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Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires
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It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network
of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires
should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized
by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological
superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological
superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network.
The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using
external gates to selectively deplete portions of the network or by physically connecting and redividing wire
segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by
physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the
proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space
during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping
track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional
network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are
involved.
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I. INTRODUCTION

The last several years have witnessed extensive research
into the possibility of realizing zero-energy Majorana-fermion
states (“Majoranas”) in condensed-matter systems. Driven by
the interest in non-Abelian states of matter and by possible
implementations for topological quantum computation,1,2

several physical systems have been arenas for the search for
Majorana fermions. Initially, these systems were primarily
two dimensional, such as the ν = 5/2 fractional quantum Hall
state, in which Majorana fermions are believed to be attached to
quarter-charged quasiparticles and quasiholes in the Pfaffian or
anti-Pfaffian states;3,4 two-dimensional spin-polarized p-wave
superconductors;5,6 surface states of three-dimensional topo-
logical insulators coupled to superconductors;7 vortex cores
in hybrid systems made of semiconductors with strong spin-
orbit interaction in proximity coupling to superconductors;8,9

superfluids of ultracold fermionic atoms;10 and more. While
most of the research has been theoretical, interferometry
experiments (according to suggestions such as Refs. 11 and 12)
have yielded data that may be interpreted as resulting from the
presence of such excitations.13–15

One-dimensional systems have been predicted to host
Majorana modes as well. Ideas of end-point Majoranas in

spin-polarized p-wave superconducting wires were already
discussed by Kitaev16 and by Motrunich et al.17 nearly a
decade ago using a toy tight-binding model for a spin-
polarized p-wave superconductor. Possible realizations in
semiconductor quantum wires with strong spin-orbit coupling,
such as InAs nanowires, in the presence of a strong Zeeman
field and proximity coupling to a bulk s-wave superconductor,
and their manipulation by means of external gates potential,
were suggested in Refs. 18–21. One-dimensional systems
of the required form might also be realized in edge states
formed at the surface of a topological insulator coupled to a
superconductor and a ferromagnet.22,23

The presence of localized zero-energy Majorana fermions
states separated from each other by distances large compared
to the coherence length makes the ground state of the system
degenerate in all dimensions. It is well known that in two-
dimensional systems braiding Majorana modes around each
other produces unitary transformations within the ground-state
subspace which generally do not commute; hence, the statistics
is non-Abelian.24,25 More recently, it has been shown that
similar manipulations leading to non-Abelian statistics are
possible in two-dimensional networks synthesized from wires
joined together with Y or T junctions.26–29
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FIG. 1. (Color online) Schemes for manipulating Majorana sites.
Panel (i) shows two layers of a three-dimensional network of wires
connected by Y junctions. Solid lines indicate wires in the first layer,
dashed lines indicate wires in the second layer, and dotted lines
indicate wires connecting the layers. All wires are tunnel-coupled
to a bulk s-wave superconductor with a definite superconducting
phase. Gates (not shown) allow one to control the electron density in
individual wire segments so that they can be either in a topological
superconducting (TS) state or are depleted of electrons. Panel (ii)
shows a portion of one layer with depleted regions (thin lines) and
occupied regions in the TS state (thick lines). Labels a–f show
Majorana locations, which occur at the end of a TS segment or at a
junction where three TS segments are joined. All wire segments must
be very long compared to the coherence length in the superconducting
segments in order for the interactions between Majorana variables to
be neglected. Panels (iii)–(v) show an alternate scheme, where flexible
TS wires may be joined together with a Y junction and subsequently
redivided in a different way. Labels a–d indicate Majorana positions.
Panel (iii) shows an initial state where a is on the same wire as b,
while c is joined to d . Panel (v) shows a final state where a is joined
to d and b is joined to c.

In the present work, we examine a wider set of networks
constructed from one-dimensional wires and their junctions.
The wires and the networks need not be confined to a plane. The
wires may be bent out of the plane and may overpass each other,
forming a three-dimensional network that is topologically
distinct from a two-dimensional system. Figure 1 illustrates
a bilayer network of this type, though there is no barrier to
forming an infinite stack of layers which is genuinely three
dimensional. The network is fixed in space and with permanent
junctions, but we imagine that the electron densities in different
parts of the network can be varied on a fine spatial scale by
means of external gates, so that segments can be tuned at
will between regions of topological superconductor (TS) and
regions which are depleted of carriers and are, consequently,
not in a topological superconducting state. For alternative
ways to manipulate Majorana fermions in quantum wires, see
Refs. 29 and 30. Another possibility, which is conceptually
interesting but may be more difficult to realize in practice, is
suggested in the bottom half of Fig. 1. Here we envision a
collection of flexible TS wire segments, which may be bent
or tilted out of the plane at will, and which can be joined
by junctions and redivided in different ways. For example,
we imagine a process, illustrated in the figure, where one
end of wire 1 is attached to the middle of wire 2, and
then the joint is broken in a way that one half of wire 2
remains attached to the end of wire 1, while the other half

becomes a disconnected segment. In either case, we require
that the various wire segments are all proximity-coupled to
a single bulk superconductor, so that any differences in the
phase of the induced superconducting order parameter between
various parts of the network are strictly controlled. Further, we
require that the manipulations are done in such a way that the
topological superconducting gap does not close.

One of the unique features of a network of one-dimensional
wires is that for an isolated wire segment, which is tunnel
coupled to the bulk superconductor but otherwise separated
from the rest of the system, the parity of the electron number
in the segment is conserved during adiabatic manipulations,
and within the low-energy Hilbert space the electron number
parity can be related to the product of Majorana operators at the
two ends of the segment. (The precise relation depends on sign
conventions, which must be carefully defined, as we discuss
below.) If two occupied wire segments are adiabatically
connected through a Y junction and subsequently redivided,
the total number parity will be conserved, but the parities of
the individual wire segments may change. We show how the
relations between electron parity and Majorana operators can
be exploited to predict the results of manipulations in which
a Majorana site is moved through a Y junction connecting
several wires.

We also consider a variety of other manipulations that can
alter the state in the zero-energy Hilbert space spanned by
the Majorana operators. For the networks of semiconductor
quantum wires discussed here, there are possible ways to
manipulate the Majorana fermion state that do not have
direct counterparts in a continuum two-dimensional system. In
addition to the possibility of moving the Majorana locations in
three dimensions, we find that the state may be manipulated by
a rotation of the Rashba (spin-orbit-controlling) electric field
(together with the magnetic field) around an axis parallel to the
wire or a rotation of the Zeeman magnetic field, provided that
the Zeeman field never points along the axis perpendicular to
the plane containing the Rashba field and the wire direction.
(Technically, the magnetic field should not come too close to
this axis if one is to preserve the gap.)

As in a two-dimensional network, the Majorana state
may also be manipulated by means of controlled rotations
of the superconducting phase difference between different
parts of the network, which may be implemented by moving
vortices through the bulk superconductor in regions between
the superconducting nanowire segments. We also consider
processes where field orientations are twisted along the length
of a wire segment or the wire itself is tied in a knot.

We note that the behavior of Majoranas passed through
a Y junction and the behavior under rotations of the phase
of the superconducting order parameter have previously been
studied in Ref. 26 mainly using Kitaev’s tight-binding toy
model.16 The latter model is topologically equivalent to the
semiconductor-superconductor wire and a direct mapping
exists for very strong Zeeman field.26 Exchange processes
have been studied in detail by Clarke, Sau, and Tewari.27,28 Our
findings are in agreement with the previous works, although
our methods are somewhat different. Our detailed study of the
combination of spin-orbit interaction with the Zeeman field
allows us to analyze new types of manipulations that are not
possible in the context of Kitaev’s chain model. Furthermore,
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our detailed study of the relation between the Majorana modes
and the parity of the number of electrons within each wire
leads us to conclusions regarding the physical observables
associated with a series of braidings. The possibility of
manipulating Majoranas in three dimensions has previously
been discussed in a general way by Teo and Kane31 and by
Freedman et al.,32,33 but not in the specific context of a wire
network.

We imagine initializing the system in a state where each
wire has an even number of particles. This may be carried out
if the wires are populated from full depletion, by Cooper pair
tunneling from a superconductor. As electrons will enter the
wire only in pairs, the resulting occupied section will be in a
state of even parity. Following the initialization we imagine
a series of adiabatic manipulations, at the end of which the
parity of the number of particles in each wire is measured.
Evidently, the parity state does not depend on the exact location
of the Majoranas at the end points of the wire and hence
the manipulations are not required to correspond to closed
trajectories of any kind. We find that the set of states to which
the system may be brought by topological manipulations that
we discuss is rather limited and is not enlarged by the system
being three dimensional rather than two dimensional. After
such manipulations, each wire may end up either in a pure
state of even or odd parity, or in a mixture of even and odd
parities, at equal weights. No other states may be constructed in
a topological manner. However, a three-dimensional network,
if it can be constructed, could have advantages in reducing the
number of manipulations that would be necessary to perform
interchanges of Majoranas located at arbitrary points on a large
lattice.

Our analysis involves also a technical part. We show
that the evolution of the system may be tracked by two
equivalent methods. One method is based on a single-valued
parametrization of the Majorana operators in terms of the
time-dependent parameters of the system’s Hamiltonian. We
find that a single-valued parametrization of the Majoranas
necessarily involves discontinuities at arbitrarily chosen cuts.
While these discontinuities are obviously absent from the
physically observable quantities, they are present in the rela-
tion between the parity operators and the Majorana operators.
The second method uses a parametrization of the Majorana
operators that is multivalued with respect to the parameters
of the Hamiltonian. In this parametrization there are no
discontinuities, but its being multivalued makes it dependent
on the history of the system. We show that the two methods
are equivalent, but most of our analysis is carried out using the
first one.

The structure of the article is as follows. In Sec. II, we
define the models to be considered, discuss the relation of
Majorana operators to the creation and annihilation operators
for electrons, and define the sign conventions to be used in
the paper. Specifically, in Sec. II A we discuss the general
properties of the Majoranas in a wire with N spin-resolved
electron modes below the Fermi energy. In Sec. II B we
consider the N = 1 case of a spin-polarized electron system
coupled to a p-wave superconductor and we discuss explicit
solutions for the Majoranas at the end of a wire in that case. In
Sec. II C, we analyze a quantum wire of electrons subjected to
spin-orbit coupling and a Zeeman field, coupled by proximity

to an s-wave superconductor, which corresponds to N = 2 by
our conventions. At strong magnetic field a projection of the
N = 2 wire onto the low-energy band reduces to the N = 1
model.

In Sec. III we explain the methods with which we analyze
manipulations involving Majorana modes at the ends of a
single wire. We first consider the general principles that
determine the adiabatic time evolution of Majorana fermion
operators. In particular, we show that any observable which is
a product of zero-energy Majorana operators is independent of
time except at isolated instants when it may be multiplied by
−1. We then analyze carefully the single-valued vs multivalued
representation of the Majorana end modes and relate the
Majorana operators to physical observables, in particular the
parity of the number of electrons in each wire. Section III D
gives examples for manipulations of one wire and their
resulting transformations.

In Sec. IV we discuss explicitly the possible sign changes
that result when a Majorana is transferred through a Y junction,
from one wire to another, as well as their physical significance.
In Sec. V we use these results to study the sign changes and
the physical consequences that occur when the locations of
two Majoranas are exchanged by manipulation through a Y
junction. We examine both the case where the two Majoranas
belong to different TS segments and the case where they are
at opposite ends of a single topological segment. Results are
summarized in Sec. VI.

II. EXPLICIT MODELS OF TOPOLOGICAL
SUPERCONDUCTING WIRES

In this section we review some explicit models for N -mode
wires that can form a TS phase. We discuss the structure of the
zero-energy state Majorana solutions at the end of the wires in
several examples.

A. N-mode quantum wires proximity coupled
to a bulk superconductor

Majorana fermion excitations are known to appear
in quantum wires which are proximity coupled to
superconductors.16,18,19,21 Such systems are generally de-
scribed by pairing Hamiltonians,

H =
∫

dw
[
"†

α(w)hαβ
0 "β(w) + "†

α(w)%αβ"
†
β(w) + H.c.

]
.

(1)

These Hamiltonians are quadratic in the electronic creation and
annihilation operators "†

α(w) and "α(w), where α = 1, . . . ,N
is a spin and/or channel index and w denotes the coordinate
along the wire. (We will have occasion to consider wire
orientations along arbitrary directions in space and reserve the
notation x,y,z for the coordinates along the fixed laboratory
coordinate axes.) The wire in the normal state is described
by the single-particle Hamiltonian h

αβ
0 , which includes the

kinetic term, a scalar potential, as well as the spin-orbit and
Zeeman couplings. The superconducting proximity effect is
accounted for by the pair potential %αβ , which may depend
on the momentum pw. While the single-particle Hamiltonian

144501-3



BERTRAND I. HALPERIN et al. PHYSICAL REVIEW B 85, 144501 (2012)

h0 is Hermitian, h
†
0 = h0, the Pauli principle demands that the

pair potential is antisymmetric, % = −%T .
The excitation spectrum of the Hamiltonian (1) as well as

the associated quasiparticle (Bogolyubov) operators γE can be
obtained with the ansatz

γE =
∫

dw[u∗
α(w)"α(w) + v∗

α(w)"†
α(w)], (2)

where the index α is summed over and under the condition that
γE be an eigenoperator of H , [H,γE] = −EγE . This yields the
Bogolyubov-de-Gennes equation Hψ = Eψ with the 2N ×
2N Bogolyubov-de-Gennes Hamiltonian

H =
(

h0 %

%† −hT
0

)
(3)

and ψ = [u(w),v(w)]. Here we collected the components uα

and vα into spinors u and v.
As usual, the spectrum of the Bogolyubov-de-Gennes

Hamiltonian is particle-hole symmetric. Indeed, H obeys the
relation H = −τxH

T τx , where τx denotes a Pauli matrix in
particle-hole space. Thus, if |ψ〉 is an eigenvector with energy
E, then Kτx |ψ〉 is an eigenstate with energy (−E), where
K denotes the complex-conjugation operator. Under certain
conditions, the Bogolyubov-de-Gennes (BdG) equations pos-
sess zero-energy solutions, which correspond to Majorana
fermions. These solutions satisfy (with an appropriate choice
of phase) |ψ〉 = Kτx |ψ〉, which implies that u(w) = v∗(w).
Introducing the notation gα(w) = u∗

α(w) for the Majorana
solutions, the associated Bogolyubov operator becomes

γ =
∫

dw[gα(w)"α(w) + g∗
α(w)"†

α(w)], (4)

which satisfies the Majorana-fermion property γ = γ †. In
principle, a solution for γ could be multiplied by an arbitrary
phase factor and still commute with the Hamiltonian. However,
the convention that a Majorana operator should be self-adjoint
limits the allowable phase factors to ±1.

The Hamiltonian H depends on a set of parameters such as
the wire orientation or the direction of the applied magnetic and
electric fields. We denote these parameters collectively as !.
In this paper, we focus on processes in which these parameters
vary slowly in time, denoting the initial parameters at time
t = 0 as !0 and the final parameters at time t = T as !T . We
analyze the resulting adiabatic time evolution of the Majorana
states given by g(w; !) and of the corresponding Majorana
operators γ (!), focusing on two specific models which we
describe in the remainder of this section.

B. Spinless fermions

We first consider the Hamiltonian (1) for N = 1, corre-
sponding to spin-polarized electrons, with a pair potential
% = −ivpwei(θ+α) which originates from proximity coupling
to a bulk px + ipy superconductor. Here, θ denotes the overall
phase of the order parameter % in the bulk superconductor, and
α is the angle between the direction of the wire (given by the
unit vector ŵ) with the x axis. (We assume for now that ŵ lies
in the x-y plane, so cosα = ŵ · x̂, sinα = ŵ · ŷ.) We choose
a branch cut such that −π < α ! π . The Hamiltonian of the
normal state includes only a kinetic term which we model with

a quadratic dispersion so that

H =
∫

dw

[
"†(w)

(
p2

w

2m
− µ

)
"(w) + "†(w)v(−ipw)

× ei(θ+α)"†(w) + H.c.
]
. (5)

This model of a one-dimensional spinless p-wave supercon-
ductor is referred to as the continuum version of Kitaev’s toy
model, with BdG Hamiltonian

H =
[

p2
w

2m
− µ

]
τz − ivpwei(θ+α)τ+ + H.c. (6)

The matrices τa denote Pauli matrices, which operate in
particle-hole space.

It turns out26 that the continuum Kitaev model (5) also
arises in the context of semiconductor wires with strong
spin-orbit coupling in proximity to conventional s-wave
superconductors. The latter system, which we discuss in the
Sec. II C, reduces to the continuum Kitaev model in the limit
of a strong Zeeman field. The explicit connection between the
models is given in Eq. (14).

Majorana modes occur at the edges of the wire when the
chemical potential within the wire is above the bottom of the
electronic band (µ > 0 in the case of quadratic dispersion).
Substituting ip → ∂w in Eq. (6) we find that the Majorana
mode obeys the differential equation (here and throughout the
rest of the paper h̄ = 1):

− 1
2m

g′′(w) − µg(w) − vei(θ+α)g∗′(w) = 0, (7)

with the boundary condition g(w = 0) = 0; (we assume here
that the wire ends abruptly near the origin of the coordinate
system, and the occupied region has w > 0). For kF > mv,
the solution takes the form

γ =
∫

dwg(w)"(w) + H.c.;

g(w) = e−i([α+θ]r )/22
√

mv

√
k2
F

k2
F − (mv)2

e−wmv (8)

× sin
[
w

√
k2
F − (mv)2

]
,

where µ = k2
F /2m, and [x]r is equivalent to x modulo 2π .

This leaves an overall sign ambiguity in the definition of γ ,
which we resolve, in the following, by choosing [x]r to lie in
the interval

−π < [x]r ! π. (9)

Equivalently, we may write

[x]r ≡ [(x + π )mod 2π ] − π, (10)

where “mod” is defined to give a value in the interval (0,2π ].
With these conventions, we see that for θ = α = 0, the first
peak due to the term sin[w

√
k2
F − (mv)2] is positive.

Majorana states can also be localized in the bulk of the wire
by allowing the local chemical potential µ to drop below the
bottom of the band. Notice that since the chemical potential µ
is defined as the difference between an electrochemical poten-
tial µ0 which is independent of position and an electrostatic
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potential V (w) that may depend on position, spatial variations
in µ are produced by variations in V . At the interface where
µ changes sign, a Majorana state will be localized. Now we
have to solve Eq. (7) separately for the region with negative
chemical potential µV < 0 and the topological region with
µT > 0 and match the wave function g and its derivative g′ at
the boundary between them. We assume that α + θ = 0 and
choose units of mv2/2 for energy and mv for momentum. We
assume that the topological phase, with µT > 0, occurs for
w > 0 and the nontopological phase (vacuum), with µV < 0,
occurs for w < 0. In these dimensionless units the equation
for the Majorana zero modes becomes

−g′′(w) − µ(w)g(w) − 2g′(w) = 0, (11)

with boundary conditions g(0+) = g(0−) and g′(0+) =
g′(0−). The full expression for the Majorana state, with a sign
choice similar to the one defined above for the abrupt wire
end, is

g(w) = N−1e−w

(
cos κT w + κV

κT

sin κT w

)
-(w)

+N−1e(κV −1)w-(−w). (12)

Here we assume µT > 1andµV < 0 and define N−1 =

2
√

(1+κ2
T )(κV −1)

(κ2
T +κ2

V )(κV +1) , κ2
T = µT − 1 > 0, κ2

V = 1 − µV , and the

unit step function -(w). If α + θ )= 0, the expression for
g should be multiplied by e−i[α+θ]r /2. The Majorana wave
functions have a simple interpretation: In the “vacuum” the
state decays with inverse decay length (

√
1 − 2µV /mv2 −

1)mv
|µV |*mv2

−−−−−→
√

−2mµV . In the topological phase the state
decays with a decay length 1/(mv) set by the induced
superconducting gap; on top of this, there are oscillations
on the scale of the Fermi momentum in the superconductor

κT = mv
√

2µT /(mv2) − 1
µT *mv2

−−−−−→
√

2mµT . Typical states
at the end of the wire are depicted in Fig. 2.

If initially the wire is along the x axis then we have two
Majoranas: one with α = 0 and the other with α = π . When
we rotate the wire by 360◦ the term e−i[α+θ]r /2 will change
sign for both Majoranas. However, a rotation of the wire by
180◦ will cause only one of them to cross the cut and hence
only one of the Majoranas will be multiplied by a minus sign.
We elaborate on this point in Sec. III C.

C. Quantum wires with strong spin-orbit coupling

Consider now the case N = 2, corresponding to spinful
electrons in the conduction band of a semiconductor, where
the index α enumerates the spin orientations ↑ and ↓. The
electrons are subject to a Rashba spin-orbit coupling of
strength u, originating from an internal electric field that points
in direction ê perpendicular to the direction of the wire, a
Zeeman field B, and a proximity-induced s-wave pair potential
%↑↓ = |%|eiθ .

In order to write the associated BdG Hamiltonian, we find
it useful to follow a modified ordering of the BdG spinor,34

namely ψ(w) = [u↑(w),u↓(w),v↓(w), − v↑(w)]. With this
ordering, the off-diagonal particle-hole blocks of the BdG

FIG. 2. (Color online) Typical Majorana state at the end of the
wire in the N = 1 case. In the top panel the topological state is
terminated in a vacuum with infinite potential while in the bottom
panel it has finite potential µV . The typical length scale for the
oscillations and decay rate are depicted in the limit µT * mv2 and
µV . −mv2. See Eq. (6) for the definition of v.

Hamiltonian become diagonal in spin space,

H =
[

p2
w

2m
− up · σ × ê − µ

]
τz − B · σ + |%|eiθ τ+ + H.c.

(13)

Here, σi denotes Pauli matrices in spin space. In this represen-
tation, the particle-hole symmetry of the BdG Hamiltonian
follows from {H, − iτyT } = 0, where T = iσyK denotes
the time-reversal operator and, with an appropriate choice of
phase so that γ is self-adjoint, a Majorana state will satisfy
|ψ〉 = −iτyT |ψ〉.

Of the parameters ! contained in this Hamiltonian that can
be exploited to implement nontrivial transformations within
the ground-state manifold, our discussion focuses on the phase
θ of the superconducting pair potential, the direction ŵ of the
wire, the direction of the Zeeman field, and the unit vector ê
pointing along the Rashba field.

A necessary condition for the wire to exist in a TS state is
that the Zeeman field B has a nonzero projection onto the plane
formed by ê and ŵ. Thus, we may always define a unit vector
b̂ pointing in the direction of this projection. For simplicity,
we assume in most of our discussions that the component of
B perpendicular to the (ê,ŵ) plane is zero, so that B = Bb̂.
In the general case, a nonzero perpendicular component of B
may be treated as an additional parameter of the Hamiltonian,
along with, for example, the magnitude of B and the profile
of the variation in the chemical potential µ, which will affect
the precise shape of the wave function associated with the
Majorana operator, but will not be important for the sign
conventions and electron parity manipulations we focus on
in this paper.
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The Hamiltonian (13) can be reduced to simpler models in
a variety of limits.26,35 In particular, it reduces to the Kitaev
model discussed in the previous section in the limit of large
Zeeman splitting. In this limit, the spin direction at the Fermi
points is dominated by the Zeeman field, with only a small
correction due to the spin-orbit coupling. The strength of the
s-wave proximity effect is directly controlled by these small
deviations, effectively causing p-wave-like correlations in the
semiconductor wire. At large magnetic field B * mu2, before
the coupling to the superconductor, the two bands of the wire
are well separated and only one band crosses the Fermi energy.
If we project onto this band, the coupling to the superconductor
gives rise to a BdG Hamiltonian of the form26

H =
(

1
2meff

p2 − µeff −iveffpei(θ+α)

iveffpe−i(θ+α) − 1
2meff

p2 + µeff

)

, (14)

with µeff = µ + B, veff = u%/B, 1/m∗ = 1/m(1 −
mu2/B), and cosα = ŵ · x̂. The 2 × 2 matrix operates
in the particle-hole space (described by τ matrices). This
Hamiltonian represents a spinless p-wave superconductor in
one dimension. Interestingly, the phase of the order parameter
depends on the direction α of the wire; this fact will be useful
when we discuss interchange of Majoranas in a Y junction
with the wires oriented in specified directions on the surface
of the bulk superconductor.

The N = 2 case of semiconductor wires with strong spin-
orbit coupling, subject to a Zeeman field, allows for a richer
set of nontrivial transformations. In addition to rotations and
changes of the phase of the order parameter, one can consider
variations of the direction of the Zeeman field B as well as the
spin-orbit field uê. In addition, we consider rotations of the
wire in three dimensions under the assumption that the wire
remains proximity coupled to the bulk s-wave superconductor
at all times.

Away from the strong field limit, the Majorana solution of
the BdG equations for N = 2 has four components, which
we write as ψ = 1√

2
(ψp,ψh), where the normalized two-

component spinors ψp and ψh satisfy ψh = T ψp. Let us
consider a wave function for a Majorana state, labeled by
l, at the end of a TS wire segment. Since ψh is determined by
ψp, we need only describe the behavior of the latter.

Let us suppose that the parameters such as the variation in
the chemical potential at the end of the wire, the magnitude of
the spin-orbit coupling, and the magnitude of the Zeeman field
B, are fixed, along with the magnitude of the superconducting
pairing field |%|. The form of the spinor ψl

p will then depend
on the orientation of the wire, the orientation of ê, and
the orientation of b̂. For definiteness, we choose the wire
orientation ŵ to point from the depleted region into the TS
region. Further, we may define the variable w to be the distance
along the wire taking as the origin the point where the chemical
potential passes through zero, with positive w representing the
TS side. Let ψp0(w) be the spinor wave function in the case
where ŵ = x̂ and ê = b̂ = ẑ, with real % > 0. The function
ψp0 is uniquely determined, except for an overall sign, which
we choose using a convention that the σ =↑ component has
a positive real part at the point w where the wave function has
its maximum amplitude [cf. the explicit forms for the wave

FIG. 3. (Color online) Orientation angles defined in the text. The
direction of the wire ŵ in the fixed laboratory coordinate system is
described by the angles α and β. The electric field direction ê, which
is required to be perpendicular to the wire direction ŵ, is rotated
away from the (ẑ,ŵ) plane by an angle δ, not shown. Finally, η is the
angle between ê and the unit vector b̂, which is the direction of the
projection of the Zeeman field B onto the ê,ŵ plane. In the text, we
examine particularly the example where ŵ is in the x-y plane and
ê = b̂ = ẑ, so that β = π/2, and η = δ = 0.

function in strong magnetic field limit, which were discussed
in Eqs. (12) and (14) and illustrated in Fig. 2].

For any other choice of orientations, we may write

ψl
p(w; !) = Ûlψp0(w), (15)

where Ûl is a 2 × 2 unitary matrix. For brevity we omit
the subscript l, which enumerates the Majorana operators,
throughout the remainder of this section.

Let us first consider the case where b̂ is parallel to ê.
(By definition, we have ê ⊥ ŵ.) The orientation of the pair
(ŵ,ê) relative to the original axes (x̂,ẑ), may be described
by an SO(3) matrix Rij , whose matrix elements are the
Cartesian components of the triad formed by ŵ,(ê × ŵ), and
ê. The matrix can be described by specifying angles β and
α, which are the polar and azimuthal angles of ŵ (in the
x̂,ŷ,ẑ coordinate system), plus an additional rotation angle
δ to describe the orientation of ê relative to the (ẑ,ŵ) plane
(see Fig. 3). Alternatively, one can characterize R as a rotation
by a specified angle about a specified axis. In general, R will
have one unit eigenvalue, with a real eigenvector d̂, and two
other eigenvalues of the form e±iλ. One can always choose λ
to lie in the interval 0 ! λ ! π and choose the sign of d̂ so
that R describes a rotation about d̂ by a positive angle λ. We
may then define a unique SU(2) matrix S corresponding to R
by

S = e−iλd̂·σ/2. (16)

Note that if the matrix R is allowed to vary continuously,
the matrix S will jump discontinuously whenever the rotation
angle λ reaches π , as d̂ will change sign at that point.

Now let us introduce the superconducting phase angle θ ,
% = |%|eiθ . Then the matrix Ûj describing the Majorana wave
function may be written

Û = eiθ/2S. (17)

Again, we are faced with a choice of overall sign, which we
must choose by some convention. We do this by defining the
angle θ to be in the range −π < θ ! π.
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As an example, suppose that ê is the z direction. Then we
must have β = π/2 and ŵ = (cosα, sinα,0). Then

S = e−iσzα/2. (18)

Clearly, Û will have a jump in sign if α crosses the cut at α =
±π . Similarly, it will have a jump if θ crosses the value ±π .
We may contrast this with the sign convention we employed
for the N = 1 wire. In that case, we had only a single cut, so
the jump in sign occurs when [θ + α]r reaches ±π .

Let us now consider the situation where b̂ is not aligned
with ê. Since b̂ is defined to lie in the plane of ê and ŵ, we
may define an angle η by

eiη = b̂ · (ê + iŵ). (19)

If we again assume, for simplicity, that ŵ is oriented in the x-y
plane at an angle α relative to the x axis and that ê is parallel
to ẑ, we can rewrite the Hamiltonian in Eq. (13) as

h0 = 1
2m

p2 − µ + upe−iσzα/2σye
iσzα/2

+Be−iσzα/2e−iσyη/2σze
iσyη/2eiσzα/2. (20)

This will clearly lead to an additional rotation of the Majorana
spinor. If we generalize these formulas to the case where ŵ
and ê are reoriented by an arbitrary SO(3) rotation, we find

Û = eiθ/2Se−iσyη/2. (21)

In order to make Û single-valued, we require −π < η ! π .
This gives us an additional cut, with a jump in sign when η
crosses the value ±π .

In all cases, if the parameters of the Hamiltonian undergo a
continuous change which returns to its starting value, so that
!T = !0, then the matrix Ûj will also return to its starting
value. In doing so, it may have undergone a discontinuous
sign change one or more times. The number Ns of these sign
changes, mod 2, will be equal to the sum of the number of
times that eiη and % wind around the origin, plus one if
the accumulated rotation of the pair (ê,ŵ) is equivalent to
a rotation of 2π . We note that the net sign change, −1Ns , is a
topological invariant of the path in parameter space. It cannot
be changed by any continuous deformation of that path as long
as the gap remains finite throughout. This net sign change will
be important in our analysis of the physical results of any
manipulations of the Hamiltonian parameters.

To conclude, in this section we explored several topological
manipulations on the two Majoranas at the end of a topological
segment. Some of these manipulations do not involve any
motion of the Majoranas themselves. We showed that a rotation
of the triad ê,ŵ,ê × ŵ by 360◦ degrees around any axis leads to
a multiplication of the Majorana operators by −1, provided the
direction of the Zeeman field is simultaneously rotated so that
it is fixed with respect to the triad. As a particular case, if
the magnetic field is kept parallel to the wire, and the wire is
rotating around its own axis, so that ê is rotated by 2π while ŵ
and b̂ are fixed, then the two Majoranas are multiplied by −1.
Similarly, a change of the bulk s-wave superconducting phase,
for example by taking a vortex around the wire, will lead to a
multiplication of the Majoranas by −1. Additional factors of
−1 may occur if the orientation of the Zeeman field is rotated
relative to the triad in such a way that the projection of the

Zeeman field on the ê-ŵ plane winds around the origin. (This
projection can never be too small or one would lose the gap
in the wire). Majoranas can also be manipulated by depleting
sections of a wire and pushing the Majoranas around bends.
In Sec. IV, we see how Majoranas may also be manipulated
by pushing them through Y junctions.

III. ADIABATIC MANIPULATION OF MAJORANA
OPERATORS

A. General principles

In the previous section we introduced the zero-energy
Majorana states (or modes) at the two ends of each wire in the
two models we consider. In this section we explain the methods
with which we analyze manipulations involving these modes.
We first consider the general principles that determine the
adiabatic time evolution of Majorana fermion operators. Then
we relate the Majorana operators to physical observables and
emphasize their relation to the parity of the number of electrons
in each wire. Subsequently, we apply the general methodology
to manipulations of N = 1 and N = 2 wires.

Note that when analyzing the time evolution of the system
under a time-dependent 2we do not limit ourselves to periodic
trajectories. In a typical physical realization the requirement
of a precisely periodic variation of the parameters, that is,
!T = !0, is rather stringent. When a vortex encircles a wire,
or when a wire is rotated around its center, it is unphysical to
require that all atoms involved in the motion return precisely
to their original positions. Rather, we make the much less
restrictive assumption that the variation of ! will be such
that the Majoranas are always very far from each other and
the number of zero-energy Majorana modes in the system is
never changed. Under this assumption the Majorana operators
γi keep their identity throughout their motion, and it is
meaningful to track the time evolution of expectation values of
products of Majorana operators such as 〈γiγj 〉 or 〈γiγjγkγl〉.

According to Ehrenfest’s theorem, if |"(t)〉 is the many-
body wave function at time t , and A is an operator with an
explicit dependance on the parameters !, then

d〈"|Â|"〉
dt

= 〈"|[Â,H ]|"〉
i

+ 〈"| ∂Â

∂!
|"〉 · d!

dt
. (22)

If Â is a product of zero-energy Majorana operators corre-
sponding to the parameters !, then [Â,H ] = 0, and the first
term is absent. Remarkably, the second term is also zero when
" is in the ground-state manifold, except at isolated points
in the trajectory where 〈"|Â|"〉 discontinuously changes
its sign, because of our sign convention. Other than these
isolated points, the expectation value of Â is time independent.
This statement does not assume that the Majoranas involved
belong to the same wire segment or to a single cluster of
occupied segments connected by Y junctions, as long as they
are connected to the same bulk superconductor, so that the
superconducting phase is well defined.

To see that this is true, we first note that within the BdG
model, we may write ∂γj/∂! =

∑
l c(!)lγl + Q, where Q is a

linear superposition of finite-energy Bogolyubov quasiparticle
operators. If γj is located spatially far from all the other
Majorana operators, so that their BdG spinors do not overlap,

144501-7



BERTRAND I. HALPERIN et al. PHYSICAL REVIEW B 85, 144501 (2012)

then the coefficients c(!)l must vanish for all l )= j . Moreover,
if the parameters ! are not at a point where the wave function
for γj jumps discontinuously, then {γj ,∂γj/∂!} = 0, since
γ 2

j = 1. Thus, we also have c(!)j = 0 (see Supplemental
Material of Ref. 26 for more details.) On the other hand, if
! crosses a special point !1 where the BdG wave function
for γj has a discontinuity in sign, then γj will also undergo
a discontinuity in sign, without affecting the relation γ 2

j = 1.
(Obviously, the derivative of γj is not well defined at such a
point.) Combining these results, we see that the expectation
value 〈"| ∂Â

∂!
|"〉 is zero at all points except the points where

the operator Â changes sign due to a sign change of one of
Majorana operators out of which it is composed. Notice that
this conclusion is valid beyond the quadratic model of the BdG
equation, as long as the ground-state subspace is spanned by
Hermitian Majorana operators γj that do not spatially overlap
with one another.

This observation leads to the conclusion that the set of parity
states to which the system may be brought by topological
manipulation is rather limited. To understand why it is so,
assume that at the beginning there is a completely depleted
network of wires. Then an application of gate potentials forms
topological superconducting sections with Majoranas at the
end points. Assuming that during the application of the gate
potentials there was no coupling between the sections we
conclude that the parity of each section is even.

Performing now topological manipulations such as braiding
of Majoranas we can follow the evolution of the operator
Â = γiγj . As argued earlier the only possible operation is
a multiplication of the operator observable 〈A〉 ≡ 〈"|A|"〉
by a minus sign at the discontinuous points. For example if
γ1 and γ2 initially share a common section then they are in
a pure even state with i〈γ1γ2〉 = 1. A braiding operation of
γ1 with γ2 keeps the parity 1. Double braiding of γ2 with an
additional Majorana γ3 will change the parity to −1. A single
braiding of γ2 with γ3 leaves the wire section with γ1 and γ3
at its ends. The initial value 〈γ1γ3〉 = 0 acquires a minus sign
but remains zero. Hence, the wire section must be in a mixture
of either even or odd parities with equal weight. Generalizing
this example for any pair of Majoranas we conclude that after
the topological manipulation each wire section may end up in
a pure state of even and odd parity, or in a mixture of even and
odd parities, at equal weight.

These observations point our attention to the important,
yet confusing, issue of sign discontinuities in the Majorana
operators γ . We shall address this issue in detail, introducing
two possible descriptions, one that avoids discontinuities at the
price of multiple valuedness and one that uses discontinuities
to ensure single valuedness. In this discussion we also relate
the expectation values of Majorana operators to the physically
interesting observable: the parity of the number of electrons in
each wire. In an attempt for a clear exposition of the two
descriptions of this problem, we start with a simpler, but
related, problem: a spin- 1

2 in a magnetic field.

B. Spin in a time-dependent magnetic field

We consider two quantum states of spin with s = 1/2 in a
magnetic field lying in the x-y plane, whose direction forms
a time-dependent angle α(t) with the x axis. We analyze the

phase the spin accumulates when α(t) winds adiabatically by
2π . The corresponding spinors have equal probability for spin
σz = ±1, which is analogous to the equal weight of the electron
and the hole in Majorana fermions. The spin is described by
the Hamiltonian

Hσ = −B(σx cosα + σy sinα), (23)

with B and α being parameters. The instantaneous eigenstates
of Hσ depend only on the (fixed) α, and the ground state in the
σz basis takes the form

|gs(α)〉 = eiχ(α) 1√
2

(
eiα

1

)
, (24)

where χ (α) may be chosen arbitrarily. When α varies slowly
in time with initial angle α0, a spin that is initialized
in the instantaneous ground state |gs(α0)〉 evolves in time
into eiBt−iθB |gs[α(t)]〉. The accumulated phase includes a
dynamical part, Bt , a Berry phase part,

θB[α(t)] = Im
∫ α(t)

α0

dα〈gs(α)|∂αgs(α)〉, (25)

and the contribution χ [α(t)] − χ [α(0)] emerging from the
explicit dependence of |gs[α(t)]〉 on χ [α(t)]. The difference
χmon = χ (α0 + 2π ) − χ (α0) is, by definition, the monodromy
phase. Notice that while the adiabatic evolution of the ground
state, including its accumulated phase, is uniquely determined
by the Schrödinger equation, the way the geometric phase is
split between the Berry phase and the monodromy depends on
the choice of χ (α).

Indeed, a straightforward calculation of the Berry phase
θB(α0 + 2π ), using Eqs. (24) and (25), yields

θB(α0 + 2π ) = π + χ (α0 + 2π ) − χ (α0). (26)

When computing the full geometric phase, χmon − θB(α0 +
2π ), the last two terms in Eq. (26) are canceled by the
monodromy, resulting in a geometric phase of π , independent
of the choice of χ (α).

Similar to gauge fixing, the choice of χ (α) is a matter
of convenience, simplicity, and clarity of the calculation or
argumentation. Three choices are worth discussing in the
present context. If one chooses χ (α) to satisfy χ (α + 2π ) =
χ (α), the instantaneous ground state is single valued as a
function of α and the total accumulated phase is given by the
Berry phase θB[α0 + 2π ]. In contrast, choosing χ (α) = −α/2
makes the two components of the instantaneous ground-state
spinors (24) complex conjugates of one another, not unlike
spinor representations of Majorana fermion operators. For
this multivalued representation, the Berry phase vanishes,
θB[α(t)] = 0, so that the geometric phase is accumulated
entirely through the monodromy.

Finally, it is also possible to construct a Majorana-like
representation which is single valued by choosing χ (α) =
−[α]r/2, where [α]r is defined according to Eqs. (9) and
(10) (cf. Fig. 4). For this choice, χ (α) = χ (α + 2π ), so
that the total geometric phase originates from the Berry
phase θB(α0 + 2π ) only. However, the Berry phase is now
accumulated in discontinuous jumps ofχ (α) atα = π (2n + 1)
with n being an integer. We note that the time evolution of
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FIG. 4. (Color online) Plot of the function −[α]r/2, where
[α]r ≡ [(α + π )mod 2π ] − π ; cf. Eqs. (9) and (10). Choosing
χ (α) = −[α]r/2 in Eq. (24) we have a single-valued Majorana-like
representation of the ground state.

the physical wave function remains continuous, even for this
discontinuous choice of χ (α).

C. Application to Majorana variables

As in this spin- 1
2 example, there is some freedom in

defining the instantaneous eigenspinors ψ that correspond to
the Majorana fermion operators, and there are analogs to both
the single-valued and multivalued choices we defined above.

A zero-energy solution ψ of the BdG equation that starts
in Majorana form (ψp,T ψp)T at t = 0 stays in that form
throughout its time evolution and satisfies 〈ψ |∂tψ〉 = 0 at
all times. As a consequence, upon completion of a periodic
trajectory, !0 = !T , both the zero-energy Majorana spinor ψ
and the corresponding Majorana operator γ must return to their
initial values up to a possible sign. As before, if the Majorana
operators are defined singly valued as a function of !, they
acquire discontinuous minus signs at particular values of !.
If continuity is preferred and the price of multivaluedness is
paid, then for every value of ! the Majorana operators are
defined only up to a minus sign, and these minus signs depend
on the entire history !(t).

1. Electron number parity

Let us now relate this choice of Majorana operators to
physically measurable quantities, in particular to the electron
parity. We start with the simplest case, that of a single wire,
with Majorana modes γ1,γ2 at its two ends. For such a wire
we may define an electron parity operator P , which may take
the values ±1, depending on whether the number of electrons
in the wire segment is even or odd. We naturally expect that
within the zero-energy Hilbert space, the parity operator should
be related to iγ1γ2, with the eigenvalues being ±1. Far less
clear, and far more confusing, is the assignment of the two
eigenvalues to even and odd number of electrons and the way
this assignment evolves when ! varies in time.

Generally, we may write

P = ikγ1γ2, (27)

where k = ±1. The value of k may depend on the orientations
of the wire ends and the sign conventions used in the definition
of the Majorana operators. It is easy to see that different choices
for the dependence of γ1,γ2 on ! lead to different values for
k. We note, however, that the actual electron number parity
cannot change in manipulations of a single wire, as the parity
is an invariant quantity in any adiabatic manipulation that
does not bring it into contact with another wire and does not

deplete the wire to the point where all electrons are expelled.
In turn, this reflects the fact that the tunnel coupling to the bulk
superconductor allows only electron pairs to tunnel between
the superconductor and the wire, unless one supplies enough
energy to inject an electron or hole above the energy gap of
the bulk superconductor.

Consider a straight wire lying in the x-y plane, at an angle
φ relative to the x axis, with ê and b̂ in the z direction. We
define angles αj as the azimuthal angle relative to the x axis
of a line parallel to the wire at end j = 1,2, directed from the
depleted region into the region occupied by the TS, with the
restriction −π ! αj < π . Then, α1 = φ and α2 = φ ± π . The
Majorana operators γ1,γ2 depend on α1,α2, respectively, and
that dependence may be chosen to be either single valued or
multivalued with respect to αj . We imagine now that the wire
is rotated by an angle π around its center and examine what
happens to P , k, γ1, and γ2. This is a point where the difference
between the single- and multivalued representations should be
carefully followed.

If the Majorana operators are defined in a way that is single-
valued with respect to αj , then the interchange of α1 with
α2 leads to the interchange γ1 → γ2 and γ2 → γ1. That is,
after the interchange, the expression for γ1 in terms of the
electron creation and annihilation operators is the same as the
expression for γ2 before the interchange and vice versa. Since
iγ2γ1 = −iγ1γ2 and since the number parity is not changed
by the rotation, the prefactor k has necessarily changed sign.
That change of sign takes place at the value of φ where one
of the γ ’s acquires a discontinuous sign change. The parity
operator as expressed in terms of creation and annihilation
operators for the electrons does not change discontinuously
at this point. Similarly, the actual physical value of the parity
does not change during the manipulation.

In contrast, if the Majorana operators are defined in a
way that is multivalued with respect to αj , they generally
depend on e±iαj /2. Then, a rotation by π leads to the
transformation γ1 → ±γ2 and γ2 → ∓γ1, with the proper sign
being determined by the sense of the rotation. With that choice,
the parity operator stays P = iγ1γ2 and k does not change.
Again, no discontinuous change occurs in the parity operator
when expressed in terms of electron creation and annihilation
operators or in the physical value of the parity.

Comparing these two descriptions, the advantage of the
single-valued choice of the γ ’s is that all quantities are fully
determined by the instantaneous values of the parameters,
in this case αj , and are independent of the values of the
parameters in earlier times. The dependence on the history
of the system—preparation, manipulation, etc.—is all in the
many-body wave function of the wire. These advantages come
at the price of having discontinuities in the γ ’s and in the
way P is expressed in terms of the γ ’s. These discontinuities
appear in arbitrarily chosen locations in parameter space. In
contrast, the advantage of the multivalued way is in the absence
of any of these discontinuities, while the disadvantage is in an
arbitrariness in the initial definitions of the operators γ1,γ2 and
the need to follow the time evolution of these operators to be
able to relate them to the parity P .

The two descriptions may be extended to more complicated
situations. Generally, any N = 1 wire may be obtained
from an N = 1 straight wire by continuous bending. In the
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single-valued description, as the wire is bent from being
straight to its final form, sign discontinuities may occur in the
Majorana operators γ1,γ2. These discontinuities occur when
either of the angles αj crosses a cut. Whenever such a sign
change occurs, a similar sign change occurs in the prefactor
k, thus guaranteeing that the parity of the number of electrons
remains continuous. It should be noted that the form of the
parity operator is not fully determined by αj . Two wires with
the same values of αj may have opposite values of k, if the
deformation of one into the other involves an odd number of
crossings of cuts.

In the multivalued description, the prefactor k does not
vary at all with the bending of the wire, but the values of the
angles αj , of the factors eiαj /2, and hence of the operators γ1,γ2
depend on the trajectory that brings the wire from its initial to
its final form.

For the N = 2 case, two wires may be deformed into one
another as well, but the deformation is more complicated, since
the Majorana modes depend not only on the directions of the
wire’s ends, αj , but also on the directions of ê and b̂. Again,
in the single-valued description a discontinuous sign change
associated with cuts in the definition of γj as a function of
! leads to a sign change in k, leaving the parity continuous.
Again, the value of k is not fully determined by the values ofαj ,
ê, and b̂ at the two ends. Rather, a variation of these parameters
along the wire may lead to sign changes in k relative to its value
for a reference straight wire where, say, αj = 0,π and ê,b̂ are
parallel to the ẑ axis.

D. Examples

We now analyze two N = 1 examples, of a straight and
a curved wire. For both, we calculate the parity operator
in a representation that is single valued with respect to !.
Following that we discuss in Sec. III D3 the N = 2 case.

1. Straight wire

To find the parity operator for a straight wire we use the
discrete version of the Hamiltonian of Eq. (5) with t = µ, a2 =
1/(mµ), % = v/a, and the number of sites N = L/a + 1.
Here with a being the lattice constant and L the wire length,
the Hamiltonian becomes

H = −t

N−1∑

l=1

c
†
l cl+1 − |%|ei(θ+α̃)c

†
l c

†
l+1 + H.c., (28)

where α̃ describes the orientation of the wire in the x-y plane,
directed from the end l = 1 to the end l = N . Since in our
conventions for Majorana operators at the end of a wire we
have defined the angle α to describe the orientation of a vector
pointing into the wire from the end, we note that α = α̃ for a
Majorana at the end l = 1, but α = α̃ ± π at the end l = N .

Let us now define

al = eiχ/2cl + e−iχ/2c
†
l , bl = i(eiχ/2cl − e−iχ/2c

†
l ),

(29)
χ = −[θ + α̃]r ,

which gives

ialbl = 1 − 2c
†
l cl, {c†l ,cl} = 1, ⇒ a2

l = b2
l = 1,

(30)
{al,am} = {bl,bm} = 2δlm, {bl,am} = 0.

If we now consider the case |%| = t > 0, the Hamiltonian may
be rewritten as

H = t

N−1∑

l=1

ial+1bl. (31)

The Hamiltonian clearly commutes with a1 and with bn. These
two operators are therefore the Majorana end modes, up to
possible factors of ±1. In order to determine the sign, we
compare the definitions in Eq. (29) with the sign conventions
defined for the continuum wave function (8). We see that the
Majorana operator at l = 1 may be written as γa = a1, but at
the other end we have

γb = bN sgn([θ + α̃]r ). (32)

In terms of the Majoranas, the parity operator is

P =
N∏

l=1

(1 − 2c
†
l cl) =

N∏

l=1

(ialbl). (33)

When the wire is empty all sites are empty and the parity is 1.
In the ground states of Hamiltonian (31) 〈iblal+1〉 = 1 so that
for the ground-state manifold the parity operator is

P = ia1bN

N−1∏

l=1

(iblal+1) = ia1bN = ikγaγb, (34)

k = sgn([θ + α̃]r ). (35)

Although we have explicitly considered only the special
case where t = |%| and the chemical potential is at zero, the
relation between P and iγaγb cannot change discontinuously
if the parameters are varied, as long as there is an energy
gap in the bulk of the wire, and the orientation of the wire is
fixed. Furthermore, when the chemical potential is not fixed
at the center of the band, we can take the continuum limit of
a → 0, with the electron density held fixed. This recovers the
continuum N = 1 model defined earlier.

2. Curved wire

To determine k explicitly for a curved wire in two dimen-
sions we have to follow the configuration of the wire in the
two-dimensional space. Assuming that the curve describing
the wire is (x(s),y(s)) we define an angle α̃(s) as the orientation
of the tangent vector at point s, choosing the vector to point
along the wire direction leading from a specified end (s = 0)
to the other and requiring that α̃ is a continuous and slowly
varying (on the coherence length scale) function of s. We see
that tan α̃ = dy/dx and the curvature κ = dα̃/dw = (x ′y ′′ −
y ′x ′′)/(x ′2 + y ′2) with w being the arclength coordinate along
the wire, defined by dw =

√
x ′2 + y ′2ds. We define the net

orientation change as %α̃ = α̃(L) − α̃(0) =
∫ L

0 κ dw, where
L is the length of the wire segment and we have chosen the
parameter s to be the arclength w. Note that |%α̃| can be larger
than 2π if there are loops in the wire. We assume here that
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the phase θ of the bulk superconductor is a constant along the
wire.

If |%α̃| lies in the interval 2π (M − 1
2 ) < |%α̃| < 2π (M +

1
2 ) (with M being an integer), then our result for the factor
k relating the electron number parity operator to the product
iγaγb is

k = (−1)Mq, q ≡ sgn([θ + α̃(L)]r − [θ + α̃(0) − π ]r ).

(36)
To derive this result, consider what would happen if one were
to adiabatically change the parameters in the Hamiltonian so
that the wire segment becomes straight, while holding fixed the
orientation α̃(0) at the first end. The wire orientation α̃(L) at
the second end will change continuously from its initial value
α̃0(L) to a final value equal to α̃(0). Of course the expectation
value of the electron parity will be unchanged in the procedure.

During the process of straightening, the value of M will
change by ±1 whenever α̃(L) − α̃(0) = (2n + 1)π , but the
sign of q will also change at these points. The sign of q will
also change when φ + α̃(L) = (2n + 1)π , but the operator
γb at the end w = L will also change sign at such points.
Therefore, the product ik〈γaγb〉 will be unchanged during the
process. When the wire is straight, however, we have %α̃ = 0,
and we see that [θ + α̃(L)]r and [θ + α̃(0) − π ]r have opposite
signs. Therefore, (36) reduces to (35).

3. Wires with N = 2

For N = 2 the Majoranas depend on a richer set of
parameters, and thus cross more types of branch cuts. For
example, cuts may occur if we consider situations where the
direction of ê is allowed to change along the wire, or if the
wire orientation is lifted out of the plane, or if the angles η or
θ are allowed to vary along the wire. In these cases we must
follow all the orientation parameters along the wire.

To describe the general situation, we begin by defining the
unit vectors ê,b̂,ŵ, at all points along the wire, where ŵ points
in the wire direction from end a to end b. We require that
ê is perpendicular to ŵ at all points, and we define η(w), as
before, as the angle between ê and the projection of b̂ onto
the plane formed by ê,ŵ. We define an SO(3) matrix R(w)
which describes the orientation of ê,ŵ relative to the laboratory
axes x̂,ŷ,ẑ. We may define angles %η and %θ to describe the
net change in η and θ along the wire, when these angles are
defined to vary continuously as a function of w. We may also
define an SU(2) matrix S(w) as the matrix corresponding to
the relative rotation R(w)R−1(0), with the requirement that
S(w) is a continuous function of w. With the sign conventions
for γa and γb specified earlier, we find that the expression for
k has the form

k = (−1)MQ sgn[trS(L)], (37)

M = Int(%η/(2π )) + Int(%θ/(2π )), (38)

where Int(x) denotes the closest integer to x and Q = ±1
depends on the matrices R(0) and R(L). Although we have
not found a simple form for the function Q, the essential point
is that its value may be computed if desired in any instance,
and it depends only on the end points of the orientations and
not on the path between them.

To derive the result we may again begin by considering a
straight wire in the x-y plane, with b̂ independent of position
and ê = ẑ. We again define the angle α̃ as the orientation of the
wire directed from the end with Majorana operator γa toward
the end with γb. If we now assume that we are in the strong-field
limit, we can map the problem onto the N = 1 Kitaev model
considered previously. The constant k in this case is given
by

k = sgn([α̃]r ). (39)

The difference between this expression and (35) arises from
the different convention we have adopted for the branch cuts in
the two cases. In the present N = 2 case, the jump in sign of a
Majorana variable occurs when the orientation of α (pointing
into the wire from the end) crosses π mod 2π , independent of
the phase of the superconducting order parameter. The result
is also independent of the angle η.

The results for a bent wire of arbitrary orientation and with
η and θ that vary along the wire, may be obtained by deforming
the wire adiabatically into the case of a straight wire in the x-y
plane. The value of k will be multiplied by −1 each time the
orientation parameters of the Majorana at either end of the
wire cross a discontinuity surface.

As a particular example, consider a bent wire in the x-y
plane, with ê = ẑ everywhere. Suppose that α̃(w) describes the
local orientation of the wire, as in the subsection on N = 1,
and suppose the total bending angle %α̃ is less than 2π . In this
case we find

k = sgn([α̃(0)]r − [α̃(L) − π ]r ) = sgn([αa]r − [αb]r ),

(40)

where αa and αb describe the orientations of the Majoranas at
the two ends. This result coincides with the result (36) for the
N = 1 case when the phase θ of the superconducting order
parameter is zero.

IV. MOVING MAJORANAS THROUGH A Y JUNCTION

In the previous section we analyzed two Majorana operators
at the ends of a single wire and showed how their states may
be manipulated in such a way that preserves their identities
but implements nontrivial transformations. In this section we
enlarge the system to include several wire segments connected
by junctions, which are necessary in order to perform nontrivial
transformations on the state of the system, and in particular,
braiding.

Initially, our system consists of an even number of Ma-
joranas, distributed into pairs, with each pair consisting of
end modes of the same topological segment. Any nontrivial
transformation will require a rearrangement of the pairing
configurations while keeping the identities of the Majorana
states distinct, so that the quantum information encoded in
their state is preserved. Thus, the prototypical situation we
eventually consider is one in which at t = 0 we have two
topological segments, with the Majorana operators γa,γb

located at the two ends of one segment and γc,γd located
at the ends of the second segment. At the final time t = T ,
one segment has γa,γc at its ends and the other has γb,γd

at its ends. This exchange of the two Majoranas should be

144501-11



BERTRAND I. HALPERIN et al. PHYSICAL REVIEW B 85, 144501 (2012)

carried out through an adiabatic evolution of the parameters !,
without introducing a coupling that will modify the energy of
any of the Majorana states. The analysis of such manipulations
requires care, as exemplified by the following scenario. If both
wires are initially in a state of even parity, the interchange
of γb with γc will result in a state where the parity of both
wires has a zero expectation value. If the interchange is then
repeated, the two wires may end up both at even parity, or
both at odd parity, depending on the precise details of the
interchange process. It is the analysis of this process which
we now outline. We accomplish this process using a series
of elementary manipulations. The elementary tool for these
manipulations is the Y junction. At the Y junction three wires
come together, each of which may be “empty” or “full” (i.e.,
in a TS state). If the number of TS segments at the junction is
odd, there will generically be one zero-energy Majorana state
at the junction. If the number of wires is even, there will be no
such state.

The case of three full (i.e., topological) wires may be
understood by depleting each wire just before it reaches the
junction. If tunneling between the wire ends were completely
forbidden, there then would be a zero-energy Majorana state
at the end of each wire, that is, three Majoranas all together.
However, when tunneling is allowed, the three states will be
split, with two combinations of the original Majorana operators
pushed to finite energy and one combination forming a new
Majorana operator with precisely zero energy.

To see this formally, we use the Hamiltonian describing
the tunneling between Majoranas 1, 2, and 3 at the ends of
the three wires near the Y junction, H = i

2

∑
l,m=1,2,3 tlmγlγm.

The real matrix elements tnm present the coupling between
the Majoranas. Since H = H † we require that tlm = −tml .
Writing the solution for the equation [H,5n] = −En5n as
5n = vn1γ1 + vn2γ2 + vn3γ3, we obtain the matrix equation
for the amplitudes vnm:

i




0 t12 t13

−t12 0 t23

−t13 −t23 0








vn1

vn2

vn3



 = En




vn1

vn2

vn3



 . (41)

This equation has two particle-hole symmetric solutions
with energies ±

√
t2
12 + t2

23 + t2
13 and one zero-energy solution

corresponding to the true Majorana located near the junction.
The zero-energy solution is v0m ∝ εlkmtlk (with εlkm the Levi-
Civita symbol). Explicitly, its normalized form is

4v0 = 1
√

t2
12 + t2

23 + t2
13




t23

−t13

t12



 . (42)

If the tunnel coupling between two of the wire ends is much
stronger than the coupling to the third (e.g., t12 * t23,t13),
then, as can be seen explicitly by examining the vector v0 in
this limit, the zero-energy Majorana operator will be primarily
located at this third wire end, while the first two wires combine
to form, effectively, a single wire, with a finite energy fermion
state inside the superconducting gap of the TS sections.

The basic manipulations at a Y junction involve pushing a
Majorana state from one wire to another through the junction.
Here we may distinguish two situations, illustrated by the top

FIG. 5. (Color online) Moving a Majorana across a Y junction.
(i) Basic setup of a Y junction. The bold (blue) line represents
a topological superconductor (TS) sector while the thin (red) line
denotes an empty wire. The three branches of the junction, 1, 2, and
3, are at angles 0 ! φ1,φ2,φ3 < 2π , respectively, to the x axis. (For
the N = 1 case these are also the phases of the effective p-wave
superconductor). In this panel, a Majorana a is located on branch
2. The configuration of the wires near the junction is denoted by the
symbol āY , where the bar symbol above the Lattin letter a denotes that
it is the end of a TS sector stretching away from the junction. Majorana
ā is characterized by the angle αā = φ2. (ii) A basic operation is to
move Majorana a from branch 2 to branch 3. To do so we first move
the Majorana to the Y junction, which is done by adjusting gate
voltages to fill the remainder of wire 2 with electrons in the TS state.
(iii) Next we bring a portion of wire 3 near the junction into the TS
state. This puts the Majorana on leg 3. The symbol t in the tYa denotes
that the entire branch 2 is topological and has no Majoranas. The bar
has been removed from the letter a because the Majorana is now at the
end of a TS segment connected to the Y junction. It is characterized
by an orientation αa = φ3 + π . (i’)–(iii’) Shifting a Majorana from
branch 1 to branch 3 when both branch 2 and 3 are in the TS state. We
denote this by āY t

t

s2̄3̄−→tY t
ā . As shown in the text, this operation gives

an additional sign change relative to the case in the top panels.

and bottom panels of Fig. 5. In the top panels we have one
full wire coming in from far away (wire 2), while the other
two are empty. Initially, the full wire stops short of the Y
junction, and the Majorana state at the end of the filled region
is located on wire 2. At the end of the manipulation, wire 2 is
completely full, and wire 3 is filled to some finite distance from
the junction. The Majorana, at the end of the filled section, is
now found inside wire 3. This manipulation, which does not
involve a coupling between two separate topological segments,
is rather simple.

The bottom panels describe a more complicated manipula-
tion. In this manipulation we again transfer a Majorana from
wire 2 to wire 3, but here we have the opposite situation, where
all three wires are full far from the junction. In the initial state,
we assume there is a depleted region in wire 2 between a
point 4r2 and the junction, while wires 1 and 3 are everywhere
full. The Majorana is located at the point 4r2. At the end of
the manipulation, the depleted region has been moved to wire
3, and the Majorana is located in wire 3. The manipulation
involves a transfer of a Majorana between wires.

As long as we change the parameters of our Hamiltonian at a
rate that is small compared to the energy of the lowest positive
energy states that occur in the course of the manipulation,
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positive energy states will never be occupied, and we may
ignore them in our considerations. For the analysis of the time
evolution of the single zero-energy Majorana operator through-
out the elementary manipulations, we find it convenient to
revert to a representation in which the Majorana operator
evolves continuously with the parameters of the Hamiltonian.
We denote this representation of the Majorana operator by
γ̃ (2). As discussed in Sec. III A, in this representation, the
expectation value of the product of γ̃ (!) with any number of
Majorana operators far from the junction will be independent
of time. We can always choose the sign of γ̃ (!) to be consistent
with our sign conventions at the beginning of the manipulation
(t = 0) when the Majorana is on wire 2. However, we are
not guaranteed anymore that γ̃ (!) is still consistent with
the convention at the end of the manipulation (t = T ) when
the Majorana is located on wire 3. If the conventions are
not satisfied, we will encounter a factor of −1 when we
convert γ̃ (!) to a Majorana operator obeying our single-valued
convention, and these factors of −1 must be included when
we compute expectation values of physical operators.

Fortunately, the rules for when one needs a factor of −1
are independent of most details of the Y junction. In the
remainder of this section, we show how the rules can be
deduced from the requirement that the total electron number
parity be conserved, together with our previously developed
relations between the electron parity operator of an occupied
segment and the product of Majorana operators at its ends.

In the following analysis, we discuss the behavior of a
network of semiconductor wires with N = 2. We assume that
near the junction the phase of the superconductor and the
angle η are constant, and the wires are in the x-y plane, with
ê in the z direction. (Results for any other orientation of the
Y junction can be obtained by performing a rotation of the
system and counting the number of times the parameter set !
at the location of a Majorana crosses a discontinuity surface
during the rotation.)

A. Y junction notation

We first define a notation to keep track of the various
arrangements of TS wire segments and Majoranas in the
vicinity of a junction, such as those exhibited in the various
panels of Fig. 5. We mark Majorana states on the branches of
the Y with a lowercase Lattin letter located about a Y symbol,
at the appropriate location. If the Majorana state is an “in” state
(it is at the end of a topological segment which stretches away
from the intersection), we mark the state with an extra bar.
The presence or absence of a bar leads to a difference of π in
the value of the angle α describing the Majorana orientation.
When a wire branch is filled in the TS from the junction all
the way to “infinity,” so there is no Majorana near the junction
on that branch, we indicate this by including the letter t on the
corresponding branch of the Y symbol.

For example, consider

āY, (43)

which describes the state in Fig. 5(i). Wires 1 and 3 are empty,
while branch 2 contains the Majorana state γa , terminating a
topological segment that stretches away from the intersection.

Another example is

tYc, (44)

which encodes a Majorana state on branch 3, which terminates
a topological phase that stretches to infinity on branch 2, as
the t indicates. This is the situation in Fig. 5(iii).

B. Derivation from number parity conservation

Let us first consider the situation illustrated in the top panels
of Fig 5. We suppose wire 2 is straight and long but finite, so
that it has an additional Majorana at its far end (not shown in the
figure), which we label γ2. The orientation of the Majorana γ2
is α2 = φ2 ± π , while the original orientation of γa is αa = φ2.

In our notation, the Majorana operator keeps the same label
a throughout the manipulation. However, the relation of the
operator to the fundamental electron creation and annihilation
operators will be different before and after the manipulation,
as the parameters ! will be different. To emphasize this
difference, we use the symbol γ ′

a , in this section, to denote
the Majorana operator in the final state in the single-valued
convention and use α′

a to denote the corresponding orientation.
In the final state illustrated in panel (iii) of Fig. 5, the
orientation of Majorana a will be α′

a = φ3 ± π .
In the initial and final states, the number parity operators

are respectively given, according to (40), by

P 0
2,a = ik22γ2γa , P T

2,a = ik23γ2γ
′
a, (45)

kij = sgn([φi − π ]r − [φj ]r ). (46)

We now relate the operator γ ′
a to the continuously evolving

operator γ̃ (!). Since the expectation value 〈γ2γ̃ (!)〉T in the
final state is equal to the expectation value 〈γ2γa〉0 in the initial
state, and since the expectation value of the number parity
must be the same in both states, k23〈γ2γa〉T = k22〈γ2γ̃ (!)〉T .
We see that for ! in the final state, the operator γ ′

a is equal
to s2̄3γ̃ (!), with s2̄3 = k22k23. The product k22k23 will equal
−1 if and only if the x axis lies within the area between two
lines of orientation φ3 and φ2 − π , with the restriction that the
opening angle have magnitude <π .

In accord with the discussion in Sec. III A, we know that
if A is any operator constructed as a product of Majorana
operators far from the Y junction in question, the expectation
value 〈Aγ̃a(!)〉 will not depend on time. We therefore see that

〈Aγ ′
a〉 = s2̄3〈Aγa〉, (47)

where the expectation value of the left-hand side of the
equation is taken at time T , and that of the right-hand side
is taken at time zero.

The inverse of the above manipulation begins with a TS
that fills the entire wire 2 and extends, through the junction,
part way into wire 3, so that there is a Majorana located in
wire 3. If we now adiabatically deplete the occupied region of
wire 3, along with a region close to the junction in wire 2, we
will have moved the Majorana from wire 3 to wire 2. Clearly
the sign change associated with the inverse process, which we
denote s32̄, will be the same as s2̄3.

When all three wires are in the TS state far from the junction,
as in the bottom panels of Fig. 5, the analysis is slightly more
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complicated. We assume that all wires are straight, and we
include two more Majorana operators, γ1 and γ3, at the end
of their respective wires. In this case, the number parity for
individual wires is not conserved, but the total parity is. The
parity operators in the initial and final states are given by

P 0 = −k22k31γ2γaγ3γ1, P T = −k33k21γ3γ
′
aγ2γ1. (48)

Taking into account the anticommutation rules for Majorana
operators, we know that the expectation value of γ3γ̃ (!)γ2γ1
in the final state should be equal to the expectation value of
−γ2γaγ3γ1 in the initial state. This tells us that for ! = !T ,
being the parameters at the final state, the operator γ ′

a is equal
to s2̄3̄γ̃ (!T ), with s2̄3̄ = −k22k31k33k21. Furthermore, if A is
any product of Majorana operators far from the junction, we
have 〈Aγ ′

a〉T = s2̄3̄〈Aγa〉0, where the subscript indicates the
time at which the expectation value is taken.

As an example of the above, consider the case where
(φ1,φ2,φ3) = (π/6,5π/6,3π/2). Then k22 = −1, k31 =
1, k33 = 1, k21 = 1. In this case we have no sign change: In
the final state we have γ ′

a being equal to the continuously
evolving γ̃ at time T . On the other hand, if we rotate the
system by −π/3, so that (φ1,φ2,φ3) = (3π/2,π/6,5π/6), we
find k22 = 1, k31 = −1, k33 = −1, k21 = 1, so in the final
state we will have γ ′

a = −γ̃ (!T ).
These results can be readily generalized to the case of

arbitrary angles between the wires. We find that the factor
of −1 occurs if and only if the negative x axis lies within
the area between two lines of orientation φ3 and φ2, with the
restriction that the opening not include the direction φ1 − π .

The results derived above can be stated in another way. For
both cases considered in Fig. 5, the necessity for including a
minus sign at the end of the manipulation can be determined
by defining a continuous path for change in the orientation
angle αa between the original orientation in wire 2 and the
final orientation in wire 3. If this path crosses the cut at angle
π mod 2π , we must multiply the Majorana operator by a
minus sign. In the case where one incoming wire is occupied
far from the junction (top panels of Fig. 5), we must define the
path between the original and final angles by requiring that α
is never equal to the wire orientation angle φ2. If we think of
the continuous path as a set of Majorana orientations which
would occur if one continuously bent the end of wire 2 until
it aligned with wire 3, the condition effectively says that the
wire would not double back on itself. In the case of three full
wires, illustrated in the bottom panels of the figure, the path
should be chosen by requiring that α must pass through the
orientation angle φ1 of the third wire at the junction.

If the Y junction is not oriented parallel to the x-y plane,
or if the orientation of b̂ is not parallel to ẑ, the factors
kij in the parity operators will no longer be given simply
by Eq. (46). Nevertheless, the relations s2̄3 = k22k23 and
s2̄3̄ = −k22k31k33k21 still hold, as they followed directly from
conservation of overall parity.

V. MAJORANA EXCHANGE

The process of exchanging two Majoranas can now be
performed by compounding elementary processes of the type
described above, where a Majorana is moved through a Y
junction from one wire to another.

FIG. 6. (Color online) Two initial states for a Majorana exchange
process. (i) Two Majoranas on the same TS segment. (ii) Majoranas
on different TS segments.

An exchange process has two distinct flavors: Either the
exchange is between two Majorana states at the edges of
the same topological segment or between states belonging to
different segments. A configuration of each type is illustrated
in Fig. 6.

When the Majorana states belong to the same topological
segment, an exchange can be described as the following “three-
point turn” sequence:

aY b s23−→ Y b
a

s12−→ bYa
s31→ bY a. (49)

The sign change of γa as it shifts from branch 2 to branch 1
via branch 3 is given by the product of two signs:

γa → saγa, sa = s23s31. (50)

For γb, the result is

γb → sbγb, sb = s12. (51)

The arrow notation here implies that in computing the
expectation value of a product of Majorana operators which
includes γa,γb or both, the expectation value after the exchange
will be multiplied by a sign equal to sa , sb, or sasb. Note
that in our labeling scheme the Majorana operators retain
their original subscripts, even though their positions have been
interchanged. We have now dropped the prime symbol used in
the previous section to designate Majorana states in the final
configuration.

The values of the signs sij can be obtained from the results
of the previous section, using a permutation of the labels 1,2,3
where necessary. Each step in Eq. (49) is composed of two
elementary parts. For example, in the first step, Majorana a
is pulled back through the junction from wire 2 to wire 1;
then it is pushed through the junction onto wire 3. Thus we
have s23 = s21̄s1̄3. We may treat this process as a continuous
rotation of the Majorana from the initial directionαa = φ2 − π
to the final direction φ3 − π . The rotation must be done in the
counterclockwise direction, so thatαa is never equal toφ1 − π .
The sign s23 will be negative if α crosses the negative x axis
in the process. Similarly, s12 will be negative if αb crosses
the negative x axis when it is rotated in a counterclockwise
sense from its initial direction φ1 − π to φ2 − π . The sign
s31 will be negative if αa crosses the negative x axis as it
is rotated from φ3 − π to φ1 − π . If we choose the wire
directions as suggested by the letter Y , say with (φ1,φ2,φ3) =
(π/6,5π/6,3π/2), we find that s23 = s12 = 1, s31 = −1, so
sa = −1, sb = 1.
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Note that if we repeat the entire process twice, thereby
restoring a and b to their original wires, both Majorana
operators will be multiplied by −1. This follows from the
fact that sasb = −1. If we consider other orientations of the
three wires, the sign sa and sb may change, but their product
will always be −1.

In the second case of interest to us, the two Majoranas are
on the edges of two different segments, which is described
by the Y configuration aY b [see panel (b) of Fig. 6]. Again, a
three-step turn can exchange the two Majoranas:

āY b̄ s2̄3−→ t Y b̄
a

s1̄2̄−→ b̄Y t
a

s31̄−→ b̄Y ā. (52)

In the first step, Majorana a is pushed through the junction from
wire 2 to wire 3; in the second step Majorana b is pushed from
wire 1 into the junction and pulled onto wire 2; and finally
Majorana a is pulled from wire 3 to wire 1. The associated
sign s2̄3 will be negative if the angle αa passes through the
negative x axis while rotating in a clockwise sense from the
initial direction φ2 to the direction φ3 − π . The sign s31̄ will
be negative if αa passes through the negative x axis when
rotating in a clockwise sense from φ3 − π to φ1. Finally, s1̄2̄
will be negative if αb passes through the negative x axis on
rotating from φ1 to φ2. This rotation must also be taken in
a counterclockwise sense, so that the αb avoids the direction
φ2 − π .

As in the previous case, we may define signs sa and sb

characterizing the change in the Majorana operators after the
transformation, with sa = s2̄3s31̄ and sb = s1̄2̄. Again, we find
that the product sasb is always negative. With the particular
choice of orientations specified above, we have s2̄3 = s31̄ = 1
and s1̄2̄ = −1.

As a direct application of the above results, we may consider
what happens if we begin with a configuration like that shown
in panel (b) of Fig. 6, and we are given the number parities
P2 and P1 of two occupied segments in the initial state. If
we perform two clockwise Majorana exchanges of the type
described above, we will reach a final state in which the
expectation values of P2 and P1 will each have changed sign.
By contrast, if we perform only a single Majorana exchange,
P1 and P2 will each have zero expectation value in the final
state. The state will actually be a coherent superposition, with
equal weights, of a state where the parities have changed and
one where they are the same as in the initial state.

As pointed out in Ref. 27, it is evident from our analysis
that the choice of chirality of the underlying p-wave proximity
affects the exchange process and determines which Majorana
obtains a minus sign upon exchange. In the N = 2 model, it is
our choice for the sign of the spin-orbit coupling that governs
this chirality.

VI. SUMMARY

The results of the previous analyses may be summarized
as follows. For an arbitrary continuous manipulation of the
parameters of the Hamiltonian, consistent with the requirement
that the Majorana fermions always remain far apart, we may
define a number qj for each Majorana, which equals ±1
depending on whether the parameters defining that Majorana

have crossed an even or odd number of cuts where the
Majorana wave function changes sign. (This must include
any sign change that occurs when the Majorana is passed
through a Y junction). If the changes in the Hamiltonian
are adiabatic in the sense that they are slow compared to
the scale set by the gap to finite energy excitations, but fast
compared to the exponentially small interactions between the
separated Majoranas, then the expectation value of a product
of any even number of Majorana operators γj taken after the
manipulation will be identical to the expectation value before
the manipulation, except for a sign factor Q which is the
product of the qj for the Majoranas involved.

Suppose that at the end of a series of adiabatic manipula-
tions the system is divided into a set of disjointed TS wire
segments. The quantities of immediate physical significance
will be the electron number parities in the individual wire
segments. The operator which measures the parity of a TS
segment may be expressed as a product iγaγb of the Majorana
operators at the two ends of the segment with an overall sign
kab that depends on parameters such as the orientations of the
wire ends, but does not depend on the past history. Rules for
computing the factors kab, as well as the history-dependent
Majorana factors qj have been given above, using a particular
convention for the signs of the Majorana operators. If these
factors are known, and if the expectation value 〈iγjγk〉0 in the
initial state is known for the two Majoranas which wind up,
respectively, at the two ends a and b of the wire segment in
question, we may calculate the expectation value of the parity
operator in the final state as the product of the factors kabqjqk

and the initial expectation value 〈iγjγk〉0.
In the simplest case, where the ending Hamiltonian is the

same as the starting Hamiltonian, so that the system contains
the same geometric arrangement of TS clusters that it had
initially, and if each Majorana is returned to the same position
Rj that it had initially, the factor k will be the same in the
initial and final states. Moreover, if the parity of each wire is
known in the initial state, then the initial expectation values
〈iγjγk〉0 may be deduced. The parity of a wire segment in the
final state will then be equal to the parity in the initial state
multiplied by the history-dependent product qjqk for the two
Majoranas at the end of the segment. If the Majoranas at the
ends of a wire segment originated on the same segment, but
are reversed in position in the final state, the parity in the final
state will still be determined by the parity in the initial state
and the factor qjqk , but there will be an additional factor of
−1 due to the reordering of the operators.

If the Majorana operators at the end of a wire segment
in the final state originated on two different wire segments
in the initial state, the parity in the final state will not be
determined by the parities of individual wires in the initial
state. If the initial state had a definite parity on each wire
segment, then the expectation value for the parity of the wire
segment in question will be zero in the final state. However, the
expectation value of the product of the parities of several such
wire segments may still be nonzero (and equal to ±1) if the
Majoranas at their ends, collectively, are a permutation of the
Majoranas from an equal number of wire segments in the initial
state.

The analyses we have presented can be applied to the
case of a three-dimensional network of wires, as well as to a
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two-dimensional network. In all cases, the result of a set of
adiabatic manipulations will be a topological invariant of the
path in parameter space between the initial and final states. If
the Majorana manipulations are performed on a planar network
of wires and junctions, with ê perpendicular to the plane, with
b̂ parallel to ê, and with the phase of % the same for the entire
system, and if the configuration of TS wires is the same in the
initial and final states, then the result for any physical quantity
will be the same as one would have obtained by analysis of
the braiding of the positions Rj. These results would be the
same as for the braiding of e/4 quasiparticles in non-Abelian
ν = 5/2 fractional quantum Hall state.36
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