −

∑
l∈�

(C̄†
i
¯̄rC̄l)(C̄

†
l

¯̄�C̄j )

]
− i

∑
l∈�

(C̄†
i
¯̄rC̄l) × (C̄†

l
¯̄rC̄j )

−
∑
m/∈�

[
C̄

†
m ¯̄rC̄j − ∑

l∈�(C̄†
mC̄l)C̄

†
l
¯̄rC̄j

] × (D̄†
m∇k

¯̄MC̄i)∗

C̄
†
mD̄m(λ∗

i − λ∗
m)

−
∑
m/∈�

[
C̄

†
i
¯̄rC̄m − ∑

l∈� C̄
†
i
¯̄rC̄l(C̄

†
l C̄m)

] × D̄
†
m∇k

¯̄MC̄j

D̄
†
mC̄m(λj − λm)

.

(3.28)

A detailed derivation of these formulas is given in Appendix D.
To get the expressions for the Abelian case, obtained in the
previous section, one needs to consider the diagonal element
�ii(k) and restrict the sum over l just to the term l = i.

IV. RESULTS FOR THE BERRY CURVATURE

Here we present the results for the Berry curvature at the
Fermi surface of Al, Cu, Au, and Pt bulk crystals. All of them
are nonmagnetic materials with space inversion symmetry. As
was mentioned in Sec. I, in such a case the electron states are
twofold degenerate at each k point. In other words, they form
a Kramers doublet. Therefore, according to the discussion of
Sec. III, the non-Abelian Berry curvature is a vector-valued
matrix in the two-dimensional space of the two degenerate
bands.

In general, each matrix element of �(k) is gauge dependent.
It would be meaningless to visualize the elements for an
arbitrary gauge. A gauge-independent quantity is the vector
Tr[�(k)], but it vanishes for Kramers-degenerate bands. Other
gauge-independent quantities are Tr[Sμ(k)μ(k)] with μ =
x,y,z using the spin matrices S

μ

ij (k) = 〈�i |βσμ|�j 〉 in the
subspace spanned by the two degenerate bands. However,

these quantities combine already two effects stemming from
the Berry curvature as well as the spin mixing of the wave
functions.21 Hence, some features of the Berry curvature may
be hidden.

Since there is no convenient gauge-invariant quantity to
plot we have chosen a physically appealing gauge. Similarly to
what was discussed in Ref. 21, it is a special linear combination
of the degenerate states such that the off-diagonal matrix
elements of the spin operator �z = βσz in the subspace of
the two degenerate bands are zero. Such a transformation can
always be performed. For simplicity we present the Berry
curvature for one of the degenerate bands only, since for
the diagonal elements the relation �11 = −�22 holds. The
off-diagonal terms are more complicated being not purely real,
but complex numbers.

In Fig. 2 we compare the three separate parts contributing
to the Berry curvature from Eqs. (3.25), (3.28), and (3.26).
The first one [Fig. 2 (a)] is the KKR part �KKR(k) that clearly
has the dominant contribution. The maximum value of the
contribution �r (k) in Fig. 2(b) is less than 4% of �KKR(k),
and �v(k) shown in Fig. 2(c) contributes less than 2%. The
same holds for all the other considered systems, for which only
the total Berry curvature (k) is summarized in Fig. 3.
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FIG. 2. (Color) The length of the diagonal components of the
Berry curvature on the Fermi surface of Au in a.u.: (a) the KKR part
�KKR

ii (k) according to Eq. (3.25), (b) the contribution from �r
ii(k)

given by Eq. (3.28), and (c) the part �v
ii(k) introduced by the energy

dependence of the basis functions according to Eq. (3.26).

Here, the interesting result is that the maximum value for
the length of the Berry curvature is largest for Al which is
actually the lightest element with the weakest atomic spin-orbit
coupling. However, the region of such a large contribution is
very small and connected to points where the Fermi surface
touches the Brillouin zone (BZ) boundaries. A similar effect
is known for the spin-mixing of Bloch states on the Fermi
surface of Al.21,30 The enhancement of the spin-mixing is
induced by two mechanisms. First, an avoided crossing of two
bands appears at these points. Second, this avoided crossing
occurs near the BZ boundary where the spin-orbit interaction
is already increased due to the multiband character of the
Fermi surface of Al.30 The same explanation, connected with
the strength of the k-dependent spin-orbit coupling, holds for
the enhancement of the Berry curvature. Except for these
special points, the values for the Berry curvature in Al are
orders of magnitude smaller than for all the other considered
metals. In addition, the avoided crossings can explain the
larger contributions in Pt in comparison to Au which is in
fact heavier, but has only one twofold degenerate band at the
Fermi surface. Finally, Cu, also with one band only, has quite
small contributions since it is a relatively light material.

V. SPIN HALL CONDUCTIVITY

As a first application of the Berry curvature, calculated
within the KKR formalism, the intrinsic spin Hall conductivity
(SHC) will be presented. This quantity was already calculated
using a Kubo-formula-like expression for the SHE6,7,31,33 and
our purpose here is to validate our approach to the problem.

It might be preferable for such a comparison to calculate
the anomalous Hall conductivity (AHC). As it is known, for
this quantity the Kubo-like formula and the semiclassical ex-
pression are formally equivalent.4 However, for nonmagnetic
systems the AHC vanishes. This leaves us with no choice but
to calculate the SHC in spite of two conceptual difficulties.
The first of these is the lack of a proper definition of the spin
current operator.32,34 The second one is that, even with the
frequently used choice of the spin current operator,6,7,35 the
Kubo formula for the SHC is not equivalent to the simplified
semiclassical theory used here.36

In general, the AHC can be written in terms of the Berry
curvature as3,10,37–39

σxy = −e2

h̄

∑
n

∫
BZ

dk
(2π )3

fn(EF ,k)z
n(k), (5.1)

where the distribution function fn(EF ,k) restricts the integral
to the states below the Fermi energy EF .

For the SHE this formula has to be modified to ac-
count for the fact that a spin and not a charge current is
flowing. In addition, the non-Abelian nature of the Berry
curvature has to be taken into account.19 Let us start with
the heuristic spin-current operator j

s
= 1/2(�v̂ + v̂�).6,35

Following the simplest interpretation of the semiclassical wave
packet dynamics39,40 with v̂ → ṙc = −e� × E and � → S,
we consider the anomalous velocity induced by an applied
electric field E. Now, we have both S and � as 2 × 2 matrices in
the subspace spanned by the Kramers doublet. If we assume the
electric field to be in the x direction and restrict the discussion
to the spin polarization in the z direction, then the SHC is given
by19

σ z
xy = e2

2h̄

∑
n

∫
BZ

dk
(2π )3

fn(EF ,k)Tr
[
ρn(k)Sn(k)z

n(k)
]
.

(5.2)

Here ρn(k) is the density matrix which describes the wave
packet constructed from the two degenerate states correspond-
ing to the wave vector k and band index n. As mentioned above,
this expression is not equivalent to the Kubo formula of Refs. 5,
8, 31, and 33. The difference is induced by neglecting the band
off-diagonal terms stemming from the spin operator.19 Here
we mean the other bands which are not those of the Kramers
doublet but may be energetically close to it. However, the
Kramers doublet is treated correctly in terms of a non-Abelian
Berry curvature.19 We leave a possible influence of these

FIG. 3. (Color) The absolute value (in a.u.) of the diagonal component of the Berry curvature for the Fermi surface of several metals. From
left to right: Al (3rd and 5th bands), Cu (11th band), and Pt (7th, 9th, and 11th bands). For Al we used a logarithmic scale to visualize the
important regions.
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simplifications to be investigated elsewhere. Here we only
show that within such approximations one can reproduce the
results obtained in the more rigorous approach of the Kubo-like
formula.6–8,33 To aid the emergence of physical insight into the
content of our calculations we made a further simplification by
assuming the spin expectation value for the degenerate bands
to be Sn

ii(k) = ±1. This is equivalent to a two-current model
where the spin current is given by I s = I+ − I−. Here “+” and
“−” denote the current provided by �+ and �− states with a
positive or negative spin polarization, respectively.21 Thus, the
matrix element z

n,11 in Eq. (5.2) corresponds to z,+
n . For an

incoherent superposition of two wave packets corresponding
to the degenerate states of the nth band the density matrix takes
the form ρn(k) = ( 1 0

0 1 ). Therefore, the SHC can be written as

σ z
xy = σ+

xy − σ−
xy leading to

σ z
xy = e2

h̄

∑
n

∫
BZ

dk
(2π )3

fn(EF ,k)z,+
n (k)

= e2

h̄(2π )3

∫ EF

dEz(E), (5.3)

where

z(E) =
∑

n

∫
IS(E)

d2k∣∣vn
F (k)

∣∣z,+
n (k). (5.4)

Here we exploited the fact that for the Kramers pair the
condition z,+

n (k) = −z,−
n (k) holds. In fact, Eq. (5.3) is

nothing else but the formula for the AHC applied for the “+”
subband only. It is written in terms of the energy-resolved
Berry curvature z(E) via an isosurface (IS) integral.

In Fig. 4 we show the SHC as a function of EF for Au and
Pt calculated by Eq. (5.3). It is in reasonable agreement with
the results obtained by Guo et al.8,20 using a Kubo formula
approach. All main features in the energy dependence of the
conductivity are reproduced. The conductivities at EF are
given by 470 ( cm)−1 and 2500 ( cm)−1 for Au and Pt,
respectively.

As is well known, the integration of the Berry curvature
over the Brillouin zone is a computationally very demanding
task.4,7,8 This stems from the fact that �(k) is a very spiky
function in the crystal momentum space. Especially for light
elements the Berry curvature turns out to be small everywhere
except for small regions around avoided crossings. The reason
for that is already clear from the article of M. Berry.1 He
expressed the curvature of a certain state, equivalent to a band
in terms of the Bloch states considered here, as a sum over all
the other states where the difference of the state energies appear
in the denominator. The same situation occurs in Eq. (3.25),
where the eigenvalues of the KKR matrix play the role of the
state energies. Taking this into account, it is evident that the
Berry curvature becomes larger if two bands are coming close
to each other. This is exactly what happens at avoided crossings
of any kind. As was pointed out by Mikitik and Sharlai in
Ref. 41, the Berry curvature in the nonrelativistic case vanishes
everywhere except for degeneracies of points or lines. In
the vicinity of such degeneracies the Berry curvature is a δ-
distribution function. Adding spin-orbit coupling to the system
leads, normally, to avoided crossings at the degeneracies, but
they still give rise to a Berry curvature. It can be viewed as

FIG. 4. (Color online) The energy-resolved spin Hall conductiv-
ity for Au (top) and Pt (bottom) according to Eq. (5.3).

smearing out the δ distribution. Importantly, the smearing is
proportional to the strength of the spin-orbit coupling. It means
that for light elements with a weak atomic spin-orbit coupling
the Berry curvature is very close to the δ function. That makes
the integration quite demanding. This leads to the somewhat
surprising situation: Systems with stronger spin-orbit coupling
and more pronounced effects induced by the Berry curvature
can be handled numerically easier than systems with tiny
splitting of the bands.

To highlight once more the discussion above, in Fig. 5
the energy-resolved Berry curvature according to Eq. (5.4) is
shown for Au. Clearly, even with respect to energy z(E)
is a very spiky function. That requires one to use a very
dense E and k mesh as discussed by several authors.4,7,8

Here we used comparable numbers of k points to converge
the Berry curvature integrals. Actually, in Fig. 5 only two of
the three contributions, according to the separation given by
Eqs. (3.24)–(3.28), are shown. One can see that the KKR part


KKR,z
11 (E) (red solid line) dominates, whereas the part r,z

11 (E)
(blue dashed lines) is negligible. We should mention that the
part 

v,z
11 (E) is even much smaller and was skipped. This is a

consequence of the above discussion related to Fig. 2. Thus,
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FIG. 5. (Color online) The energy-resolved Berry curvature for
Au. The red (solid) and blue (dashed) curves show the separate
contributions from the KKR part KKR,z

11 (E) and the dipole part r,z
11 (E)

of the Berry curvature, respectively.

only the most stable part of the Berry curvature, including no
numerical derivative, contributes significantly to the SHC.

VI. CONCLUSION

We have developed an efficient method to calculate the
Berry curvature within the KKR approach applied to the
electronic structure of solids. An unconventional scheme that
requires one to deal with a non-Hermitian KKR matrix is
compensated by an elegant analytical differentiation of this
matrix with respect to the crystal momentum vector. This
advantage is a feature of the screened version of the KKR
method and should also be useful for all tight-binding-like
computational methods. The formal arguments starting with
the local expansion of the Bloch function in Eq. (2.1) and
leading to the computable formulas (3.25)–(3.28) can be
readily adopted for calculations based on other multiple
scattering approaches. In particular, for the LMTO method
the situation will be simplified due to the lack of any
energy dependence for the basis functions. The efficiency and
stability of the proposed computational procedure is shown by
calculating the Berry curvature for Al, Cu, Au, and Pt bulk
crystals and the spin Hall conductivity for Au and Pt.
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APPENDIX A: DERIVATION OF THE GROUP VELOCITY

Following Shilkova and Shirokovskii23 we note that the
eigenvalues of the KKR matrix obey λn(En(k); k) = 0 and
hence for the total derivative ∇kλn(E ; k) we have

∂λn(E ; k)

∂k

∣∣∣∣
E=En (k)

+ ∇kEn(k)
∂λn(E ; k)

∂E

∣∣∣∣
E=En(k)

= 0. (A1)

Therefore,

vn(k) = ∇kEn(k) = −∂λn(E ; k)

∂k

/
∂λn(E ; k)

∂E . (A2)

The next and central move is to calculate ∂λn(E ; k)/∂k.
For the case of Hermitian KKR matrix ¯̄M(E ; k) it was done in
Ref. 23. Here we generalize the procedure to the case of a non-
Hermitian matrix. With the definition of the left eigenvectors28

D̄
†
n

¯̄M = λnD̄
†
n it is evident that

D̄†
n

¯̄MC̄n = λnD̄
†
nC̄n. (A3)

Taking the partial derivative of both sides of Eq. (A3) with
respect to k we obtain

∂λn(E ; k)

∂k
= D

†
n(∂ ¯̄M/∂k)Cn

D
†
nCn

. (A4)

Using this formula in Eq. (A2) one derives Eq. (2.8).

APPENDIX B: CONNECTION Ak
n(k)

To deal with Eq. (3.2), we need to calculate ∇k�nk(r).
Using the KKR expansion of Eq. (2.1), we obtain

∇k�nk(r) =
∑
Q

[
∇kC

n
Q(k)�Q(r) + Cn

Q(k)vn(k)
∂�Q(r)

∂E

]
,

(B1)

which gives us

〈�nk|∇k�nk〉 =
∑
Q

Cn∗
Q (k)∇kC

n
Q(k) + vn(k)

∑
Q

∣∣Cn
Q(k)

∣∣2

×
∫

w

�
†
Q(E ; r)

∂�Q(E ; r)

∂E dr. (B2)

Here we have used the fact that
∫
w

�
†
Q(E ; r)

∂�Q′ (E ;r)
∂E dr ∝ δQQ′

by the properties of our KKR-basis set given by Eq. (2.2). Then
for Ak

n(k) we can write

Ak
n(k) = AKKR

n (k) + i vn(k)
∑
Q

∣∣Cn
Q(k)

∣∣2

×
∫

w

�
†
Q(E ; r)

∂�Q(E ; r)

∂E dr , where

AKKR
n (k) = i

∑
Q

Cn∗
Q (k)∇kC

n
Q(k). (B3)

Rewriting these expressions in a matrix form, we get
Eqs. (3.3)–(3.6).

APPENDIX C : ABELIAN CURVATURE

Let us derive first Eq. (3.14) for �KKR
n (k) starting from

Eq. (3.13). Using the completeness relation given by Eq. (3.12)
we can perform the following expansion:

C̄n =
∑
m

D̄mC̄
†
m

C̄
†
mD̄m

C̄n =
∑
m

C̄
†
mC̄n

C̄
†
mD̄m

D̄m. (C1)

With the Hermitian conjugate of this expansion we have

C̄†
n∇kC̄n = D̄

†
n∇kC̄n

D̄
†
nC̄n

+
∑
m�=n

C̄
†
nC̄m

D̄
†
mC̄m

D̄†
m∇kC̄n. (C2)
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Then,

∇kC̄
†
nC̄n × D̄

†
n∇kC̄n

D̄
†
nC̄n

+
∑
m�=n

∇kC̄
†
nC̄m × D̄

†
m∇kC̄n

D̄
†
mC̄m

=
∑
m�=n

∇kC̄
†
n[C̄m − C̄n(C̄†

nC̄m)] × D̄
†
m∇kC̄n

D̄
†
mC̄m

, (C3)

where we have used that ∇kC̄
†
nC̄n × C̄

†
n∇kC̄n vanishes since C̄

†
n∇kC̄n is purely imaginary. Using Eq. (C1) we can rewrite the

part of the numerator in Eq. (C3) as

C̄m − C̄n(C̄†
nC̄m) =

∑
k

C̄
†
kC̄m

C̄
†
kD̄k

D̄k −
∑

k

(C̄†
kC̄n)(C̄†

nC̄m)

C̄
†
kD̄k

D̄k =
∑
k �=n

[C̄†
kC̄m − (C̄†

kC̄n)(C̄†
nC̄m)]D̄k

C̄
†
kD̄k

. (C4)

In addition, due to D̄
†
j C̄i = 0 for j �= i, we have

D̄
†
j∇kC̄i = D̄

†
j∇k

¯̄MC̄i

λi − λj

, j �= i. (C5)

Therefore, finally we can write

∑
m

∇kC̄
†
nC̄m × D̄

†
m∇kC̄n

D̄
†
mC̄m

=
∑
m�=n

1

D̄
†
mC̄m(λn − λm)

∑
k �=n

[C̄†
kC̄m − (C̄†

kC̄n)(C̄†
nC̄m)]

C̄
†
kD̄k

(D̄†
k∇k

¯̄MC̄n)∗ × D̄
†
m∇k

¯̄MC̄n

(λ∗
n − λ∗

k)
(C6)

and end up with Eq. (3.14).
For a derivation of �v

n(k) we need to take the curl of the second term on the right-hand side of Eq. (B3). Taking into account
that ∇k × vn(k) = ∇k × ∇kEn(k) = 0, one can write

�v
n(k) = 2vn(k) × Im

{ ∑
Q

[
Cn∗

Q (k)∇kC
n
Q(k)

] ∫
w

�Q(E ; r)
∂�

†
Q(E ; r)

∂E dr
}

= 2vn(k) × Im{C̄†
n

¯̄�∇kC̄n}. (C7)

Then, using again the completeness relation of Eq. (3.12) together with Eqs. (C2) and (C5) we obtain

C̄†
n

¯̄�∇kC̄n =
∑
m

C̄
†
n

¯̄�C̄mD̄
†
m∇kC̄n

D̄
†
mC̄m

= C̄†
n

¯̄�C̄nC̄
†
n∇kC̄n +

∑
m�=n

[
C̄

†
n

¯̄�C̄mD̄
†
m∇k

¯̄MC̄n

D̄
†
mC̄m(λn − λm)

(C̄†
n

¯̄�C̄n)D̄†
m∇k

¯̄MC̄n(C̄†
nC̄m)

D̄
†
mC̄m(λn − λm)

]
. (C8)

Here the term C̄
†
n

¯̄�C̄nC̄
†
n∇kC̄n is purely real since C̄

†
n∇kC̄n and C̄

†
n

¯̄�C̄n both are purely imaginary quantities (the latter one due
to the normalization

∫
w

|�Q|2dr = 1). Hence we end up with Eq. (3.17).
Let us consider now Eq. (3.18) and use the KKR expansion given by Eq. (2.1). Then,

�r
n(k) = 2Re

⎧⎨
⎩

∑
QQ′

∫
ω

[
C̄n∗

Q �
†
Q∇k(C̄n

Q′�Q′) × r
]
dr

⎫⎬
⎭ = 2Re

⎧⎨
⎩

∑
QQ′

∫
ω

[
vn(k) × C̄n∗

Q �
†
Qr

∂�Q′(E ; r)

∂E C̄n
Q′

]
dr

⎫⎬
⎭

− 2Re

⎧⎨
⎩

∑
QQ′

∫
ω

[
C̄n∗

Q �
†
Qr�Q′ × ∇kC̄

n
Q′

]
dr

⎫⎬
⎭ = 2Re{vn(k) × C̄†

n
¯̄rE C̄n} − 2Re{C̄†

n
¯̄r × ∇kC̄n}. (C9)

Using again the completeness relation of Eq. (3.12) together with Eqs. (C2) and (C5), for the second term of Eq. (C9) we can
write

C̄†
n
¯̄r × ∇kC̄n =

∑
m

C̄
†
n ¯̄rC̄m × D̄

†
m∇kC̄n

D̄
†
mC̄m

= C̄†
n
¯̄rC̄n × C̄†

n∇kC̄n−
∑
m�=n

C̄
†
n ¯̄rC̄n × D̄

†
m∇k

¯̄MC̄n(C̄†
nC̄m)

D̄
†
mC̄m(λn − λm)

+
∑
m�=n

C̄
†
n ¯̄rC̄m × D̄

†
m∇k

¯̄MC̄n

D̄
†
mC̄m(λn − λm)

. (C10)

Here C̄
†
n ¯̄rC̄n × C̄

†
n∇kC̄n does not contribute to Eq. (C9) since the quantity C̄

†
n ¯̄rC̄n is purely real while C̄

†
n∇kC̄n is purely imaginary.

Thus, finally we obtain Eq. (3.19).
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APPENDIX D: NON-ABELIAN CURVATURE

We start with the �k
ij (k) part of the representation for the non-Abelian curvature given by Eq. (3.24). The first term contributing

to this part is

�KKR
ij (k) = i∇kC̄

†
i × ∇kC̄j − i

∑
l∈�

∇kC̄
†
i C̄l × C̄

†
l ∇kC̄j

= i
∑
m

∇kC̄
†
i C̄m × D̄

†
m∇kC̄j

D̄
†
mC̄m

− i
∑
l∈�

∇kC̄
†
i C̄l

[
D̄

†
l

D̄
†
l C̄l

+
∑
m/∈�

C̄
†
l C̄m

D̄
†
mC̄m

D̄†
m

]
∇kC̄j

= i
∑
m/∈�

[∇kC̄
†
i C̄m − ∑

l∈� ∇kC̄
†
i C̄l(C̄

†
l C̄m)] × D̄

†
m∇k

¯̄MC̄j

D̄
†
mC̄m(λj − λm)

, (D1)

where we have used Eqs. (C1) and (C5). According to Eq. (C1), we can rewrite the term in the square brackets as

∇kC̄
†
i

{
C̄m −

∑
l∈�

C̄l(C̄
†
l C̄m)

}
= ∇kC̄

†
i

{∑
k

C̄
†
kC̄m

C̄
†
kD̄k

D̄k −
∑
l∈�

(C̄†
l C̄m)

[
D̄l

C̄
†
l D̄l

+
∑
k /∈�

C̄
†
kC̄l

C̄
†
kD̄k

D̄k

]}

=
∑
k /∈�

∇kC̄
†
i D̄k[C̄†

kC̄m − ∑
l∈�(C̄†

kC̄l)(C̄
†
l C̄m)]

C̄
†
kD̄k

=
∑
k /∈�

[C̄†
kC̄m − ∑

l∈�(C̄†
kC̄l)(C̄

†
l C̄m)](D̄†

k∇k
¯̄MC̄i)∗

C̄
†
kD̄k(λ∗

i − λ∗
k)

. (D2)

Therefore, we end up with Eq. (3.25). Now we consider the second term contributing to �k
ij (k). Namely,

�v
ij (k) = i[vi × C̄

†
i

¯̄�†∇kC̄j − vj × ∇kC̄
†
i

¯̄�C̄j ] − i
∑
l∈�

{vi C̄
†
i

¯̄�†C̄l × C̄
†
l ∇kC̄j − vj × ∇kC̄

†
i C̄l(C̄

†
l

¯̄�C̄j )}

+ i[vi × vj ]

{
c̄
†
i

¯̄�E c̄j −
∑
l∈�

(c̄†i
¯̄�†c̄l)(c̄

†
l

¯̄�c̄j )

}
, (D3)

where the matrix ¯̄�E is defined by Eq. (3.27). Here, due to Eqs. (3.12) and (C1), we have

vi × C̄
†
i

¯̄�†∇kC̄j = vi ×
∑
m

C̄
†
i

¯̄�†C̄mD̄
†
m∇kC̄j

D̄
†
mC̄m

, vj × ∇kC̄
†
i

¯̄�C̄j = vj ×
∑
m

∇kC̄
†
i D̄mC̄

†
m

¯̄�C̄j

C̄
†
mD̄m

,

∑
l∈�

vi C̄
†
i

¯̄�†C̄l × C̄
†
l ∇kC̄j = vi ×

∑
l∈�

C̄
†
i

¯̄�†C̄l

[
D̄

†
l

D̄
†
l C̄l

+
∑
m/∈�

C̄
†
l C̄m

D̄
†
mC̄m

D̄†
m

]
∇kC̄j ,

∑
l∈�

vj × ∇kC̄
†
i C̄l(C̄

†
l

¯̄�C̄j ) = vj ×
∑
l∈�

(C̄†
l

¯̄�C̄j )∇kC̄
†
i

[
D̄l

C̄
†
l D̄l

+
∑
m/∈�

C̄
†
mC̄l

C̄
†
mD̄m

D̄m

]
. (D4)

Hence we end up with Eq. (3.26). Let us consider now

�r
ij (k) = 〈∇k�i × r|�j 〉 − 〈�i |r × ∇k�j 〉 +

∑
l∈�

{〈�i |r|�l〉 × 〈�l|∇k�j 〉 − 〈∇k�i |�l〉 × 〈�l|r|�j 〉

− i〈�i |r|�l〉 × 〈�l|r|�j 〉}. (D5)

Here, due to the completeness relation given by Eq. (3.12),

〈∇k�i × r|�j 〉 = vi × C̄
†
i
¯̄rE C̄j + ∇kC̄

†
i × ¯̄rC̄j = vi × C̄

†
i
¯̄rE C̄j +

∑
m

∇kC̄
†
i D̄m × C̄

†
m ¯̄rC̄j

C̄
†
mD̄m

,

(D6)

〈�i |r × ∇k�j 〉 = −vj × C̄
†
i
¯̄rE C̄j + C̄

†
i
¯̄r × ∇kC̄j = −vj × C̄

†
i
¯̄rE C̄j +

∑
m

C̄
†
i
¯̄rC̄m × D̄

†
m∇kC̄j

D̄
†
mC̄m

.
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In addition, taking into account Eq. (C1), we have∑
l∈�

〈�i |r|�l〉 × 〈�l|∇k�j 〉 =
∑
l∈�

C̄
†
i
¯̄rC̄l × [C̄†

l ∇kC̄j + vj C̄
†
l

¯̄�C̄j ]

=
∑
l∈�

{
C̄

†
i
¯̄rC̄l ×

[
D̄

†
l

D̄
†
l C̄l

+
∑
m/∈�

C̄
†
l C̄m

D̄
†
mC̄m

D̄†
m

]
∇kC̄j − vj × (C̄†

i
¯̄rC̄l)(C̄

†
l

¯̄�C̄j )

}
,

∑
l∈�

〈∇k�i |�l〉 × 〈�l|r|�j 〉 =
∑
l∈�

[∇kC̄
†
i C̄l + vi C̄

†
i

¯̄�†C̄i] × C̄
†
l
¯̄rC̄j

=
∑
l∈�

{
∇kC̄

†
i

[
D̄l

C̄
†
l D̄l

+
∑
m/∈�

C̄
†
mC̄l

C̄
†
mD̄m

D̄m

]
× C̄

†
l
¯̄rC̄j + vi × (C̄†

l
¯̄rC̄j )(C̄†

i
¯̄�†C̄l)

}
, (D7)

∑
l∈�

〈�i |r|�l〉 × 〈�l|r|�j 〉 =
∑
l∈�

C̄
†
i
¯̄rC̄l × C̄

†
l
¯̄rC̄j .

Substituting these expressions in Eq. (D5), we end up with Eq. (3.28).
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