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Abstract

A unified response theory for the time-resolved nonlinear light generation and
two-photon photoemission (2PPE) from metal surfaces is presented. The theory
allows one to describe the dependence of the nonlinear optical response and the
photoelectron yield, respectively, on the time dependence of the exciting light
field. Quantum-mechanical interference effects affect the results significantly.
Contributions to 2PPE due to the optical nonlinearity of the surface region are
derived and shown to be relevant close to a plasmon resonance. The interplay
between pulse shape, relaxation times of excited electrons, and band structure is
analysed directly in the time domain. While our theory works for arbitrary pulse
shapes, we mainly focus on the case of two pulses of the same mean frequency.
Difficulties in extracting relaxation rates from pump—probe experiments are
discussed—for example due to the effect of detuning of intermediate states on
the interference. The theory also allows one to determine the range of validity
of the optical Bloch equations and of semiclassical rate equations, respectively.
Finally, we discuss how collective plasma excitations affect the nonlinear optical
response and 2PPE.

1. Introduction

During the last decade time-resolved spectroscopy of condensed-matter systems has become
a very active area of experimental research [1-22]. This is mainly due to the progress
in experimental techniques, in particular the ability to create ultrashort laser pulses with a
duration of the order of a few femtoseconds [23]. Since this is similar to the relaxation
times of excited electrons and collective excitations in solids, these experiments allow one to
study non-equilibrium physics, e.g., the time evolution of excited electrons before and during
thermalization. Of particular interest are nonlinear techniques such as time-resolved sum-
frequency generation (SFG) and two-photon photoemission (2PPE), which are sensitive to
excited electron states [24]. A theoretical understanding of these processes is crucial. Petek
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Figure 1. A simplified representation of sum-frequency generation (SFG). EF. is the Fermi energy
and Ey,c is the vacuum energy. In SFG two photons of frequencies w; and w; are absorbed by
electrons in states |1) and |2) and a single photon of frequency w; + w; is emitted due to the
electronic transition |3) — |[1). The two photons may be provided by one or two laser pulses. Note
that whether the two photons are predominantly absorbed at nearly the same time or with some
delay depends on the shape and width of the pulse(s). A more careful analysis of the absorption
process on the basis of response theory is given in section 2.1.

and Ogawa [21] noted in 1997 that a theory for time-resolved 2PPE is still lacking, and,
despite the efforts of many theorists, much remains to be done. The situation for SFG is
similar. The construction of such a theory is a formidable task—the main problems are (a) the
description of the time-dependent response and (b) the treatment of the surface. Our main
concern is with the first point. A simplified description of the surface using Fresnel factors
has been employed successfully to describe SFG from metals [25-28]. A detailed discussion
of boundary conditions at the surface, focusing on the nonlinear optical response of magnetic
systems, can be found in [29].

In the present paper we discuss the electronic processes taking place during time-resolved
SFG (in particular second-harmonic generation, SHG) and 2PPE and derive the dependence of
the SFG light intensity and the 2PPE photoelectron yield on the time dependence of the exciting
laser field. We show that most effects observed for time-resolved 2PPE appear similarly for
SFG, such as their dependence on energy relaxation, dephasing, and detuning of intermediate
states. Other examples are the enhancement of the response due to collective excitations and
the sensitivity regarding the ultrafast spin-dependent relaxation. We develop a unified time-
dependent response theory for SFG and 2PPE, starting from the self-consistent field approach of
Ehrenreich and Cohen [30, 31], which can be applied to specific materials described by their
band structure, relaxation rates, and dipole matrix elements. For illustration, we apply the
theory to a generic tight-binding model for a metal to study interference effects in both pump—
probe single-colour SFG and 2PPE and their dependence on relaxation rates and detuning. We
exhibit the strong similarities between the two methods.

In SFG [1-5] electrons are excited by absorbing two photons and they subsequently emit a
single photon at the sum frequency. In figure 1 we illustrate the type of process yielding SFG.
For simplicity we talk about SFG in the following, although difference-frequency generation is
automatically included in our theory. Time-resolved measurements [1-5] usually employ the
pump—probe technique, where two laser pulses of the same (single-colour) or different (two-
colour) frequency are applied with a time delay AT between them. This time delay controls
the time between the two absorptions and thus the relaxation dynamics of the electron in the
intermediate state |2) is crucial; see figure 1. SFG is strongly surface sensitive, since the SFG
response of the bulk of an inversion symmetric crystal vanishes in the dipole approximation.
The inversion symmetry can also be broken by nanostructures. The most important case of
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Figure 2. A simplified representation of two-photon photoemission (2PPE), where EF is the Fermi
energy and Ey, the vacuum energy. Here, two photons of frequencies w; and w, (from the same
or different pulses) are absorbed by electrons in states |1) and |2), respectively. Unlike in SFG,
figure 1(a), the excitation energy is now so large that electrons are excited above Ey, and can leave
the solid. The open arrow denotes electrons leaving the crystal. Note that SFG is also possible due
to a transition |3) — [1). However, the SFG intensity may be small, since it involves more dipole
matrix elements, as we discuss below.

SFG is second-harmonic generation (SHG), where the electrons are excited by approximately
monochromatic light of frequency w and light of frequency 2w is detected. Note that in the
case of ultrashort laser pulses the spectrum is necessarily broadened and a full treatment of
SFG is required even for these single-colour experiments. Also note that a single laser pulse,
depending on its duration and shape, involves time-delayed absorptions.

Time-resolved 2PPE experiments of metal surfaces [6—18] as well as of clusters [19, 20]
employing the pump—probe technique have been performed more often than time-resolved
SFG. Reviews can be found in [21] and [22]. Figure 2 shows a sketch of the processes yielding
2PPE. An electron is excited above the vacuum energy E,,. due to the absorption of two
photons. The interplay between the relaxation of the electrons in intermediate states and the
time between the two absorptions will determine the resulting photoelectron current. The
probability of electrons above the vacuum level actually leaving the solid is also crucial. The
limited mean free path of the electrons makes photoemission surface sensitive, but in general
less than in the case of SFG. In both SFG and 2PPE interference effects [1, 3, 8, 11-13] appear,
which our theory allows us to study. Of course, these interference effects are expected to
depend on the pulse shapes.

The response theory presented here goes beyond previous theoretical treatments of ultrafast
processes! in SFG and 2PPE in metals, which mainly fall into four classes: (a) density
functional theory and approaches based thereon [28, 32-37], (b) rate equations [15, 38, 39],
(c) optical Bloch equations [9, 12, 42], and (d) perturbative methods [26, 31, 43, 44]. At
first, density functional theory was applied in the time-dependent local density approximation
for jellium models [32-35]. In the jellium approximation one ignores the potential of the
ion cores and, consequently, any band structure effects. Thus this approach is not suitable if
single bands or surface states or quantum-well states in thin films are important. On the other
hand, collective excitations are usually described rather well [45]. Going beyond the jellium
model, Luce and Bennemann have employed the local density approximation to calculate
dipole matrix elements as they enter also in our approach [28]. Additionally taking excited
states into account within the GW approximation, Schone et al [36] have calculated electronic
lifetimes. Hole dynamics have also been studied with density functional methods [37].

' The dynamics on timescales longer than about 500 fs can be understood by assuming that the electrons have
thermalized at an electronic temperature 7.. However, we are interested in faster effects here.
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However, one would like to gain more general physical insight than the numerical results
can provide. To this end one may consider rate equations for the occupation of excited
states, e.g., the Boltzmann equation [15, 38, 39]. This approach allows one to incorporate
important effects such as secondary electrons due to relaxation from higher-energy states and
to Auger processes as well as transport into the bulk [15, 38, 39]. However, rate equations
neglect the electric polarization of the electron gas, its dephasing, and any quantum-mechanical
interference effects, resulting from the superposition of the laser field and the induced fields.
To include these effects one has to solve the equation of motion for the entire density matrix
p, not only for its diagonal components, i.e., the occupations. This can be done in response
theory. Its simplest form yields the optical Bloch equations: the system is modelled by a
small number of levels and the von Neumann equation of motion (master equation) for the
density matrix is integrated numerically [9, 12, 42]. However, this approach is limited to a
small number of levels so that a realistic band structure cannot be described. Furthermore,
many-particle effects like collective excitations are not included.

On the other hand, the response theory presented here does include the band structure
and collective excitations. It generalizes the theory of Hiibner and Bennemann [31] to SFG
due to incident light of arbitrary time dependence and spectrum. The previous theory [31] has
been used successfully for SHG from metal surfaces, thin films, quantum wells, and metallic
monolayers due to continuous-wave, monochromatic light [26-28, 31, 46-49]. However, the
dependence of SHG on the pulse shape and the effect of energy relaxation and dephasing were
not discussed. We also derive the response expressions for time-dependent 2PPE within
the same framework. Since our theory is explicitly formulated for continuous bands, it
can also serve as a basis for the discussion of the averaging effects due to bands of finite
width discussed in a more heuristic framework using optical Bloch equations for discrete
levels in [50]. Since the full time or frequency dependence is included, effects of frequency
broadening of short pulses and of finite frequency resolution of the detector (for SFG) [50] are
easily studied.

Our theory employs a generalized self-consistent field approach [30, 31], which is
equivalent to the random-phase approximation (RPA) [51-55]. We employ the electric dipole
approximation, which is valid for small wavevector q of the electromagnetic field and has
been used successfully to describe SHG from metal surfaces [26-28, 46-49, 56]. This is
reasonable, since the skin depth, which is the length scale of field changes, is about one order of
magnitude larger than the lattice constant. One has to take care in interpreting SFG experiments
for inversion symmetric crystals, since the surface contribution only dominates over higher
multipole bulk contributions for surfaces of low symmetry [26, 31]. Using approaches similar
in spirit to our response theory, Ueba [57] has studied continuous-wave 2PPE from metal
surfaces, Pedersen et al [43] have considered continuous-wave SHG from metallic quantum
wells, and Shahbazyan and Perakis [44] have developed a time-dependent, but linear response
theory for metallic nanoparticles.

It is important to understand that at the surface of a metal, in thin films, and in nanos-
tructures the light couples to collective plasma excitations. The field within the metal is of
course not purely transverse [40, 41]. Its transverse and longitudinal components couple with
the conduction electrons to form plasmon—polaritons and plasmons, respectively [41]. The
(longitudinal) plasmon modes only decouple from the applied field for a structureless jellium
model of the solid [40, 41]. However, we consider a more realistic model that incorporates
the crystal structure. Also, we will see that the induced nonlinear polarization couples to
(longitudinal) plasmon modes.

On general grounds one may expect the discussion of the intimate relationship between
2PPE and SFG to also help in understanding the dependence of 2PPE on light polarization. It
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has been shown that the light polarization dependence of SFG is important for the analysis of
the electronic structure and magnetism [58].

The organization of the remainder of this paper is as follows. We first summarize the
response theory for SFG and 2PPE in section 2. This lays the ground for our discussion
in section 3 of time-dependent SFG and 2PPE. Details of the response theory are given in
appendices A and B.

2. Response theory

2.1. Sum-frequency generation

We first outline the response theory for SFG. We consider a semi-infinite solid with single-
particle states |[ky/) with energies E); described by the momentum Ky parallel to the surface,
which is assumed to be perpendicular to the z direction, and a set of additional quantum
numbers /. For bulk states, which may be affected by the surface but are not localized close to
it, the composite band index is [ = (k;, v, o), where k; is the z momentum component in the
bulk, v is a band index, and ¢ is the spin quantum number. k, has a continuous spectrum. On
the other hand, for states localized at the surface, / is discrete. Examples are image-potential
states, adsorbate states, quantum-well states in a thin overlayer, and proper surface states.

Part of the electron—electron interaction is included by the self-consistent field
approximation or RPA [30, 51]. The remaining electron—electron scattering is approximately
taken into account by inserting phenomenological relaxation rates [59] into the single-electron
Green functions and by shifting the band energies Ey; [60]. We assume that Ey; are
quasiparticle energies containing these shifts. Note that the electron—phonon interaction only
becomes relevant on longer timescales and is not considered here (see footnote 1). Also,
intraband contributions to the response are not considered for simplicity, which is reasonable
at optical frequencies.

The electrons are coupled to the effective electric field E within the solid through a dipolar
interaction term (for simplicity we assume that the dipole coupling dominates). The optically
induced polarization P within the solid is expanded in orders of the electric field E. The linear
response is given by

1
[€)] __E: ry,. Teg 4 o 4
P[ (qvt)_zn_ q/ /dt le(qqut t)Ej(qvt)a (1)

where y;; is the linear susceptibility, q = (qy, ¢;), and q = qil due to conservation of
momentum parallel to the surface. Summation over repeated indices is always implied. The
non-conservation of g, is explicitly taken into account.

We assume throughout that the photon momentum ¢ is small compared to the dimensions
of the Brillouin zone and that the band energies, relaxation rates, and transition matrix elements
change slowly with momentum so that the difference between the parallel crystal momenta
of an electron before and after the interaction, k; and kil, respectively, can be ignored. If we
further neglect the frequency dependence of the transition matrix elements the self-consistent
field approach gives the time-dependent linear susceptibility
22
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Figure 3. The Feynman diagram for the linear susceptibility x relating the linear polarization
P to the effective electric field E; cf equation (1). The solid curves in the diagrams are to be
understood as electronic Matsubara—Green functions containing relaxation rates I. The dots (@)
denote dipole matrix elements D.

where v is the volume of the system. Note that the last two factors explicitly describe the
oscillations and decay of the linear induced polarization. In the dipole approximation the
transition matrix elements are

Dk, (q2) = (kyl[r[kyl'). 3)

The matrix elements are given without approximations in appendix A. The linear susceptibility
is represented by the usual Feynman diagram shown in figure 3.

The finite lifetime of electrons due to their interaction enters equation (2) through the
dephasing rates Dy which describe the decay of the superposition of states |k;/) and
|ki|l’) and thus of the polarization. The change of the occupation of states is described by
the energy relaxation rates Lok = ‘L'I:H Zl, where Ti, are the lifetimes. Uiy is the rate of
spontaneous transitions out of the state |k;/). Since the depopulation of the states |k;/) or |ki| I
certainly leads to the destruction of the polarization, the dephasing rates can be expressed in
terms of the lifetimes as [60]

-1, -1
Tk r = Bt * Ty +Ph )
kylklr = ) AT
where T'P" describes additional dephasing.
The induced second-order polarization is given by

P21 =

o [ anat xS -t - B0 B, )
The second-order susceptibility x ® depends only on two time differences due to homogeneity
in time. Obviously, |t} — 1| is the time interval between the two absorptions. For a single laser
pulse this interval is controlled by the pulse width. For two pulses we expect a contribution
for |t} — ;] of the order of the pump—probe delay time AT. Note that the light polarization is
characterized by the components E;.

To express the electric field E within the solid in terms of the applied external light field
Eys and similarly the electric field E, of the outgoing light in terms of the polarization P one
should employ Fresnel formulae, which are also of importance for the coupling of the light
to collective excitations, as we discuss below. We do not present the Fresnel formulae here,
since they can be found in the literature [25, 26]. See also [41, 70] for effective Fresnel factors
for systems of several layers, such as the important case of a coupling prism separated from
the metal by a thin layer of air or vacuum [71]. Of course, it would be of interest to repeat
Fresnel’s analysis for SFG, in particular deducing phase shifts etc.

Equation (5) is the basis for time-dependent SFG. Clearly the pulse shape of the applied
light described by E(r) affects the induced polarization P®(¢). Note that for simple pulse
shapes (Gaussian, Lorentzian, rectangular) it is possible to evaluate the integrals in equation (5)

further. The light polarization dependence is controlled by the symmetries of the tensor Xi(fk) .
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The symmetries of x® for magnetic and nonmagnetic crystals under monochromatic light
have been discussed in [72]. They are determined by the symmetry operations that leave
the particular surface invariant. These symmetry arguments are unchanged for general time
dependence of the applied laser field.

The intensity of SFG lightis 7@ (1) oc [E2/(1)]? o< [P@ (1)]2. So far, typical experiments
do not resolve the time dependence of the intensity, but measure the time-integrated SFG yield

7@ E/dtl(z)(t) o /dz[Egﬁ{(t)]z o /dz[P<2>(z)]2. (6)

For simplicity we here sum over polarization directions.

Time-resolved SFG may be performed by measuring Z® (AT) as a function of the time
delay AT between the applied field pulses. Omitting surface effects (Fresnel factors) to
emphasize the structure of the results, the yield can be written as

TO(AT) x / drdn dndeydey x5 (t — .t — 1)

X i (8 = 13, 13 = 1) E; (10) Ex () Ey(13) Eni (1), )
which is of fourth order in the incoming light field and thus of second order in its intensity. As
mentioned above, the typical time differences dominating the response are controlled by the
delay AT, besides the pulse durations.

It is useful to write the second-order polarization P also in frequency space,

2 2
P () = / do’ X (@, ) E (@) Ex(@ — o), ®)
where
Xz(jzk) (t — tl, t1 — t2) = / da) da)/ C_iw(t_h) e_iw/(tz_[l)xi(fk) (a), a)/)

or )
1 "
(@) N o /Lot 1,2 ’ ’
Xijk(a), o) = = drdt’ e e Xijk(t +1t', —t").

Note that we employ the convention of equation (8) in [31] for the Fourier transformation.
The frequency representation is better suited to discussion of transition energies. P® has
components at the sum of two frequencies of the incoming light. Since the Fourier transform
of the real electric field contains positive and negative frequencies, the difference frequency
also appears.

If at the first step we ignore screening effects, then equations (5) and (7) only contain the
second-order irreducible susceptibility

& (2mi\’ 4
Ximi (@ Q1 Qi £ — 11,11 — 1) = —7(7> O -0t —n) ZZDll(ul:kul”(_%)
K T

X <Dl{l”;kl’ (qll)Dl]iul/;kuz(CIZZ)[f(Ekul) = [ (Ex)]

[ Ex; — Exr
X exp 1%01 - tz)} expl—Tkrik (i — 12)]
- DIJ(H/';kul(‘Ilz)Dlliuz//;kHz/ (@2 Lf (Exyr) — f (Exir)]
-. Ek l/ —_ Ek Z//
X exp 1%01 - tz)} exp[— Lk (1 — tz)])

[ Ex;i — Ex1r

X exp 1T(t - tl):| expl—Lkyr ki (f — 1)1, (10)
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Figure 4. Detailed quantum-mechanical interpretation of a process contributing to SFG. An
electron is excited from a pure state |kj/) in the Fermi sea to a superposition of states |k;/) and
[k;I”) by the absorption of two photons. After the absorptions the excited electron returns to the
original pure state by emission of a SFG photon at the sum frequency. The times of the absorptions
and the emission are indicated. The heavy wavy lines denote superpositions resulting from the
absorption of photons (indicated by thin wavy lines with arrows) at #, and #;, while the black dots
represent electrons in pure eigenstates.

which is derived in appendix A. We neglect the photon momenta relative to the crystal
momentum. This expression, which forms the basis of our discussion of SFG, goes beyond
the one given in [31] in that it is valid for a time-dependent and spatially varying laser field.
Furthermore, it includes the transverse response explicitly. Equation (10) already exhibits the
interplay between the time interval |; — £,| between absorptions, the photon frequencies, the
dephasing times, and the transition frequencies.

We now discuss the physics contained in equation (10) with the help of figure 4. We
consider the first of the two terms in equation (10). The interpretation of the second term
is similar®>. The step functions incorporate the time ordering #, < t; < t and thus guarantee
causality. The system is in equilibrium until the first absorption at time #, creates a superposition
of the two states |k;/) and |k;/’), denoted by the wavy line in figure 4. This important physics is
lost in the interpretation illustrated by figure 1. The Fermi functions make sure that one of the
states is initially occupied and the other is empty. Let us say state |k;/) is occupied. Since the
system is in a superposition of two eigenstates, the polarization oscillates with the frequency
(Ex,; — Ex)/h, as follows from the first exponential in the parentheses in equation (10).
Such superpositions are described by the off-diagonal components of the density matrix>.
The diagonal components denoting the occupation numbers of states are not changed by a
single absorption. The superposition decays with the dephasing rate I'y ;;xk,; associated with
this transition, making it clear why the dephasing rates rather than the energy relaxation rates
dominate the response. A second absorption at the later time* 7, changes the state into a
superposition of the originally occupied state and the state |k;/”) with its own characteristic
oscillation frequency (Ex,; — Ex,)/h and dephasing rate. This oscillating polarization can
emit a photon at that frequency. After the emission the electron is again in the pure eigenstate

20t |k ) is a state in the Fermi sea then the first term in equation (10) corresponds to the process shown in figure 1,
whereas in the second one an electron from deep below the Fermi energy is excited by the second interaction into the
hole left by the first interaction.

3 Obviously the system could now emit a photon at the oscillation frequency. This is the linear optical response
described by x;;.

4 The ‘simultaneous absorption’ of two photons sometimes invoked in the interpretation of experiments does not
have a physical meaning. The response is always integrated over all possible absorption times. Of course, there will
only be a SFG or 2PPE signal if the time between two absorption is not much longer than typical relaxation times.
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|kyZ). The nonlinear susceptibility in equation (10) contains a sum over many contributions
of this type from different momenta and bands [50]. Note that the product of three dipole
matrix elements appearing in Xi(r%) is responsible for the surface sensitivity of SFG, since in
inversion symmetric crystals the product of dipole matrix elements connecting three states
vanishes except when inversion symmetry is explicitly broken, e.g., by the surface.

In frequency space the nonlinear susceptibility is given by

D{(ul:kul”(_%)
—hw + EkHZ — EkHl” — ihrkul”;kul
S (Ex,) — f(Exr)
—hw +ho' + Exy — Exe — bk

f(EkHZ’) — f(Ekul”) :| (11)

—hw +ho + EkHZ’ — Ekul” — ihrkul”;k”l’

3
) : ¢
Xim,‘jk(Qa q, Qo 0)=—— Z Z
PTG

) |:Di£| 13Kyl (qlz)Dlliul’?ku (92:)

/ k
— Dljﬂwl’:kul(qIZ)DkHl”;kHZ/ (q22)

This shows that the contribution of intermediate (virtual) states falls off with the inverse of the
initial-state energy plus the photon energy minus the intermediate-state energy, i.e., with the
inverse of the detuning. This is not related to the lifetime broadening, butis due to Heisenberg’s
uncertainty principle, which allows energy conservation to be violated on short timescales. The
frequency picture also allows one to incorporate a weight factor to account for the frequency
resolution of the detector [50]. It is of interest that equation (11) and figure 4 can also describe
spin-selective electron excitations due to circularly polarized light. Including the electron
spins, our response theory and in particular equation (11) apply also to magnetic systems.

To prepare the analysis of the effect of collective plasma excitations on the nonlinear
optical response we now include the screening of the electric fields. Screening enters in two
ways: first, the effective field E within the solid is not identical to the external field because of
linear screening, which is expressed by the Fresnel formulae [25-29] containing the dielectric
function &, which can be determined in the RPA. Secondly, the second-order polarization P®
of the electron gas, which corresponds to a displacement of charge, leads to an additional
electric field [62]

/ /
E9 ) :/d3r’ Z[S(n r)(rj—rj) & 4—n6ij8(r—r')}P;2)(r/). (12)
J

Ir —r'] r—r'> 3

Fourier transformation leads to

E® (K, 1) = —4nkk - PP (k, 1), (13)
where K is the unit vector in the direction of k. Thus only the component of P®(k, 1)
parallel to K, i.e., its longitudinal part, is accompanied by an electric field E® [62], which
is also longitudinal. Note that a longitudinal component of the electric field and of the
induced polarization generally exists even for a transverse applied external field for lattice
models [40, 41]; see equation (11).

Due to the linear polarizability of the solid the additional field E® leads to a polarization
contribution of the form xE@. Since the field E® in equation (13) is of second order in the
applied field, see equation (5), this polarization contribution must be taken into account in P®,
Doing this self-consistently corresponds to the summation of an RPA series [31], as shown
in appendix A. Then, Pi(z) o [dn dn ijz,? E; E; where now the nonlinear susceptibility Xi(jzlg
obtains an additional factor and is given by

2
X[(jk)(qv q1.q;t — 11,1 — )

1 - - - - -
=5 > /dteloig;im(q, q;t—t)xi(l_i)mjk(q, Q. Qi —fh,t—b). (14)
m.q
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Figure 5. (a) A diagrammatic representation of the second-order susceptibility x ® in terms of the
effective electric field E. P® is the induced nonlinear polarization. The square vertex O represents
the factor s]’m:g at the frequency of P It appears if one self-consistently takes into account the

electric field due to the polarization P of the electron system and is given by the RPA series shown
in (b). The wiggly line refers to the electron—electron interaction through the electromagnetic field
and is absorbed into the matrix elements D. Note that yjong only acts on the longitudinal field

components; see the text. The factor El;xig can be enhanced by the plasma resonance.

Here the irreducible susceptibility Xi(i) is given by equation (10). Since only the longitudinal
component of P is accompanied by an electric field, the screening factor 81;ig appears only

for the longitudinal component. This is expressed by the factor f]mg} ; in the explicit expression
Elong:ij (A @i T — 1) = 8 + 4T Xim (Qq, @; £ — 1)q,,G ;- el_mig;im(q, q; t — 1) is the inverse matrix
with respect to the indices (i, ¢,) and (m, g).

This analysis is illustrated by figure 5. Figure 5(a) shows the diagram of the second-order
susceptibility x®. The square vertex represents the additional factor of elgég. It is obtained

from the Dyson equation in figure 5(b). The expression for Xi(i) in equation (10) is called
irreducible since its diagram figure 5(a) with the square vertex replaced by a normal one
cannot be cut into two by severing a single photon line.

The response theory clarifies how collective plasma excitations affect SFG. They
essentially enter in two ways, both of which are controlled by the full (not only longitudinal)
dielectric function ¢:

First, the effective electric field is expressed in terms of the external field by means of
Fresnel formulae [25-29], which contain contributions of order 1 /¢ for small ¢. The dielectric
function € becomes small if the frequency of the external field is close to the plasma frequency.
This contribution can be interpreted as field enhancement. In addition, the outgoing (sum-
frequency) electric field Eqy also contains terms that are enhanced for small ¢ due to the
Fresnel factors. This enhancement is most pronounced if the sum frequency is close to the
plasma frequency.

Secondly, the longitudinal component of the nonlinear polarization P® of the electron
system is accompanied by an electric field E® given by equation (13). Thus, the factor el_mlg
appears in the nonlinear susceptibility in equation (14) and thus in P [31]. This leads to an
enhancement of the SFG light due to the longitudinal part of P if the sum frequency is close
to the plasma frequency.

2.2. Two-photon photoemission

To demonstrate the similarities between SFG and 2PPE, we continue by summarizing the
results of the response theory for 2PPE. We consider the same band structure as for SFG,
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Figure 6. A diagrammatic representation of therelationj o [ dr, dt, n;j E; E j for the photoelectron
current in ordinary photoemission [63]. The wavy lines denote the effective electric field E within
the solid and the arrow denotes the emitted electron current j (or the photoelectron yield), which
is of second order in the electric field. The response function 7 is discussed in the text. The dots
(@) denote dipole matrix elements D.

which is characterized by single-electron energies Ex ;. We emphasize that this band structure
contains the bulk states with the z component, k., of k included in /.

The response theory starts from the observation that the photoelectron current j (¢; k, o)
of electrons of momentum k and spin o is given by the change of occupation of the vacuum
state |ko, out) outside of the crystal. However, in practice the time dependence of j is not
measured, but only the total photoelectron yield N'(k, o) = [ dt j(#; k, o). This is similar to
the case for SFG, where only the time-integrated intensity is measured. The response theory
directly determines the photoelectron yield N. To prepare the discussion it is useful to first
consider ordinary single-photon photoemission.

Single-photon photoemission. The photoelectron yield is given by
Nk o)=Y f dty iy m;j(q; 11, 03 K, 0) Ei(Q, 1) Ej(—q, 1), (15)
q

with the response function (see appendix B)

2
€~ Vko,out;ko,in i .Ekuk — Exo.in
nii(q t, K, 0) = =" > Dy, ink(q:)ex [1 (tr — 1))
i q hz Fka,in;ka,in ; ko,in; kA q: p 7
s e Mol £ (B DY i (—). (16)

Here, |ko, in) is a state with momentum k and spin o inside the crystal but above the vacuum
energy. We have again neglected the momentum transferred by the photon. The standard
diagrammatic representation of ordinary photoemission is shown in figure 6 [63]. The effective
field E within the solid should again be expressed in terms of the external light field with the
help of the proper boundary conditions. The response function 1 will play a role when we
discuss the various contributions to 2PPE.

We briefly comment on the structure of the above expression: the prefactor
Yko.out:ko.in/ | ko.in:ko.in describes the probability that electrons excited above the vacuum energy
actually leave the crystal. Photoemission is often described by a three-step picture [64—66]:
first, electrons are excited, then they are transported to the surface, and finally they leave the
crystal. In this work we are mainly interested in the first step. The second and third steps
are incorporated phenomenologically by effective relaxation rates 'y in:ks.in, Which describe
electrons dropping below Ey,. before they reach the surface, and effective transition rates
Yko.out:ko.in from states above E.,. within the solid to free electron states outside of the solid.
Note that the yield is proportional to the electric field squared and thus to the intensity of the
incoming light.
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B

(©)

Figure 7. Diagrammatic representations of contributions to the 2PPE yield A’?PPE_ (a) The direct
irreducible contribution AV2PPE involving four transitions induced by the effective electric field E.

(b) The reducible process Ii;lvolving conversion of two photons to a SFG photon and subsequent
photoemission of third order in the fields, yielding /\/i?,‘s. (c) The reducible process involving
conversion of all four photons to two SFG photons and ordinary photoemission (of second order in
the fields) induced by the SFG light, yielding Nfezlf. The dots (@) denote dipole matrix elements

D. The square vertex ([J), representing a factor of 51;;11;;’ is defined in figure 5(b). Plasma excitations
again enter through this vertex.

Two-photon photoemission. The total 2PPE yield consists of the three contributions
NZPE = MR+ NG + N an

corresponding to figures 7(a)—(c), respectively. The second and third terms arise from the
nonlinear optical properties of the solid: close to the surface the effective field E leads to a
second-order polarization P®, see equation (5), which is accompanied by an electric field
E®. This field may contribute to photoemission, leading to the processes in figures 7(b) and
(c). The second-order field E® is also responsible for SFG accompanying 2PPE. However,
this SFG is usually a small effect since the SFG light intensity is of sixth order in dipole matrix
elements D, see equations (7) and (10), whereas the 2PPE current is of fourth order, as is shown
below in equation (24). This changes if the sum frequency is close to the plasma frequency,
in which case SFG is enhanced as discussed at the end of section 2.1.

Since the diagram in figure 7(a) cannot be cut into two by severing a single photon line, the
first term NV2PPE is irreducible, while the other two are reducible. The irreducible contribution
in equation (17) can be written as

NZPPE — / dry Ay drs deg 55" (11, 1, 13, 1) E (1) Ej () Ex () Er(t4),  (18)

which is of fourth order in the electric field and of second order in the incoming intensity. This
is already clear from the simple picture in figure 2: the occupation of the intermediate state
|2) is proportional to the light intensity. To reach state |3) above E,,. another absorption is
required, leading to a total proportionality to the intensity squared.

Obviously, the structure of equation (18) is very similar to equation (7) for the SFG yield:

I? / dr dry diy ds drg x5t — 1.t — 0) xXin (t — 13, 13 — 1) E (1) Ex (12) E1(3) Ey (1a).
(19)
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Hence, we expect similar interference effects in the two cases.
The other two contributions to A/?PPE are

NZEPE = —4n / dy di dis n [P (1) E j(12) Ex (13)

+ Ei(11) PP () Ex(t3) + Ei(1) E; (1) P (1)), (20)

and
2PPE __ 2 p®@ 2)
Neea2 = @m)” | dtvdiny P77 (1) P (1), @

where 7 is given in equation (16). Since the nonlinear susceptibility x ® and hence P® contains
three dipole matrix elements, the reducible contributions to the photoelectron current are of
higher order in dipole matrix elements and are thus usually small. However, the longitudinal
component of P contains a factor el_mig. If the nonlinear polarization is enhanced due to a
bulk plasma resonance at the sum frequency, one expects significant contributions from the
reducible terms. The response functions n® and 5?*PF are given in appendix B.

We next consider the response functions 7, n®, and ***F which determine the yield
N?PPE_The functions n® and n*PE appearing in equations (20) and (21), respectively, are of
the same general form as 7, equation (16), but have more terms resulting from different orders
of the time arguments. We now first present the structure of the response expression for the
main, irreducible contribution to the 2PPE yield, equation (18), and then discuss its physical
interpretation. Fully written out, equation (18) reads

NZPE(K, o) = Z /dll dtzdt3dl477,~2ﬁ];E(Q1,Q2,(I3§t1,l2,l3,t4;k,G)Ei((Il,ll)Ej((h,lz)

419293
X E(qs, ) El(—q — q1 — q2, 14). (22)
Defining the complex transition energy
Evi— Eqr
e = ————— ~ Dgngr (23)

we obtain the response function

4
2PPE € Vko,out;ko,in

Nijkl g1, 92,93 11, 0, 13, 14: K, 0) = D{(U,i“;kull (q]Z)Dii“)q;kH)\z (922)

h4 l—‘ka,in;k(r,in AAaks
k !

X Dku)»z§ku?»3 (%z)DkuM;kg,in(_QIz — 42 — 432)

x {0t — 1)O(tr — 13)O(t3 — ty)e Drten1=R) e = hyaein (=6
=182k 55:koin (13—

x e htenGT_ g (B )] — O — 2)O(h — 13)O (1 — 13)

% e*iQk“»\] ikain (11 *tz)e*iQk“ »\z;kmin(ttht)e*iﬂk“ aikyas (la=13)

X [f(Exjs) — f(Exp )] — -1 (24)

There are eight terms in the curly braces, which correspond to different temporal orders of
interactions with the electric field. Note that the dependence of 2PPE on light polarization is
incorporated in the symmetries of the tensor nl.zﬁsE, which depend on the dipole matrix elements
D. Unlike for the nonlinear optical response, these symmetries have not been discussed so
far. It would be very interesting to determine the symmetries for surfaces of nonmagnetic and
magnetic solids.

Equation (24) forms the basis for our discussion of 2PPE. To clarify the time dependence
exhibited in equation (24) we discuss the second term; the others are in principle similar

but correspond to different orders of the times #;. The processes described by this term are
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Figure 8. Interpretation of one of the processes contributing to 2PPE. An electron is excited
from a pure state |kA2) in the Fermi sea to a pure state |ko, in) above Ey,c by four interactions
with the electric field at the times #;, as expressed by equations (22) and (24). Note that the
photoelectron current is proportional to the fourth power of the electric field and thus to the intensity
squared, as expected for two-photon photoemission. The heavy wavy lines denote superpositions
of states |kjjA2) and |k A3), |kjA2) and |Ko, in), etc, while the black dots represent pure eigenstates.
Compare with figure 4 for SFG.

illustrated in figure 8. The system starts in equilibrium from the state |[kjA2). The first
interaction with the electric field takes place at time 73 and creates a superposition of the states
|kyA2) and [KjA3), leading to oscillations at the frequency (Ex, s, — E1,) /T expressed by the
third exponential factor in this term. The Fermi factors ensure that one of the states is initially
occupied and that the other one is empty. Let us assume that |k A2) is occupied. The second
interaction at 74 changes the state into a superposition of |kjA,) and the vacuum state |ko, in),
leading to oscillations at the corresponding difference frequency (second exponential factor),
and the third interaction at #, creates a superposition of the vacuum state and |kjA;). After the
fourth interaction the electron is in a pure state above Ey,. and can leave the solid with finite
probability. Of course, due to the sum over bands there are usually several contributions of this
type. Only if the superpositions decay very rapidly compared to the pure states is a description
in terms of rate equations, as suggested by figure 2, applicable [15, 38, 39]. Also compare the
discussion of SFG above; see figure 4.

While SFG is governed only by the dephasing rates and not by the energy relaxation rates,
2PPE depends on both. This is because in the 2PPE response function n?**F the change of
occupation of states enters besides the polarization of the electron gas, whereas SFG only
depends on the latter.

Note that the 2PPE yield contains four dipole matrix elements. Thus, even for inversion
symmetric crystals parity does not forbid 2PPE from the bulk. However, 2PPE is sensitive to a
surface region of a thickness given by the mean free path of electrons above Ey,.. The optical
penetration depth is typically significantly larger than the mean free path and thus does not
enter here. Equations (16) and (24) also illustrate that 2PPE is sensitive to specific points in
the Brillouin zone: the photoelectron momentum k measured by momentum-resolved 2PPE
is approximately the same as the lattice momentum of the original unperturbed electron and
also of the intermediate state due to the small photon momentum. These effects obviously
require a theoretical description that considers the k-dependent states in the solid, like our
approach does, as opposed to both the random-k approximation and Bloch equations. In view
of the importance of angle-resolved (ordinary) photoemission spectroscopy (ARPES) for, e.g.,
cuprate high-7, superconductors, k-resolved 2PPE is expected to yield interesting results in
the future. On the other hand, if one only measures the total number of photoelectrons, the
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k-space resolution is lost and 2PPE and SFG give very similar information. It is obvious that
2PPE has the disadvantage of being limited to frequencies w;, @, such that Er + hw; + hw,
lies above the vacuum energy, unlike SFG. As stated already the SFG accompanying 2PPE is
usually small since additional dipole matrix elements are involved.

The response expressions show that collective plasma excitations affect 2PPE in two ways.
First, exactly like for SFG the effective field E within the metal differs from the external field
due to linear screening and is enhanced close to the plasmon resonance. Secondly, the reducible
contributions in equations (20) and (21) depend on the second-order polarization P@, which
contains a factor of ‘91;111g; see equation (14). P? is enhanced if the sum frequency is close to
the plasma frequency. In 2PPE this enhancement enters only in the reducible contributions in
equations (20) and (21).

3. Discussion

The aim of the present section is to discuss and illustrate the results of the response theory
for time-resolved SFG and 2PPE. In particular, we consider time-dependent effects on the
femtosecond timescale. Our results exhibit the intimate relation between SFG and 2PPE.
We can already gain insight by studying the general structure of the response expressions for
SFG and 2PPE, for example equations (7) and (18), respectively, independently of the specific
approximations made here. For clarity we apply our response theory to a simple model system.

3.1. Time-dependent effects in SFG and 2PPE

The response expressions of the preceding section are valid for any time dependence of the
exciting laser field. The time enters the response expressions for both SFG and 2PPE in two
ways, apart from the step functions from causality; cf equations (10), (16), and (24): the
difference between the time arguments of electric fields appears in exponentials oscillating at
the transition frequency of the electron states involved and in exponentials decaying with the
dephasing rate of the superposition of the two states, and, for 2PPE, also exponentials decaying
with the energy relaxation rate of an intermediate state. (See the discussion of figures 4 and 8
for the interpretation of SFG and 2PPE in terms of electronic excitations.) The time passing
between absorptions can be controlled by the pulse shape of the exciting laser pulses: if the
total duration 7 of a pulse of arbitrary shape is much larger than typical relaxation times t then
the yield depends on the probability of absorbing two photons within a time interval 7, which
is independent of 7. On the other hand, for 7 « t there is almost no relaxation during the
pulse. Thus the response theory reproduces the well-known result that T can only be inferred
from SFG or 2PPE experiments if the total pulse durationis 7 ~ 1.

To be more specific, in most experiments two approximately Gaussian pulses are used
(pump-probe method) [1-20]. If the two pulses are of different mean frequencies w; and w,
(two-colour case) and one measures the SFG or 2PPE response at the sum frequency w; + w»
then it is obvious which photon was absorbed out of which pulse. Then for long time delay
AT compared to the single-pulse duration the relaxation rate of intermediate states can be read
off directly from the AT dependence of the total yield. In pump—probe experiments with two
pulses of the same mean frequency w (single-colour case), photons can be absorbed out of
the same or different pulses. However, the contribution with all absorptions out of the same
pulse obviously does not depend on AT, just leading to a constant background. Note that in
all these cases only a typical relaxation time enters, which is usually a weighted average over
relaxation times of many states [50]. If only a single relevant intermediate state is present, e.g.,
for a quantum-well state, or if there are many but of similar relaxation rate, the relaxation time
extracted from experiment will be the actual dephasing time of intermediate states. However,
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if intermediate states with very different dynamical properties are involved, for example if both
sp and d bands are relevant, the measured relaxation time does not describe any single excited
electron state.

In pump—probe SHG [ 1-5] or pump—probe single-colour 2PPE [8, 11-13, 15] experiments,
time-dependent interference effects are especially pronounced. Their origin is the following:
the first absorption of a photon of frequency w sets up an oscillating polarization of the excited
electrons. Now the probability of a second absorption depends on the relative phase of the
oscillating polarization and the second photon. Since the oscillating polarization is described
by the off-diagonal components of the density matrix p,a description in terms of rate equations,
which omits these components, is unable to describe interference.

For further illustration of this interference, we show results for SHG and 2PPE for a simple
model. Unless stated otherwise, this model consists of three bands. The lowest one is a three-
dimensional tight-binding band 1 with band centre at’—3.33 eV (all energies are measured
relative to the Fermi energy) and half-width 3.81 eV. The band maximum is at k = 0. The
second, rather flat tight-binding band 2 is centred at 2.29 eV with half-width 0.48 eV and
maximum also at k = 0. Finally, there is a free electron band 3 representing electrons above
the vacuum energy Ey,. = 4.29 eV. There exist points in the Brillouin zone for which the energy
difference between bands 2 and 1 and that between bands 3 and 2 both equal the photon energy
of hw = 3.05 eV. We assume that the relaxation rates I',, ,, only depend on the band indices n,
n, and not on the k vector (see below). We use the energy relaxation rates 71’y = 0.191 eV
(corresponding to the lifetime 7, = 3.5 fs) and 7iT'33 = 0.381 eV (3 = 1.7 fs) and no additional
dephasing, i.e., F,]fl,j,nz = 0 in equation (4). These short lifetimes are assumed to bring out the
time-dependent effects more clearly. The dipole matrix elements are treated as constants.

In the following we use this model to show how time-dependent effects emerge from our
response theory. For clarity we neglect the Fresnel formulae, which do not change the results
qualitatively. We demonstrate that our theory gives reasonable results for a moderately compli-
cated system. Obviously, it can be applied to a more realistic band structure at the expense of
computation time. The boundary conditions (Fresnel factors) are also omitted for simplicity.

In figure 9(a) we show the 2PPE photoelectron yield for a particular momentum k as a
function of the delay time AT between two identical Gaussian pump and probe pulses. A
mean photon energy of hw = 3.05 eV is assumed, corresponding to a wavelength of about
A = 400 nm, and the duration of each pulse is 10.3 fs (full width at half-maximum of the
Gaussian envelope of the electric field). The vector k is chosen so that the transition energies
between the bands match iw. In figure 9(b) we show the total SHG photon yield for exactly the
same system. Unlike 2PPE, SHG integrates over the whole Brillouin zone. Nevertheless, the
overall similarity of figures 9(a) and (b) demonstrates the similarity of the response expressions
for SHG and 2PPE; compare equations (7) and (18), for example. This means that similar
information, e.g., about the relaxation rates, can be obtained from each. The SHG curve is quite
similar to the case of flat bands, shown in the inset in figure 9(b). This means that only a small
region of k space contributes. The resulting interference between different k points becomes
apparent in the tail of the interference pattern, where the main plotin figure 9(b) is more irregular
and decays faster. This is the averaging effect discussed in [50]. More precisely it is an effect
of interference between different oscillation frequencies of superpositions of different states.

The 2PPE and SHG interference patterns in figure 9 show the well-known 8:1 enhancement
of the signal for AT = 0. This enhancement is due to the yield being of fourth order in the field:
for a single pulse the signal would be proportional to E*, for two isolated pulses this becomes
2E*, but for two overlapping pulses the amplitude is doubled, leading to (2E)* = 16 E*.

5 The fractional numerical parameter values result from restoration of units and are not in any way special.
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Figure 9. (a) Total yield of photoelectrons of momentum k for single-colour pump-probe 2PPE
as a function of the delay time AT between pump and probe pulses. The parameters of the model
are given in the text. The k vector is chosen such that the transition frequencies perfectly match
the frequency of incoming light. Only results for AT > 0 are shown, since the curve is symmetric
about AT = 0 for identical pump and probe pulses. All curves in this and the following figures are
scaled such that the limit for large AT is unity. (b) Total SHG yield for single-colour pump—probe
SHG as a function of the delay time AT using the same parameters. The inset shows the SHG
yield for flat bands with transition frequencies that match the light frequency perfectly. Note that
for extracting relaxation rates from experimental data the resolution of the photoelectron and SHG
light detectors must be taken into account [50].

For both SHG and 2PPE, the central part of the interference pattern, which corresponds to
short delay times AT up to about the single-pulse duration 7', is dominated by the four-field
autocorrelation function

A (AT) = / doy doy dos Ei(w) Ej (@) Ex(03) E/(—0) — 0 — o3). (25)

This central part stems from the overlap of the two pulses and would be present even for very
fast relaxation: then the response functions x * and 5>""F are very sharply peaked in time and
thus nearly constant in frequency space, leading to Z? o A® and NZPPE oc A@ for the SHG
and 2PPE yield, respectively; see equations (7) and (18). The autocorrelation signal alone is
shown in figure 10(b).

In section 2 we have discussed the response expressions for time-dependent SFG and
2PPE, (10) and (24), respectively. The first interaction creates an oscillating polarization.
There is interference if the phase information is still preserved when the second photon is
absorbed. This is governed by the dephasing time I'»;. Thus the interference effects should
decay with the time constant F;ll for large delays AT. This is shown in figure 10(a) for
moderately fast (, = 6.9 fs) and extremely fast (o, = 0.86 fs) relaxation. For the slower
relaxation the tail indeed decays with I‘z_]1 but to observe this one obviously has to look at
rather large AT where the interference is already weak. For fast relaxation the curve is nearly
indistinguishable from the autocorrelation in figure 10(b).
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Figure 10. A demonstration of the lifetime dependence of 2PPE. (a) The total 2PPE yield for the
same model parameters as used in figure 9 with a lifetime of states in the intermediate band of
7o = 6.9 fs (dotted curve) and with the very small value 7, = 0.86 fs (heavy solid curve). The
dashed curves show the exponential decay with the dephasing rate I'1; = 7, ! /2 for 1o = 6.9 fs.
(b) The four-field autocorrelation function of the pump—probe laser field. Note the similarity to the
fast-relaxation result in (a). The black bar denotes half the laser pulse duration.

However, there is another crucial origin of the decay of interference: intermediate states
with energies that do not exactly match the energy of the original state plus the photon energy
lead to beats at the frequency of the detuning. This effect can be seen from the response
expressions. We now discuss this for the case of SFG: for pulses of short duration 7', the
times f; and #, in equation (10) can be approximated by the pulse centres if we are interested

in phenomena at frequencies small compared to 7~'. Then equation (10) shows that the

polarization of the electron system shortly before the second interaction at #; is proportional to
 Exj — Exr Ly s (t—t) i

expl i 1 e T, 26)

omitting the sum over states. The last factor stems from the electric field of frequency w
describing the first interaction at time 7, < #;. The decaying exponential obviously describes
the decay of interference with the dephasing rate I’ ;k,;. The oscillating terms are of the form
exp[—idw(fy — )] exp(—iwt;) with w = (Exr — Ex;1)/h — w. Thus we expect slow beats
with the detuning frequency dw, which lead to an initial decay of the signal on a timescale
of (Sw)~!. There should be a recurring signal at large delay times, but this is in practice
suppressed by relaxation. A similar argument can be made for 2PPE using equation (24). The
effect is clearly seen in figure 11 for 2PPE: the width of the pattern is reduced by the detuning.
Its tails also become more irregular.

Next, we turn to the effect of the band structure. We first discuss SHG. The SHG yield
is determined by a sum over many transitions of different energies and dephasing rates; see
equation (10). If the decay is governed by dephasing one observes the smallest dephasing
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Figure 11. A demonstration of the dependence of 2PPE on the detuning of the intermediate band.
The heavy solid curve shows the total 2PPE yield for the same parameters as used in figure 9
but with the intermediate band shifted downward in energy by 0.1 iw. w is the mean frequency
of the exciting laser field. For comparison, the dotted curve shows the 2PPE yield for unshifted
bands with matching transition frequencies. Note the beats apparent for AT 2> 10 fs. This shows
how detuning affects the decay of the signal and needs to be taken into account when extracting
relaxation rates from experiments.

rate at large time delays AT. However, at intermediate AT one sees an averaged rate. The
dephasing rate Ik, for two bands / and /" should usually not change dramatically with
k. On the other hand, the contribution of detuning is necessarily different for transitions
with different transition frequencies. Thus, in the interference pattern a continuum of beat
frequencies appears. Consequently, the initial decay is governed by an average detuning and
later, probably unobservable, recurring signals are strongly reduced by destructive interference
of different beat frequencies. The averages are weighted by a factor approximately inversely
proportional to the detuning, as seen from equation (11). For narrow valence and intermediate-
state bands the average is restricted to a small effective bandwidth W. For broader bands but
constant relaxation rates throughout each band the dependence of numerical results (not shown)
for the SHG yield on the width of the intermediate band turns out to be weak, since in this case
all contributing processes are governed by the same relaxation rates®. Hence, if only a single
intermediate state or a few states contribute significantly [47] or if there is a narrow band with
uniform relaxation rates, the Bloch equations should work well. In this case our expressions
reduce to a perturbative solution of the Bloch equations.

On the other hand, if there is strong electron—electron scattering at certain k vectors, e.g.,
due to Fermi surface nesting, the rates can be strongly k dependent. If many states of different
relaxation rates enter the SHG photon yield, then for broad bands the description of SHG using
optical Bloch equations with a single intermediate state is not justified. If interference patterns
are fitted with results from Bloch equations, there is no simple relation between the extracted
relaxation rate and the dephasing rates of the excited electrons.

For 2PPE the situation is quite different, since this method allows one to probe specific
momenta k in the Brillouin zone. Here, the bandwidth is not crucial. There are typically
several contributions to the photoelectron yield, since there are several unoccupied bands.

6 For a significantly broader intermediate band the interference falls off slightly faster because processes with larger
detuning obtain more weight relative to those with small detuning.
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The contributions are again weighted with the inverse detuning, but now there are only a
small number of states involved for fixed photoelectron momentum k. Thus a description in
terms of a small number of states, e.g., by optical Bloch equations, is valid. However, if one
experimentally integrates over k, 2PPE behaves much like SFG.

As mentioned above, 2PPE is generally accompanied by SFG, although the latter is
generally smaller in intensity due to the appearance of additional dipole matrix elements.
It might be interesting to perform both SFG and 2PPE experiments on the same sample. The
two techniques are complementary in that 2PPE gives information about specific points in
the Brillouin zone whereas SFG averages over the whole zone. Furthermore, comparison of
equations (10) and (24) shows that while the general forms of the expressions for SFG and
2PPE are similar, they do depend on the material parameters in quite different ways. We give
three examples. First, 2PPE also depends on the energy relaxation rates (lifetimes) directly,
whereas SFG only depends on the dephasing rates. Secondly, SFG crucially depends on the
dipole matrix element D3; of the transition from the excited state above Ey,. to the original
state in the Fermi sea, whereas 2PPE does not. Thus comparison of SFG and 2PPE may
prove useful for measuring the dipole matrix elements. Thirdly, SFG generally results from a
much thinner surface region than 2PPE and the relaxation rates obtained from 2PPE are more
bulk-like, allowing one to study the dependence of the rates on the distance from the surface.
Finally, we have shown that there is a contribution to 2PPE from SFG light generated within the
solid; see equations (20) and (21) as well as figures 7(b) and (c). Simultaneous measurement
of SFG and 2PPE may allow one to detect this interesting effect.

3.2. Collective plasma excitations

Since SFG and 2PPE may be strongly enhanced by collective plasma excitations, it is useful
to discuss them in the framework of the response theory. Our goal is to show plasmon
enhancement of SFG and 2PPE in principle, even though the plasma frequency is larger than
currently accessible laser frequencies in some metals (but not, for example, in silver, many
heavy-fermion metals, and the interesting compound MgB,). Note that the plasma frequency
is smaller in clusters, for which the same general picture applies.

We have seen in section 2 that in both SFG and 2PPE field enhancement of the effective
electric field E is described by the Fresnel formulae [25-29]. This mechanism is relevant at
the frequency of the exciting laser field and, in the case of SFG, also at the sum frequency for
the outgoing SFG light. It corresponds to the coupling of the external light field to plasmon—
polaritons in the solid [41].

The second important origin of plasmon enhancement is the screening of the nonlinear
polarization P®, which is caused by the effective electric field E® accompanying the
longitudinal part of P® and appears at the sum frequency. Since the electric field E® is
longitudinal, a true plasmon excitation is involved. It is important to remember that the
exciting light does couple to plasmons in real solids; this coupling is only absent in simple
jellium models [40, 41].

Note that in the case of pump—probe SFG with two pulses of different mean frequencies o,
and w,, one of them and the sum frequency w; + w, can be close to the plasma frequency. This
so-called double resonance leads to a particularly strong enhancement [34]. Surface plasmons
lie outside the scope of this paper, since they require a more detailed description of the surface.
See [41] for a discussion.

Motivated by 2PPE experiments on clusters [ 19], we briefly consider the plasmon decay. A
plasmon decays into a single particle-hole pair [73]. The probability of this decay is determined
by the phase space available for the final electron—hole pair. It is only energetically possible if
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the plasmon dispersion lies within the electron—hole continuum at the plasmon momentum q,
leading to Landau damping. On the other hand, decay into a single electron—hole pair may be
possible close to the surface, since translational symmetry is broken and ¢, is not conserved.
If the energy of the electron is higher than the vacuum energy, photoemission may result.
Creation of several pairs is possible, by subsequent inelastic electron—electron scattering. A
plasmon also loses energy through inelastic scattering of the virtual electrons and holes in
the loop in figure 5(b). This process is governed by the single-particle relaxation rates. The
plasmon lifetime is thus shorter than typical lifetimes of the relevant excited electrons.

A plasma mode can be multiply excited. In a recent 2PPE experiment a doubly excited
plasma mode of silver nanoparticles decays into a single electron-hole pair [19]7. What is
actually observed is an enhancement of the 2PPE yield when the sum frequency is close to twice
the plasma frequency. The origin of this effect is that 2PPE with the incident-light frequency
close to the plasma frequency is enhanced due to field enhancement. The general process is
not specific to clusters but is also relevant for flat surfaces. It would be interesting to look for
this effect experimentally.

3.3. Further remarks

Concerning the range of validity of the second-order response theory we remark on the
following. We consider first pump—probe SFG with a very long delay time AT. The first-
order density operator p" describes the result of the first interaction. It contains a finite
polarization (off-diagonal components) but no change of occupation (diagonal components);
see equation (A.11). A change of occupation is only obtained from p® and higher-order
contributions, which involve a larger number of dipole matrix elements and are usually small
compared to p'". However, the off-diagonal components usually decay faster than the diagonal
ones so that for long delay times the higher-order change of occupation can dominate over
the second-order polarization and the second-order approximation breaks down. On the other
hand, our expressions for 2PPE already include the change of occupation due to the first pulse,
since we have directly calculated the photoelectron yield to fourth order. Thus the results
should hold even for long delay times. For the case where the polarization has decayed at the
time of the second pulse, but the non-equilibrium occupation has not, the resulting limiting
form of n?"PE is given by equation (B.20). It only depends on the energy relaxation rates. This
is the case where rate equations are appropriate [15, 38, 39]. Due to the vanishing polarization
there are no interference effects.

There is an alternative and physically appealing description of pump—probe SFG and
2PPE as a two-step process: the first pulse creates a non-equilibrium distribution, which is
probed by the second one. We now discuss the validity of calculations based on this picture.
In appendix A we derive an expression for the linear susceptibility of an electron gas in an
arbitrary non-equilibrium state described by the density matrix pneq; see equation (A.18). If
we insert p) due to the first pulse for pyeq, We obtain a two-step description for x? and
the polarization P®. Omitting the details, we only state that the result is identical to the
one obtained directly for the second-order polarization P, equation (5), but with the full
susceptibility x ® replaced by its irreducible part Xi(rf) of equation (10). Thus, by assuming
two separate interaction processes and treating each in a first-order approximation, we lose the
screening of the second-order polarization. This is not justified if the sum frequency lies close
to the plasma resonance.

Next we consider a two-step description of 2PPE: the 2PPE photoelectron yield N/?PPE
is expressed in terms of an arbitrary non-equilibrium density matrix ppeq as discussed in

7" Although we treat a flat surface, the general physical picture applies to clusters as well. To treat clusters quantitatively
in the present framework, one would have to insert the proper energy eigenstates in the response expressions.



682 C Timm and K H Bennemann

appendix B. Then the second-order density matrix p® due to the first pulse is inserted for
Pneq- We reobtain the full irreducible fourth-order result N2PPE of figure 7(a), but only part of
the reducible contributions, figures 7(b), (c): the two-step description neglects contributions of
two photons from different pulses being converted into one SHG photon. These contributions
may become important if the sum frequency is close to a plasma resonance. In conclusion,
the two-step picture of SFG and 2PPE is valid unless the response at the sum frequency is
enhanced by plasmon effects.

Finally, we emphasize that our theory can also describe time-resolved SFG and 2PPE from
ferromagnetically ordered systems. Ultimately, the light couples to the (spin) magnetization
through spin—orbit coupling, which is incorporated, in principle, in the dipole matrix elements D
and the band structure. The spin-dependent matrix elements can be calculated by a perturbative
expansion in the spin—orbit coupling [31, 46]. SFG and 2PPE also depend on magnetic order
through the band energies Ex; and relaxation rates Fkul:kﬁ 1, sincel also contains a spinindex o.
Of particular importance for magnetically ordered materials is the rotation of the polarization
of SHG light relative to incident light (NOLIMOKE) [31, 46, 47]. As mentioned above, the
light polarization is controlled by the symmetries of the tensor Xi(].z,z, which are known for
low-index surfaces [72].

Compared to NOLIMOKE, 2PPE for magnetic systems has the advantage that in principle
one can obtain information on the spin-dependent lifetimes of electrons in specific states |k /).
The dependence of 2PPE on the light polarization for magnetic systems has not been studied
so far. In the response theory this dependence is controlled by the symmetries of the tensor
N> as mentioned in section 2.2.

For pump-probe experiments with long time delay AT the main contribution to 2PPE
comes from the change of occupation brought about by the pump pulse. Only in this case is
the photoelectron yield proportional to the occupation of the corresponding intermediate states.
If in addition the matrix elements and the rates of relaxation out of vacuum states depend only
weakly on spin, then equation (B.8) shows that the 2PPE yield becomes proportional to the
spin-dependent occupation of these intermediate states:

NZPPE(AT; ka G) X pneq;kva;kvtr (AT) - nneq;k\)a (AT), (27)

where 71peq:kvo denotes the non-equilibrium occupation of the state |kvo) after the pump pulse.
Then the difference of the spin-up and spin-down 2PPE yields, N?PE(AT;k, 1) —
NZPPE(AT: Kk, |), is proportional to the difference of the occupations and thus to the transient
magnetization of the intermediate states.

Note that circularly polarized light might excite electrons spin-selectively due to angular
momentum conservation. In our response theory these selection rules are incorporated in the
dipole matrix elements D. Conversely, spin-selective excitation will lead to corresponding
polarization of the SFG light. The use of circularly polarized light in 2PPE and SFG is of
particular interest as regards ferromagnets and transient magnetizations.

3.4. Conclusions

To summarize, we have presented a unified perturbative response theory for time-resolved
SFG and 2PPE. The theory is fully quantum mechanical and contains the interference effects
described by off-diagonal components of the density matrix. It does notrely on any assumption
about the time or frequency dependence of the exciting laser pulses. The solid is described by
its band structure, relaxation rates, and dipole matrix elements. We have discussed metals but
the response theory can be applied to semiconductors and insulators as well; see, e.g., [74].
Since the theory is formulated directly in the time domain, it presents a suitable framework for
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the discussion of the time-dependent physics of SFG and 2PPE. We have shown that similar
information to that from 2PPE can be gained from SHG. Of course, 2PPE is sensitive to specific
momenta k in the Brillouin zone, while SHG in general is not. A simple tight-binding model
of a metal has been studied in order to show that the theory gives reasonable numerical results
and to illustrate the following effects important for the understanding of SFG and 2PPE.

We have shown how relaxation rates and detuning affect the interference patterns in single-
colour pump—probe SHG and 2PPE experiments: the lifetime in the intermediate states and
their detuning with respect to the photon energy lead to a similar narrowing of the interference
patterns. The effect of detuning must be taken into account in order to extract meaningful
lifetimes from such experiments. Also, in particular in SHG the measured relaxation rate is a
weighted average over the relaxation rates of many excited states. Furthermore, the weights in
this average change with the pump—probe delay. Thus different rates govern the decay of the
interference pattern depending on the pump—probe delay—the decay is not simply exponential.
We have also discussed the range of validity of the optical Bloch equations, applicable if only
a few states contribute, and of semiclassical rate equations valid for very long pump—probe
delays. Both approaches are limiting cases of our theory.

Finally, we have considered the role played by collective plasma excitations. Plasmon
effects in both SFG and 2PPE can only partly be understood in terms of field enhancement at
the surface. One also has to take the electric field accompanying a nonlinear polarization of
the electron system into account. This effect leads to interesting additional contributions to
2PPE, in which incoming photons are converted into sum-frequency photons which then lead
to ordinary photoemission. These contributions should be observable if the sum frequency is
close to the plasma frequency.
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Appendix A. Response theory for the nonlinear optical response

In this appendix we derive the transverse second-order susceptibility and polarization for
arbitrary pulse shapes of the exciting laser field. The resulting expressions allow one to
calculate the SFG yield for arbitrary pulse shapes, thereby going beyond the results of Hiibner
and Bennemann [31] for continuous-wave, monochromatic light. The self-consistent field
approach [30] is applied to a solid described by its band structure and relaxation rates. The
flat surface is assumed to lie at z = O with the solid at z < 0. We neglect the intraband
contribution, which is reasonable for optical frequencies.

The single-particle Hamiltonianis H = Hy+V, where H, describes the unperturbed solid
with the normalized eigenstates |k;/) and eigenenergies Ex,. K is the crystal momentum
parallel to the surface and all other quantum numbers, discrete as well as continuous, are
collectively denoted by [ (see the discussion at the beginning of section 2.1).

The time-dependent perturbation is [68]

V(r, 1) = —%A(r, -V — %[V VAT, )] (A1)

with the vector potential A, which is treated classically. We have made the usual approximation
of neglecting the quadratic term in A and have used a gauge with vanishing scalar potential.
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We will later need the temporal Fourier transform (using the convention of [31])

dr .
V(r, w):/—e WY (r, 1)

2
eh eh
= —Er,w) -V+ —I[V. .E(, o)l (A.2)
mw 2mw
where we have used E = —(1/c)dA/dt. Inserting the spatial Fourier transform we get
h . i

Vir o) = — Y e TE(q, ) - <V - ﬂ). (A.3)

mo 2

The matrix elements of V are

eh —igor .
IV Ik +qp. 1) = — > E(q, 0) - (Kylle ™" (V —iq/2) k) +q). 1)
maw %

€ E(qv (1)) * Dk‘|l;k‘|+qH,l/ (an (1)) (A'4)
q:
using momentum conservation and q = (q, ¢;). Here,

%(k”ue*‘q'r(v —iq/2)|k; +qy, ). (A.5)
If the field E were purely transverse the term iq/2 in the parentheses would drop out, but
this is not guaranteed close to a surface. It is not our goal to calculate D explicitly. We
only remark that if one uses the dipole approximation [26-28, 46—49, 56, 67] e 4T Z 1, the
contribution from iq/2 vanishes since we neglect the intraband contributions so that I’ # [,
and the remainder gives [61, 69]

Dy, 1:k+qp.0 (2, ©) =

h 1
— (K IVIKk +q, ") = —— (K /|[H, r]|k; +qy, 1)
mw hw

Ex;i — Ex +q,.1
= - P Ryl ek + gy, 1) (A.6)
w
Since the response is dominated by contributions with 71w ~ Ex +q,.1r — Exy the prefactor can

be further approximated by unity if the frequency spectrum of the incoming light is sufficiently
narrow. The dipole approximation should be justified since the electric field changes slowly
on the scale of the lattice constant (the skin depth is about one order of magnitude larger
than the lattice constant). However, our response theory for SFG does not require the dipole
approximation to be made.

The time evolution of the density operator p is described by the master or von Neumann
equation [42, 60]

d 1

w’=m [H, p]+R[p]. (A7)
The functional R[p] represents relaxation terms made explicit below. Matrix elements of p
are written as py, LK = (kyl| ,olkill’). The master equation then reads [42]

d 1 /

q P = ﬁ(knll[Ho + V., pllkjl') + 8k, 511/2 Vi1 Pk — Dk Py - (AL8)
L

Here, Tk, = Tk_ul] is the inverse lifetime of state |k;/), which arises mainly from inelastic

electron—electron scattering. YiyliK) 1 gives the rate of spontaneous transitions from state Ikill )
to state |ky/). Because of conservation of electron number,

/
Pk = Z e (A.9)

o
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Primed sums run over all states except [Ky/). 'k ;k, and yx, LK1 describe energy relaxation,i.e.,
the change of the diagonal components of p, whereas the dephasing rate FkH,;kﬁ,r with
Ikyl) # |ki|l’) describes relaxation of the off-diagonal components.

To solve the master equation (A.8) perturbatively, the density operator is expanded in
powers of the perturbation V as p = p©@ + p® + p® 4+ .... In thermal equilibrium
the unperturbed density matrix is expressed in terms of the Fermi function, pl((f‘);;k‘/‘ p =

(Skukﬁ dur f (Ex,1)- The temporal Fourier transform of equation (A.8) reads

. Ey,i — Exr
iwp k(@) = | ————— — Dk ) oy (@)
I ih I I
b [ e SV @K P (0= P 0 BTV O]
7l 27 C I 1) o () = Py I f
ki
/
+ 8k, S Z Vi iK1 Pk 17k (@) (A.10)

kI
Keeping only terms linear in V one obtains
S (Exjvqpr) — f(Ex)
—ho + Eyyrqp.r = Ex + Tk g
(A.11)

Note that the diagonal components vanish: there is no change of occupation to first order.
The polarization is given by the thermal average of —eD, which is the conjugate of the
electric field according to equation (A.4),

e
P(q, w) = — " Z Z Pyl +qp.0 (@)D gy 1k (— G2, @), (A12)
(T

(1
Py 1k +q,.0 (w) =e Z Dkulik\ﬁqul/ (qz, w) - E(q, ®)
q:

where v is the volume. To first order
PY(q. g 0) =) % @ gz 4 ) Ej(q). gL o), (A.13)
q.

with the linear susceptibility of Lindhard form

2
M) ¢ i '
Xij s gz q;, ) = v Z Z D'l<u+qw’?kul(_qz’ w)Dliukk\ﬁun/ CAD
kI

S (Exyvqp) — f(Ex)

. 9
—ho + Exsq 0 — Exg + 100k 1k g0

(A.14)

shown diagrammatically in figure 3. It takes into account that the z component of momentum
is not conserved.

If we neglect the frequency dependence of D we obtain a result in the time domain.
Equation (A.13) and the Fourier transform of equation (A.14) give

M % dy , ,
P (qy, gz, 1) =Z EX@/((IM,C]Z,C[ZJ—ll)Ej((Iu,C]Z,ll), (A.15)
q, YT

with

, e? 2mi ; j ,
Xij s gz, g5t — 1) = v n O —n) ; ;DkH+q“,l’;kHl(_qZ)Dk“l;kH+q“,1/(qz)

I
 Exj+q.r — Exi
R ]

x expl—Tkyi:ky+q,. (t — 11)]. (A.16)
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The response is thus only non-zero if ¢t > t;, which expresses causality.

The above results have been obtained under the assumption that the system is initially
in thermal equilibrium. We now consider the non-equilibrium case. Then the unperturbed
polarization Pl(fe)fl is, in general, non-vanishing so that the electrons experience an effective
field even in the absence of an external perturbation, leading to a master equation that is
nonlinear in the non-equilibrium density operator p.ﬁgf]. We assume, however, that this effect
of electron—electron interaction is negligible. Then the linear response of a non-equilibrium
system can be written as

Py (@), gz, @) = Z/ o Xperi (@) gz @3 4 41 ) E;(q, ), (A17)
q“q
with

2
(H Lo € i
Xneq;ij(qllv qz, W, q”, q.,w ) = —— Z Z Dll(u+qu,l’;kul(_qz’ 0))
Kk, 10T

J 0) o
X [DkHZ'kH+q"|,Z” (G2 @) Preq, kH+qH kg (@ = @)
_ 0) _ ’ /
Preq:kl:ky+q; — qp.l” (@ =)D, kH*"lH*q\’\J”I,kH*'(IHJ’ (qz, @)1 (A.18)

This equation gives the linear susceptibility in terms of an arbitrary density operator ,0neq

To return to the response of an equilibrium system, we now consider the second-order
contribution. We collect the terms in the master equation (A.10) that are of second order in
the effective electric field,

(2) 2)
wpk“l Kj+qy.0 (Ekul EkuﬂluJ’)pkul:k”+qu,l’
1
+ E<k“l|[v“>, oDk +qp, 1) + E(kuuw@), oIk +qy, 1)

! (@) 2
+ 8(1\\08”’2 Vil Prppsyn — Fkul:kuﬁluJ/pkul;ku+qu,1/' (A.19)
IQ“)L
V1 = V is the perturbation by the effective field. Higher-order perturbations V™, n > 2,
result from the electric field due to the displaced charge calculated at order n. From the
expression for the electric field due to a polarization P, equation (12) [62], one obtains
E™(q) = —47qq - P™(q), where ¢ = q/|q|. Importantly, this additional field also has to be
taken into account as a perturbation [31]. Specifically, the longitudinal part of P leads to a
perturbation with matrix elements
IV k) +qy, ') = e Y E"(q, ) - Diyrk g, (2, 0); (A.20)
9z
see equation (A.4). Note that due to the reduced symmetry at the surface a transverse electric
field in general leads to a polarization with a longitudinal component.
Since the field E® = —4rqq - P? is explicitly of second order in the applied field, see
equation (5), it must be taken into account in our calculation of the second-order response.
From equations (A.12) and (A.19) we then obtain for q; # 0

2 7. (_qb (,())
p> ) = —e—/dzk ku+¢1ul ikl
(g, ) ” I E -

TG —hp+ Ekuﬂlu U= Ekul + lrkul?kuHIHJ’

3 / j 1y (1) PN
- / ‘ K XA: / de [Dkul;k“+q‘/‘,)h(qz’ w )'Ok“+q“ rky+q, l’( w )
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(M PR 2 Y /PN NP AN
pkul:kuﬂlu—q\/pl(w @ )Dku“lu—Qﬁv?»;kuﬂluyl’ (qz, @)1E;(qQ, @)

’ j / A A 2 ’
+ 47 [ f (Exgrqr) — f(Eig)] / dq. DY, .y vq,0 (@ @), P (@, ),

(A.21)
where in the last term qil = qy. Note that the nonlinear polarization P® appears on both sides
of the equation. Solving this equation for P® we obtain

o0
PO@w =Y / 4o xC)(a, o'; 0, ) E; (@, ) Ex (@ — o, 0 — ), (A22)
q/’qu —00
with the second-order susceptibility
2 - 2
Xl(Jk) (q’ q/; @, a)/) = Z Z 8lolig;im (q“’ qz, Kz, w)Xi(n—;)mjk((qlls Kz)s q/s q-—- q/; , a)/) (A23)
m K
and
(ay, )i (qy, k2);)
1(qy, k)| [(qy, k)|
Here, 81;ig;ij(q”, q:, Kz, w) is the inverse matrix of &,ne With respect to the indices (7, g;) and
(j, k). Equation (A.24) means that &j,,¢ Only acts on the longitudinal component and is unity
for the transverse ones. Solving for P is found to be equivalent to the summation of an
RPA series for the electron—electron interaction mediated by the electromagnetic field. In this
language the interaction is absorbed into x;, in equation (A.24).
The irreducible susceptibility in equation (A.23) reads

i
) oo / e z :z : DkH+qH,l;kul”(_CIZs )
Xirr;ijk(anaq ,(,(),(,()):—— h + E E +h1"
PTG T TRt VT G STAH N TR

(A.24)

Elong;ij (qlls 4z, Kz, w) = Sij + 47 Xim (q“, qz, kz, w)

J Ik ” PN
) |:Dkll”2k+‘1/vl’ A )Dku’f‘l\'\’l’?k\ﬁqwl(qZ 0~ @)

S (Exiq,0) — f(EkquQﬁvl/)
—hw +he' + Exjvqy1 — EkH'H]\,\J/ + ihrku+¢lﬁ~,l’zku+(m~f

J Nk 1 /
N DkuﬁluﬂlﬁJ’;kuﬁluvl(qZ’ @ )Dkul”?ku+ml—%1/ (q;, 0 —w)
J (Exyrqy—q.0) — f (Eig) ]

B B
_h(,() + h(,() + Ek”_;.q”_q‘/I,I/ —_ EkHl” =+ thkHZU;kH"'qH_q\,\’l/

(A.25)

shown diagrammatically in figure 5(a). Finally, the time dependence of the polarization
P®@ is obtained by Fourier transformation of equation (A.22) using equation (9), leading
to equation (10).

Appendix B. Response theory for photoemission

In this appendix we give details of the derivation of the time-integrated photoelectron yield. We
also present the analytical expressions for the response functions omitted in section 2.2. The
starting point is again the master equation (A.7). The terms of order n > 1 can be calculated
recursively,

d 1 1 &
(n) _ (n) ) -
_pkr‘:l;kpqu,l’ = = (Bt — Eku+q\|,l’)pkr‘:z;kwq",r-_ 2 :(k||l|[V(’" N [ R T )
dr in ih £—
¢ (n) (n)
+ 841\\06”’2 : Vkul?'iu)»pnr‘l‘x;nuk - Fkul?kuﬂluvl’pkr“ll:,kwqu,l’- (B.1)

Iiu)\.
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Here, V" is the perturbation of order m; see the discussion leading to equation (A.20). Among
the states |ky/) etc appearing in equation (B.1) are states |ko, in) lying in the crystal above
the vacuum level. We assume that electrons leaving the crystal are in states |ko, out) and are
detected without further interaction and without returning to the solid. Then the only way their
occupation can change is through spontaneous transitions out of |ko, in), governed by the rate
Yko.out:ko.in- INOte that in principle higher vacuum bands appear by the shifting of the (nearly)
free electron dispersion back into the first Brillouin zone. We omit these bands for notational
simplicity.

First, we consider the irreducible part ,oi(r"r). This is the contribution of only the direct,
first-order perturbation V! = V at every step of the recursion. The resulting equation reads

az ik r (1) = E( kil = Ekyray ) Pireig ey 4 ()

€ N (n—1) (n—1)
+ E Z[Dk\ll?k\l*'q\/\v)”(qz)'oirr;k”+q"|,A;kH+qH,l’ (t) - pirr;kul;ku+qu—q"‘,)»(t)
q'r

/
X Dku“luﬂlﬁJ?kuﬂlHJ’ (Clé)] -E(q. 1) + 841\\08”’2 yk\ll?'i\l)”pi(l::)n”)\;n“)\(t)
IQ“)L
()

- Fk\ll?kuﬂluvl’pitr;kul;ku+q",l/(t)' (B.2)
We assume D to be frequency independent; see appendix A. In equation (B.2) we write the
first sum in the form Zq, , as areminder that all components of the external momentum ¢’ are
summed over. Hence, we here exclude ¢, from A. The solution for the off-diagonal elements
is

! Ex,— E
() _° § : — Ty tok vy =11 Tyl ki+q.
Pirriky ik +q,. ) = E /_oo dn _ L T 1 eXp|:—l - (t — fl):|
q

N (=1 (n—=1)
X [DkHl?kH*"I\/p)‘(qz)pirr;kwq‘/‘,)»;ku+q”,l’ (t) — pirr;kul;ku+qu—q?|,)\(tl)

X Dijrq —q) 1k vy (@)1 - E(, 11). (B.3)
For the diagonal components there is an additional contribution from the relaxation of
secondary electrons into the given state out of higher-energy states [38, 39], i.e., the term
with q; = 0, " = in equation (B.2). The diagonal components can be written in the implicit
form

(n) -T (t—t) (n—1)
Pimeyit (1) = / dn Ze MR D 1k +q,1(92) Py kHH,Mk”,(tl)

— pin. kt} Ky LDy g xk1(g)] - E(', 1)

t
! n
+ / dy Z Vkulmu/\pi(rr;)n”/\;n”x(t1)~ (B.4)
— KA
If the contribution of secondary electrons is small, equation (B.3) also applies for q; = O,

r=1.

The photoelectron yield for momentum k and spin o is given by the time integrated
photoelectron current. Equivalently, it can be written as the occupation of the appropriate
vacuum state,

N(ks 0) = Pko,out:ko,out (I —> 00), (B.5)
since electrons are assumed not to leave the states |ko, out) again. For the electron states
outside of the crystal

d

E Pko,out;ko,out = Vko,out;ko,in Pko,in;ko,in» (B.6)
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since their occupation can only change due to electrons leaving the crystal. With equation (B.5)
we find

oo

N(ks 0) = Vko,out;ko,in / dt ko in;koin (7)- (B.7)
—00

The irreducible contribution to order n is obtained by inserting the irreducible part of o,

equation (B.4), into this equation. After changing the order of integrals we obtain

€ Yko,out;ko,in
'A/’if‘l:) (k’ ) = zouken / dr Z Dk‘T in;Ky+qy, )L(QZ)IOm ku+qu A;Kko,in (t)

1h Fka in;Kko,in

— Doy a1 DDk —ay 2:koin ()1 - E(Q, 1), (B.8)
where we have used that there is no relaxation into the states above E,. in the solid. Note that
equation (B.8) describes photoemission out of any (possibly non-equilibrium) state.

For ordinary photoemission, A", we have to calculate the density operator to first order,
oM, which is purely irreducible. Consequently, the full ordinary photoelectron yield is
obtained by inserting equation (B.3) for n = 1 into equation (B.8),

NOko)=Y" / drydiy iy (q: 11, 11 k. 0) E(q. ) Ej(—q.0)  (B9)
q

with the response function

@ Vka out;ko,in

E — Exoi

T’lz Fka in;ko,in Z D Um;k”*—q”’)\(qZ) XpI1 h

w e Tkjayaikoiinlf2— t'lf(Ek“+q“,)»)Dl{“+q‘|,)\;ka,in (—qz). (B.10)

It is useful to write our results in the frequency domain. For ordinary photoemission this yields

(2 — t1)1|

Nk o)=Y / do n;;(q. @1 k, 0)E;(q. @) E;(—q, —0) (B.11)
q —0Q0

with
27[16 Vka out;ko,in

Nij (q, ; k, O') h Fka T Z D ko m;kH+qH,)»(qz)

1
X .
<ha) + Exjrqp0 — Exoin + 11Tk +q) 1:ko.in
1 )
ho + Ex +q.0 — Exoin — 1Mk +q),3:k0.in

Xf(Ek\I"’q\I')‘)Dlj;\‘+q‘|,k;ka,in(_qz)' (B.12)

The third-order contribution, N'®, is of interest since the irreducible third-order response
appears in the reducible contributions to 2PPE. To calculate A/;S) from equation (B.8), we

need the off-diagonal elements of ,oi(r? only, i.e., the polarization of the electron system, which
can be obtained from equation (B.3) alone. The result is

Nk, o) =) f dry diy disnfj(a, 45 11, 0, 133 K, 0) Ei(a, 1) E(Q, 1) Ex(—q — @, 1)

(B.13)
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with

1,3
1e Vka,out; ko,in i Jj /
" Z Dico a9 Dy +q 1K) @)

3
77[(//1((17 q,; t17t27t3;k70) = 3
h” Tkojinikoin 537

k !

DkH*“l\|+q"|,A’;ka,in(_QZ -q,)
X (O —n)O(n — l‘3)e_i9k\l*unukv,in(fl—fz)e*mk”qu"‘,x/;kg,in(tth)
X [= f (Exrqy+q;,0)]
— 0Ot —1)0(t3 — tz)e*iﬂkuﬂ;u)»:ka.in(tl*t})e
X [f(Ek\|+‘I\|+(I(|W) — f(Ex+q.0)]
— @(t3 _ tl)@(tl _ tz)eiigka'i“:ku+q“+qhw(mitl)eiigk‘”q“Jﬁk””””h‘)‘,(tl7t2)
X [f (Exjrqrqpn) = f (Ekjrqp)]

—iQ 0, in; K|+ ) B=0) g o.in;ky +qp A (22—
+O(t5 — H)O(t, — ty)e ok BT e T oy 2 (270 £ (F L),
(B.14)

Here, Qv = (Ex — Exr)/h — iUk 1s @ complex transition frequency. The four terms
in equation (B.14) correspond to different time orders of interactions with the electric field.
In itself, N'® is usually negligible compared to N for the following reason: the three
frequencies of incoming photons have to add up to zero so that one has to be the negative of
the sum of the other two. However, then the sum frequency is already present in the exciting
laser pulse and ordinary photoemission dominates the signal.

Finally, the irreducible contribution to fourth order has the general form

NIPPE(k, o) = ) f drydiy des dig 735" (Q, 4, @75 11, 10, 13, 143 K, 0) Ei(q, 1) Ej(q, 1)
aq'q”

x Ex(q", 5)E(—q—q' —q". 1a). (B.15)
n*PPE can be found by inserting equations (B.3) and (B.4) into (B.8). The photoelectron yield
is determined by the off-diagonal components of p®, which in turn depend on all components
of p?, including the diagonal ones. New physics enters here: the 2PPE current depends on
both the polarization and the change of occupation to second order.

If the increase of the occupation due to secondary electrons is small to second order, we
can use equation (B.3) to calculate all components of p®. The change of occupation due to
dipole transitions and to relaxation out of excited states is included in equation (B.3). Then
the response function 1??"F reads

—iQ 2 1 (=1
k“+quA.k“+q“+qHA (13—12)

4
2PPE €’ Yko,out;ko,in

/ " [
n[jk[ (qa q ) q 5 tla t2a t3a t4; ka G) = Di{g,in;k“+q“,)\(qz)

4
1" Tkoinikorin 57500

k "
D! (gD , e
Kj+qy 2K+ +q) A (ql) Kj+q)+q), A"k +q)+q)+q ) A (qZ)

! (_ A4 //)
ky+qy+qj+q] A ko in\ T 9z T 4z T 4:

X [F(t1 —th,tn — 13,13 — 14; 1,05 2,0; 3,0)
—F(ti—th,th —t4,t4 —1t3;1,0; 2,0; 2, 3)
—F(ti —t4,t4 —th,tnr —t3;1,0; 1, 3; 2, 3)
+ F(ty —t4,t4 — 13,13 —1p; 1,0; 1,3; 1, 2)
—F(ty—t1,4y —th,tp —13;0,3;1,3;2,3)
+F(ty —t1,5) — 13,13 — 1;0,3;1,3; 1,2)
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+ F(ty —t3,t3 — 11,11 —12;0,3;0,2; 1, 2)
—F(ty — 13,13 —1,1p —11;0,3;0,2;0, )] (B.16)
with the auxiliary function

F(Aty, Aty, At3; ny, no; n3, ng; ns, ng) = O(A1)O(An)O(AL)

% e_iqu.rletle_ier3.rl4Atle_iszrls.nsAt}[f(En6) _ f(Ens)]s (B.17)
where the states |n;) are defined as

10) = |ko; in), 1) = [k +qy, A), (B.18)

2) =k +qu+q). x). 13) = [ky+q+q)+q]. 1), '

Thus the first term in the brackets in equation (B.16) reads
O — 1Ot — 1)O(1r — t3)e Thrsaykoin =) g~ sy ko (1 712)

x e el T B ) — (B 2] (B.19)
=0
etc. n°PPE has the same structure as ®, only with more terms due to more possible time orders.
One should exclude terms from equation (B.16) that correspond to processes for which the
system returns to the equilibrium state after two of the four interactions. These processes only
contribute a small correction to the numerical prefactor of the ordinary photoelectron yield.
If, in addition, the typical timescale of the experiment, e.g., the delay time in the pump—
probe case, is long compared to the dephasing times, 2PPE can be described by the change
of occupation alone. Interference effects are then absent. In this limit, only the terms F in
equation (B.16) with n3 = ny4 contribute, where n3 is an excited state reachable by a single
interaction out of the Fermi sea. Then n***F simplifies to

4
2PPE € Yko,out;ko,in

’o N
n“kl (qsqsq ;t]st21t3st4; ks G) =
Y h4 l—‘ka,in;k(r,in

i J ’
x Z Squ“'quvODka,in;ku+qu,A(ql)DkH+qH,)»;ku+qu+q?|,)»’ (CIZ)
AN

k / l
Dku+qu+<ﬁ| MKy A ( qZ)DkHﬂlH iko.in(—42)

X [—F({t) —ty,t4 —t2,tp — 135 1,0; 1,152, 1)

+ F(ty —t4,t4 — 13,13 —1p; 1,0; 1, 1; 1, 2)

—Fty—t1,1 —th, b —13;0,1; 1, 1; 2, 1)

+F(ty —t1,ty —t3,13 — ;0,15 1, 1; 1, 2)]. (B.20)

Note that 7**"F is now proportional to exp(—I';;At) from the second exponential in
equation (B.17), where I'1; = rfl is the energy relaxation rate of state |1) = |k + q, A)
and Ar is the time between the second and third interactions. This is easy to understand: after
the second interaction the electron is in the pure state |1), which decays with the rate I';;.

Reducible contributions to the photoelectron current result from nonlinear optical effects
in the solid. They are obtained by replacing the effective electric field E in equations (B.11)
and (B.13) by the electric field to second order; see equation (13). For 2PPE we obtain the
contributions given in equations (20) and (21) and shown diagrammatically in figures 7(b)
and (c). There are also contributions given by n times a product of E and the third-
order polarization P®. These are only significant if the incident light contains a frequency
component large enough to allow ordinary photoemission and we neglect them.

Finally, it is also possible to describe (ordinary) photoemission out of a general non-
equilibrium state described by the density matrix pneq. The irreducible contribution is obtained
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from equation (B.8) for the photoelectron yield V'™ by expressing ,oi(gfl) in terms of the lower-

order pi(rffz) with the help of equation (B.3). This is exact, since only off-diagonal components

of ,oi(ﬁfl) are needed. Then p"~? is replaced by Pneq- There is also a reducible part: two

photons can be converted into a single one at the sum frequency, which for non-equilibrium,
when a finite polarization exists, can lead to a change of occupation of states above Ey,. and
thus to photoemission.
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