
February 2010

EPL, 89 (2010) 40005 www.epljournal.org
doi: 10.1209/0295-5075/89/40005

Parametric resonance and spin-charge separation

in 1D fermionic systems

C. D. Graf1(a), G. Weick1,2(a) and E. Mariani1,3

1Dahlem Center for Complex Quantum Systems & Fachbereich Physik, Freie Universität Berlin
D-14195 Berlin, Germany, EU
2 Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-UdS
F-67034 Strasbourg, France, EU
3 School of Physics, University of Exeter - Stocker Road, Exeter, EX4 4QL, UK, EU

received 22 October 2009; accepted in final form 2 February 2010
published online 3 March 2010

PACS 03.75.-b – Matter waves
PACS 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid,

etc.)
PACS 73.22.Lp – Collective excitations

Abstract – We show that the periodic modulation of the Hamiltonian parameters for 1D
correlated fermionic systems can be used to parametrically amplify their bosonic collective modes.
Treating the problem within the Luttinger-liquid picture, we show how charge and spin density
waves with different momenta are simultaneously amplified. We discuss the implementation of our
predictions for cold atoms in 1D modulated optical lattices, showing that the fermionic momentum
distribution directly provides a clear signature of spin-charge separation.
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Introduction. – The swing is the best known example
of a classical system showing parametric resonances [1].
The periodic modulation of the effective swing length
induced by the motion of legs leads to the exponen-
tial amplification of the oscillations if the modulation
frequency is chosen commensurately with the natural
frequency of the swing. Quantizing this classical problem
as a harmonic oscillator with modulated parabolic confine-
ment leads to the appearance of an exponential divergence
in the time evolution of the bosonic rising and lowering
operators. This effect is particularly strong if the modula-
tion is around twice the natural oscillator frequency.
In a modulated system of many bosonic oscillators only

those fulfilling the resonance condition will be ampli-
fied, making parametric resonance a spectroscopic tool
in many-body quantum systems. These ideas acquired
particular relevance since cold atoms in optical lattices
have been realized [2]. As the intensity of the lattice
can be fully controlled by the laser power one can study
parametric modulations in correlated quantum systems
with current experimental tools [3]. Similarly, the peri-
odic modulation of the transverse confinement in cigar-
shaped Bose-Einstein condensates has been shown to
induce the parametric amplification of Faraday waves [4].

(a)These authors contributed equally to this work.

From the theoretical point of view, parametric ampli-
fication of Bogoliubov quasiparticles for bosonic clouds
in optical lattices have been already investigated in the
past [5,6]. In these systems, the bosonic nature of quasi-
particles appears already when interactions are treated at
mean-field level, and allows for the amplification to occur.
In this paper we analyze parametric resonances in many-

body fermionic systems, starting with the very question
whether the amplification can occur at all. Indeed, in
contrast to the bosonic case, in fermionic systems any
mean-field treatment of interactions, including the pres-
ence of broken symmetries, preserves the fermionic nature
of quasiparticles. The Pauli principle thus blocks their
amplification, as can be easily checked by direct calcu-
lation [6]. Then the question rises if bosonic collective
excitations of a fermionic many-body system can be
subject to amplification by modulating a parameter in
the microscopic Hamiltonian. In order to address this
fundamental question we need to treat correlations in a
fermionic system beyond mean-field level. In this work
we thus confine our investigation to one-dimensional (1D)
correlated fermions within the Luttinger-liquid picture,
in which interactions are treated exactly and the system
is naturally diagonalized in terms of collective bosonic
spin and charge density waves [7,8]. According to the
Luttinger-liquid theory these modes disperse with two
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Fig. 1: Sketch of the dispersions ωq of the charge and spin
density waves as a function of momentum q, with group
velocities vc and vs, respectively. The pumping frequency Ω
amplifies collective spin and charge modes in the vicinity of
the momenta qc and qs.

different group velocities, giving rise to the so-called spin-
charge separation (see fig. 1). This fundamental issue
in condensed-matter physics has been detected in trans-
port experiments on quantum wires [9] and by angle-
resolved photoemission spectroscopy of 1D SrCuO2 [10]
only recently. Due to their great tunability, cold atomic
gases in optical lattices are also promising candidates for
the experimental detection of spin-charge separation in 1D
systems, as shown by several theoretical proposals [11–17].
Here we show how a spatially homogeneous time-

periodic modulation of the intensity of the optical lattice
indeed leads to the amplification of charge and spin density
waves of a 1D correlated cloud of ultracold fermionic
atoms. If Ω is the modulation frequency, the charge and
spin waves with energy vcqc = vsqs =Ω/2 will be ampli-
fied (see fig. 1). Due to the different group velocities vc

and vs for the charge and spin channels, respectively,
the resonant condition amplifies different wave numbers
for the two branches, qc and qs. On top of showing the
feasibility of parametric amplification in correlated fermi-
onic systems, we also propose this technique as a tool to
systematically investigate the spin-charge separation in
experiments. Indeed, we discuss the effect of the ampli-
fication above on the fermionic momentum distribution
and show how the latter exhibits well-defined shoulders
directly related to the wave numbers qc and qs. These
structures are particularly evident after not too long
modulation times. As the momentum distribution is the
standard quantity measured in time-of-flight experiments
on cold atomic clouds [2], our analysis has direct impli-
cations on investigations of correlated fermionic systems
with current experimental tools.

Model. – We consider interacting fermionic atoms with
(pseudo-)spin 1/2 confined into 1D cigars (as, e.g., realized
in optical lattices [2]), with a further periodic potential
along the 1D axis. Despite this additional potential, we
assume the atoms to be in their metallic phase, as opposed
to the recently investigated Mott-insulator phase [18–20].
In order to obtain analytical results, we disregard trapping
and finite-size effects, as they will not qualitatively modify
our results. The parametric excitation of the system is
achieved by periodically modulating the intensity of the

optical lattice along the 1D system, thereby shrinking the
Wannier wave functions associated to each lattice site.
This has the two-fold effect of modulating the hopping
rate between neighboring sites (i.e., the kinetic energy) as
well as the on-site repulsion for multiple occupancy. As
the former is exponentially sensitive to the wave function
overlap it is the dominant parametric modulation term
in the problem and we will focus on this for simplicity.
It should be however noticed that the inclusion of the
smaller parametric modulation of the interactions would
not significantly affect the consequences discussed in the
following.
Once translated into the Bloch-band language, and if

we focus on the low-energy physics of the problem, the
modulation in the kinetic term yields an effectively time-
dependent Fermi velocity for the atoms close to the Fermi
level, vF(t) = vF+ δvF(t). Here δvF(t) = γvF sin(Ωt),
where vF is the Fermi velocity at equilibrium (i.e., for
times t < 0 before the modulation starts), and Ω and γ are
the frequency and intensity of the parametric modulation,
respectively. Our focus on the low-energy sector of the
many-body problem naturally suggests a Luttinger-liquid
approach [7,8] to the correlated system, which allows
for an exact treatment of interactions. We thus linearize
the single-particle spectrum in the vicinity of the Fermi
level for momenta ||k|− kF|<Λ, with kF the Fermi wave
vector and Λ an ultraviolet cutoff. The time-dependent
Hamiltonian describing the system of size L therefore
reads1

H(t) = vF(t)
∑

kστ

fkτ c
†
kστ ckστ +

∑

q !=0
ττ′σσ′

V σσ
′

ττ ′,q

2L
ρτσ−qρ

τ ′σ′

q (1)

with fkτ = τk− kF. Here, c†kστ (ckστ ) creates (annihi-
lates) a τ -moving fermion with momentum k and spin
σ=↑, ↓ (τ = 1 (−1) corresponds to right (left) movers)
while ρτσq =

∑

k c
†
k−q,σ,τ ck,σ,τ is the corresponding ferm-

ionic density operator. In (1) we keep the general form of
the interaction between fermionic densities with generic
spin and branch indices. Within the standard Luttinger-

liquid theory we have V σσττ,q = V
‖
0 , V

σ,−σ
ττ,q = V

⊥
0 , V

σσ
τ,−τ,q =

V ‖0 −V
‖
2k
F

, V σ,−στ,−τ,q = V
⊥
0 , where V

‖/⊥
q is the Fourier trans-

form of the microscopic interaction between fermions with
parallel/antiparallel spins. This allows to treat short-range
interactions (like contact s-wave scattering for neutral

fermions) where Pauli principle imposes V ‖q = 0, as well
as finite-range spin-invariant ones (e.g., between charged

fermions) with V ‖q = V ⊥q . Equation (1) does not include
backscattering between particles with opposite spins as
well as umklapp scattering as those terms are usually
negligible at equilibrium and away from half-filling [7,8].
The effect of the smaller periodic modulation of these
interaction terms on the energy absorption has been
considered in ref. [21].

1In the remaining of the paper, we set != kB = 1.
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Introducing the bosonic operators for charge and spin
density fluctuations bcq = (π/L|q|)1/2

∑

τ Θ(τq)(ρ
τ↑
q + ρ

τ↓
q )

and bsq = (π/L|q|)1/2
∑

τ Θ(τq)(ρ
τ↑
q − ρτ↓q ), respectively,

eq. (1) transforms into the separable Hamiltonian [7]

H(t) =
∑

a=c,s
q !=0

|q|
[

Aaq(t)b
a†
q b
a
q +B

a
q

(

ba†q b
a†
−q + b

a
−qb

a
q

)]

, (2)

with Acq(t) = vF(t)+ (V
‖
0 +V

⊥
0 )/2π, Asq(t) = vF(t)+

(V ‖0 −V ⊥0 )/2π, Bcq = (V
‖
0 +V

⊥
0 −V

‖
2k
F

)/4π, and Bsq =

(V ‖0 −V ⊥0 −V
‖
2k
F

)/4π.

The time-independent part in (2) can be diagonalized by
means of the Bogoliubov transformation baq = coshϕ

a
q β
a
q +

sinhϕaq β
a†
−q in terms of the bosonic fields β

a
q , such that

H(t) =
∑

a,q &=0

[

(

ωaq + δvF(t)|q| cosh(2ϕaq )
)

βa†q βaq

+
δvF(t)

2
|q| sinh(2ϕaq )

(

βa†q βa†−q +β
a
−qβ

a
q

)

]

(3)

with ωaq = v
a
q |q|. The different charge and spin group velo-

cities are vaq = [A
a
q (0)

2− 4Ba2q ]1/2. For short-range inter-
actions, one can neglect the momentum dependence of
the group velocities such that vaq $ va, and the disper-
sion of the spin and charge density waves is linear
(see fig. 1). The coefficients of the Bogoliubov trans-
formation read sinhϕcq =−[Acq(0)/2vcq − 1/2]1/2, coshϕcq =
[Acq(0)/2v

c
q +1/2]

1/2, sinhϕsq = [A
s
q(0)/2v

s
q − 1/2]1/2, and

coshϕsq = [A
s
q(0)/2v

s
q +1/2]

1/2.
The crucial point to notice at this level is that

the parametric modulation introduces a time-dependent
anomalous term in the Hamiltonian (3), creating and anni-
hilating pairs of bosonic charge and spin density waves.
As the modulation is homogeneous in space (i.e., at zero
wave number), the new terms create or annihilate pairs
of excitations with opposite wave number, as requested
by momentum conservation [6]. In addition, the induced
anomalous terms are proportional to sinh(2ϕaq ) and thus

correctly vanish in the non-interacting limit V ‖/⊥q = 0,
where fermionicity forbids parametric amplification.

Parametric amplification. – From the Hamil-
tonian (3) above we can now determine the time evolution
of the operators βaq , showing that indeed parametric
amplification of collective bosonic modes in a ferm-
ionic system is possible. With eq. (3), the Heisenberg
equation of motion for the operator βaq reads β̇aq (t) =
− i[ωaq + δvF(t)|q| cosh(2ϕaq )]βaq (t) − iδvF(t)|q| sinh(2ϕaq )×
βa†−q(t). Defining β

a
q (t)=e

−i
∫
t

0
ds[ωaq+δvF(s)|q| cosh(2ϕ

a
q )]β̃aq (t),

assuming a weak parametric modulation (γ& 1) and
retaining only slow terms near the resonance (rotat-
ing wave approximation, i.e., for Ω in the vicinity of
2ωaq ), the equation of motion and its adjoint transform

into [5,6] ¨̃β
a
q (t)+ i(Ω− 2ωaq )

˙̃β
a
q (t)− ξaq

2β̃aq (t) = 0, where
ξaq = γvF|q| sinh(2ϕaq )/2. Solving this equation with

the appropriate initial conditions β̃aq (0) = βaq (0) and
˙̃β
a
q (0) = ξaqβ

a†
−q(0), we obtain

βaq (t) =
∑

η=±

η ei(ω
a
qη−ω

a
q )t
[

ω̄aq,−ηβ
a
q (0)+ i ξ̄

a
qβ
a†
−q(0)

]

, (4)

where ωaq± = ωaq −Ω/2±
√

(ωaq −Ω/2)2− ξaq
2. In (4), we

defined ω̄aq± = ωaq±/(ω
a
q−−ωaq+) and ξ̄aq = ξaq /(ω

a
q−−ωaq+).

Thus, in a narrow “resonant window” of energy |ωaq −
Ω/2|< |ξaq |, the frequencies ωq± acquire an imaginary
part, leading to the exponential amplification of the
corresponding bosonic modes. Outside this window, the
modes evolve according to their coherent dynamics and
are therefore not amplified. Indeed, out of eq. (4), it is
easy to verify that, on- and off-resonance, the evolution of
the Bogoliubov operators is

βaq (t)$ e−iΩ
t
2

[

cosh(|ξaq |t)βaq (0)+
ξaq
|ξaq |
sinh(|ξaq |t)β

a†
−q(0)

]

(5a)
for |ωaq −Ω/2|& |ξaq |, and

βaq (t)$ e−iω
a
q tβaq (0) (5b)

for |ωaq −Ω/2|' |ξaq |.

Fermionic momentum distribution. – The results
above prove the possibility of amplifying bosonic collec-
tive modes (with different wave numbers for charge and
spin modes) while parametrically modulating the under-
lying 1D fermionic many-body Hamiltonian. However, the
detection of this amplification is not necessarily easy from
the experimental point of view. In the case of cold atoms
in optical lattices this would require a (spin-resolved)
measurement of the cloud density during the parametric
modulation, without opening the trap. Very recently, in
situ measurements on confined ultracold atomic gases have
been reported [4,22,23]. The spatial resolution of these
measurements would allow for the detection of density
modulations in the cloud associated to the parametric
amplification of charge density waves. The detection of
spin-charge separation, in addition to the rich physics of
the Hubbard model for cold atoms in optical lattices, could
motivate further experimental efforts towards the real-
ization of local spin-resolved in situ measurements not
reported so far.
In view of this experimental challenge we now discuss

the consequences of our analysis on the fermionic momen-
tum distribution, which is the standard quantity measured
in time-of-flight experiments [2]. Due to the different
amplified momenta for charge and spin modes, we show
that the fermionic momentum distribution shows clear
signatures of spin-charge separation.
The momentum distribution function (per spin channel)

for τ -movers is defined as nkτ (t) =
∫

dx eikx〈ψ†τσ(x, t)×
ψτσ(0, t)〉, where, within our perturbative treatment in
γ& 1, 〈· · ·〉 represents a thermal average with respect to
the time-independent part of the Hamiltonian (1), i.e., for
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γ = 0. The fermionic field operators creating a τ -mover
with spin σ at position x and time t can be expressed in
terms of the bosonic operators as [7]

ψ†τσ(x, t) =
e−iτkFx−θτσ(x,t)
√

L(1− e−2π/LΛ)
Uτσ(t), (6)

with θτσ(x, t) = [θcτ (x, t)+σθ
s
τ (x, t)]/

√
2 (σ=1 and −1

correspond to spin up and down, respectively) and
θaτ (x, t) =

∑

τq>0(2π/L|q|)1/2[eiqxbaq(t) − e−iqxba†q (t)]. In
(6), the unitary Klein operator Uτσ increases the number
of τ -movers with spin σ by one.
With (6), we find after a lengthy but straightforward

calculation
〈

ψ†τσ(x, t)ψτσ(0, t)
〉

=
e−iτkFx+φτ (x,t)

L(1− e−2π/LΛ)
. (7)

Here, within the rotating wave approximation, we have

φτ (x, t) =
∑

a,q>0

π

Lq

{

iτ sin(qx)
[

βaq (t),β
a†
q (t)

]

+ [cos(qx)− 1] cosh(2ϕaq )
〈{

βaq (t),β
a†
q (t)

}〉

}

,

(8)

with βaq (t) given in eq. (4). The summation over q in (8)
is simplified by taking the evolution of the Bogoliubov
operators in eq. (5) for wave numbers belonging to the
off-resonance and the narrow on-resonance windows. The
latter are centered around the two resonant wave numbers
qc/s =Ω/2v

c/s for the charge and spin modes, respectively.
Our procedure allows for a fully analytical treatment of

the problem, leading to the fermionic correlator
〈

ψ†τσ(x, t)ψτσ(0, t)
〉

=
〈

ψ†τσ(x)ψτσ(0)
〉

0
A(x, t), (9)

where the correlator without parametric amplification
(i.e., for γ = 0) in the zero temperature limit is [7]

〈

ψ†τσ(x)ψτσ(0)
〉

0
=

ie−iτkFx

2π(τx+ i0+)

(

λ2

x2+λ2

)α

(10)

with α= (sinh2 ϕc+sinh2 ϕs)/2. To obtain (10), we
approximated ϕaq by its q→ 0 limit ϕa. This is justified
provided the sum over momenta q in (8) is cutoff at
q∼ 1/λ, where λ is the screening length associated with
the specific form of the interaction between the particles.
This leads to the fermionic momentum distribution in
the absence of the parametric amplification n0k,τ . As the
problem is fully symmetric between right and left movers,
we focus on the former without loss of generality. For
k > kF, the momentum distribution can be expressed as

n0k,R =
21/2−α√
πΓ(α)

∫ ∞

0
dQ′(Q+Q′)α−1/2Kα−1/2(Q+Q

′),

(11)

with Q= λ(k− kF), Γ(z) and Kν(z) being the gamma and
the modified Bessel functions, respectively. In particular,
n0k−kF,R = 1−n

0
−k+kF,R

. The function n0k,R is presented in
fig. 2 at time t= 0 for contact and finite-range interactions.
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Fig. 2: (Colour on-line) Fermionic momentum distribution for
right movers nk,R(t) in the short-time regime (see eq. (15)) as
a function of momentum k, scaled by the screening length λ.
In the figure, T = 0, γ = 0.1 and λqs = 1. (a) Case of contact

s-wave scattering interaction, with V ⊥0 /vF = 0.5 and V
‖
0 =

V ‖2kF = 0, such that λqc = λqsvs/vc ! 0.85. (b) Case of finite-

range interactions, with V ‖0 /vF = V
⊥
0 /vF = 10 and V

‖
2kF
/vF = 2,

such that λqc = λqsvs/vc ! 0.31. Thicker lines correspond to
larger times t.

The latter may be of relevance for the treatment of trapped
cold ions.
The amplification factor in eq. (9) reads

A(x, t) = exp

(

∑

a=c,s

ha(t) [cos(qax)− 1]

)

, (12)

where

ha(t) = [1+2nB(Ω/2)]κ
a cosh(2ϕa) [cosh(κaΩt)− 1] ,

(13)

and κa = γ|sinh(2ϕa)|vF/2va. Here, nB(ω) = (eω/T − 1)−1
is the Bose distribution at temperature T . It is important
to notice that the amplification factor equals 1 in the non-
interacting limit (where sinh(ϕa) = 0). Once again, this
highlights the importance of fermionic interactions as a
necessary ingredient for the parametric amplification to
occur. Out of eq. (9) the momentum distribution at finite
times thus results in the convolution

nk,R(t) =

∫ +∞

−∞

dq

2π
n0k−q,RÃ(q, t) (14)

with Ã(q, t) the Fourier transform of (12).
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Two qualitatively different regimes occur in the small-
or large-time regimes, i.e., if ha(t)& 1 or ha(t)' 1 in
eq. (12). In the first case, valid up to times of order
t0 $−ln([1+ 2nB(Ω/2)]κa cosh(2ϕa))/κaΩ, the expansion
of (12) yields Ã(q, t) = 2πδ(q)+π

∑

a h
a(t)[δ(q− qa)+

δ(q+ qa)− 2δ(q)], leading to

nk,R(t) = n
0
k,R+

∑

a

ha(t)

(

n0k+qa,R+n
0
k−qa,R

2
−n0k,R

)

.

(15)

Despite parametric amplification, the fermionic momen-
tum distribution fulfills nk−kF,R = 1−n−k+kF,R as in the
unperturbed case, guaranteeing particle-number conserva-
tion. For k > kF it shows two steps of size h

c/s(t)/2 involv-
ing fermionic states with momenta up to qc/s away from
the Fermi level, as exemplified in fig. 2.
These are direct signatures of the parametric amplifica-

tion of the charge and spin density waves and their obser-
vation can thus be used to detect spin-charge separation
in interacting 1D Fermi systems. By spanning the exter-
nal modulation frequency Ω, the whole dispersion of the
collective modes can be mapped. From the point of view of
the measurement, our result is best visible in the “short-
time regime” where the expansion above holds, leading to
two well-resolved steps of size up to order 1/2. This fact is
crucial in order to experimentally detect the amplification
in the momentum distribution against other smoothening
factors, like, e.g., trapping and finite temperatures.
Our analytical treatment allows formally the analysis

of the “large-time regime” as well, where ha(t)' 1.
In this case the amplification factor (12) can be approxi-
mated as A(x, t) =Ac(x, t)As(x, t), with Aa(x, t) =
∑+∞
n=−∞ exp(−(qax− 2πn)2ha(t)/2). As a consequence,

the Fourier transform results in

Ã(q, t) =
∞
∑

m,n=−∞

f cm(t)f
s
n(t)δ(q−mqc−nqs) (16)

with fam(t) = (1/
√

ha(t)) exp(−m2/2ha(t)) leading to

nk,R(t) =
∞
∑

m,n=−∞

f cm(t)f
s
n(t)

2π
n0k−mq

c
−nq

s
,R. (17)

Thus, in the large-time limit the fermionic momentum
distribution shows many small-size steps stemming from
both the charge and the spin sectors (see fig. 3). Indeed,
the form of fam(t) shows how for large h

a(t) more and
more peaks of Ã(q, t) in (16) become relevant. This will
limit the experimental resolution of the structures in
nk,R(t) in contrast to the short timescales. Moreover,
at large times the exponential amplification of bosonic
modes requires a treatment of their residual interaction
beyond the Luttinger-liquid model, associated to parabolic
corrections to the linearized spectrum around the Fermi
level [17,24]. These effects lead to damping of the collective
modes, which becomes relevant after a typical timescale
tdamp. For s-wave scattering in the weak-coupling limit

−1 0 1

0

0.25

0.5

0.75

1

n
k
,R

(t
)

−10 −5 0 5 10

Ωt = 2000

Fig. 3: Momentum distribution for right movers nk,R(t) in the
long-time regime (see eq. (17)) as a function of momentum k.
The parameters are the same as in fig. 2(a). The inset presents
the momentum distribution at a finer wave number scale close
to the Fermi level.

η= V ⊥0 /2πvF& 1, tdamp has been estimated to be [24]
tdamp $ 512E2F/π(Ωη)3, with EF the Fermi energy. Our
approximation of neglecting such corrections is thus valid
for pumping times t! tdamp, while the spin-charge separa-
tion is best detectable in the “short-time limit” t < t0. We
have t0/tdamp = π(Ωη/EF)2ln(2/γη)/256γ. For the para-
meters of fig. 2(a), t0/tdamp $ 0.004. The regime of optimal
visibility of the shoulders in the momentum distribution
is thus well described by our “non-interacting” collective
modes approximation. Indeed, this picture is suitable to
describe the “long-time regime” t0 < t< tdamp of fig. 3 as
well, before damping yields saturation of the modes occu-
pation at t > tdamp [17].
A final issue to be addressed in view of the experimental

realization of our proposal is the role of finite temper-
atures, where our analysis above applies as well. The
only differences are: i) The presence of a non-vanishing
Bose distribution in eq. (13). This yields a thermal seed
for the amplification on top of the pure quantum fluc-
tuations at T = 0, and decreases the time needed for
the formation of well-resolved steps in nk,τ (t). ii) The
unperturbed-momentum distribution n0k,R in eq. (14) has
to be replaced with the finite-temperature one, involving
a thermal smearing of order T around the Fermi level
(for α& 1) on top of that purely induced by interac-
tions. As thermal smearing involves wave numbers up to
order T/vF around kF, the shoulders in the final momen-
tum distribution at short times are thus better visible if
vFqa $Ω/2" T (a= c, s), which can be guaranteed by
choosing a sufficiently large Ω at a given temperature. In
order for the Luttinger treatment to be reliable, the ampli-
fied qa should however be smaller than kF, which restricts
the best choice of Ω to the window 2T !Ω! 4EF. The
current experimental efforts to reach regimes of very low
temperatures T & TF with cold fermionic gases would then
further improve the frequency range for the best visibility
of the spin-charge separation.

40005-p5



C. D. Graf et al.

Experimental realization. – Our proposal could be
experimentally realized with an equal mixture of quantum
degenerate fermionic 40K atoms confined into 1D cigars
in the two hyperfine states |F,mF 〉= |9/2,−9/2〉= | ↓〉
and |F,mF 〉= |9/2,−7/2〉= |↑〉. Here, F is the total angu-
lar momentum and mF its projection along the quan-
tization axis. It is important to realize that the atomic
density corresponds to the charge channel, while the two
hyperfine states above correspond to the (pseudo-)spin
channel. Assuming the cigar of length L= 0.1mm to be
homogeneous and containing N = 102 atoms, we have
kF = 3× 106m−1, which corresponds to a Fermi energy
and temperature of order EF/!= 7kHz and TF = 60nK,
respectively. For neutral atoms, we assume contact s-wave

scattering for which V ‖0 = V
‖
2kF
= 0 as required by Pauli

principle, and V ⊥0 /vF = πkFaω⊥/EF [25]. Here, a is the
3D s-wave scattering length and ω⊥ the frequency of the
transverse confining lasers creating the cigars. Notice that
EF& ω⊥ justifies the effective 1D treatment of the cigars.
Assuming a scattering length of the order of a= 10nm and
ω⊥ = 40 kHz, we obtain V ⊥0 /vF = 0.5, which corresponds
to the parameters in fig. 2(a).
As our proposal is optimized in the regime T !Ω/2!

2EF, and assuming T/TF $ 0.2, this corresponds to
pumping frequencies in the range 3 kHz!Ω! 28 kHz.
Measuring the fermionic momentum distribution by a
time-of-flight experiment [2], one should thus obtain a
clear signature of spin-charge separation for pumping
times of the order of 100ms (for Ω= 10 kHz and γ = 0.1),
as exemplified in fig. 2(a). Notice that pumping for larger
times would lead to a situation similar to the one depicted
in fig. 3 where spin-charge separation is much less clearcut
and where temperature effects are likely to smear out
most signatures of shoulders.

Conclusion. – In this work we have shown the possi-
bility of parametrically amplifying collective modes in a
modulated 1D fermionic many-body system. The ampli-
fication is crucially affected by fermionic interactions
which are here exactly treated within the Luttinger-liquid
picture. This opens the perspective of similar observations
in systems of higher dimensionality as well.
Our analysis shows that the amplification of charge and

spin density waves of the Luttinger liquid results in clear
steps in the fermionic momentum distribution. The wave
number extension of the steps directly reveals the different
momenta of the excited charge and spin modes and thus
offers a tool for the detection of spin-charge separation. In
parallel, we show that the best resolution of the steps is
achieved by modulations of relatively short times and that
they survive thermal effects for large enough modulation
frequencies.
Our proposal of detection of spin-charge separation is

particularly suitable for systems of cold fermionic atoms
in 1D optical lattices with modulated intensity. The
fermionic momentum distribution is indeed the standard

quantity measured in time-of-flight experiments. We stress
that for our proposal no additional experimental setup
is required on top of the already present tunable lasers
creating the optical lattice.
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