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received 28 May 2009; accepted in final form 12 August 2009
published online 15 September 2009

PACS 73.21.Ac – Multilayers
PACS 73.43.Cd – Theory and modeling
PACS 11.30.-j – Symmetry and conservation laws

Abstract – Zero-modes, their topological degeneracy and relation to index theorems have
attracted attention in the study of single-layer and bilayer graphene. For negligible scalar
potentials, index theorems can explain why the degeneracy of the zero-energy Landau level of a
Dirac Hamiltonian is not lifted by gauge field disorder, for example due to ripples, whereas other
Landau levels become broadened by the inhomogenous effective magnetic field. That also the
bilayer Hamiltonian supports such protected bulk zero-modes was proved formally by Katsnelson
and Prokhorova to hold on a compact manifold by using the Atiyah-Singer index theorem. Here
we complement and generalize this result in a pedestrian way by pointing out that the simple
argument by Aharonov and Casher for degenerate zero-modes of a Dirac Hamiltonian in the
infinite plane extends naturally to the multilayer case. The degeneracy remains, though at non-
zero energy, also in the presence of a gap. These threshold modes make the spectrum asymmetric.
The rest of the spectrum, however, remains symmetric even in arbitrary gauge fields, a fact related
to supersymmetry. Possible benefits of this connection are discussed.

Copyright c© EPLA, 2009

Introduction. – Since the experimental realization of
graphene it has become clear that a suspended sheet
of graphene is not flat but corrugates into a rippled
structure [1,2]. In the tight-binding model for graphene
these ripples with their intrinsic curvature lead to a local
modification of the hopping amplitudes. In the low-energy
limit given by a Dirac Hamiltonian the ripples enter as
an effective disorder potential, of which the vector part
can be interpreted as a non-uniform effective magnetic
field [3]. The impact of this disorder potential on the
spectrum and on transport properties has attracted a
lot of interest (see ref. [4]). For example, ref. [5] studies
numerically the low-energy spectrum in the presence of
certain ripple configurations and finds it to be considerably
changed when the effective magnetic length is comparable
to the ripple size. Zero-energy Landau-level–like states can
then exist within one ripple and their degeneracy is not
lifted by the inhomogeneity of the effective magnetic field.
This should be observable as a peak at zero energy in the
density of states [5,6]. In presence of a scalar potential the
degeneracy is lifted, which can also be seen in ref. [5].

(a)E-mail: kailas@physik.fu-berlin.de

In the quantum Hall problem the small effective
magnetic field due to ripples is combined with the strong
uniform external magnetic field into a total non-uniform
magnetic field. It is observed that the zero-energy Landau
level in graphene remains strongly peaked, whereas the
other Landau levels are broadened, possibly due to the
inhomogenous field caused by the ripples [7].
The stability of zero-energy states —zero-modes— of a

Dirac electron in a magnetic field of arbitrary shape is
understood as a consequence of index theorems, which
relate analytical properties of operators to topological
properties of the space and the fields involved. There are
several index theorems (see [8–10]), with different range of
applicability. Maybe the most famous one is the Atiyah-
Singer index theorem, that applies to elliptic differential
operators on a compact manifold of even dimension,
e.g. the sphere or the torus. It states that for elliptic
differential operators with the Fredholm property (e.g.
Dirac operators Π± =Πx± iΠy on a torus, with Π=
−i∇+A), the analytical index (the number of zero-modes
of Π+, i.e. number of solutions to Π+u(x) = 0, minus
the number of zero-modes of Π−) equals the topological
index (i.e. the total magnetic flux of the gauge field,
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a topological integer according to the Dirac monopole
quantization condition on compact manifolds). In some
cases it has been possible to find index theorems on non-
compact manifolds or for odd space dimensions. One of
many reason for generalizations to be interesting is that
many Dirac operators occurring in quantum mechanics
(in particular Dirac operators on the infinite plane to be
studied here) usually do not have the Fredholm property, a
prerequisite for the Atiyah-Singer theorem. See refs. [8–10]
for a review and references on these generalizations.
Fortunately for physicists the essence of this beautiful

and powerful but rather advanced mathematics is mani-
fested in some simple examples requiring only elemen-
tary quantum mechanics, many of them living on infinite
manifolds. A nice feature of these examples is that the
wave functions of the zero-modes are obtained explicitly.
Jackiw and Rebbi [11] found that in a 1d Dirac theory
there could be a topologically protected zero-mode local-
ized at a mass soliton. Aharonov and Casher [12] found a
very short and simple argument for zero-modes of mass-
less Dirac electrons in a 2d plane in a non-singular perpen-
dicular magnetic field of arbitrary shape but finite range.
The degeneracy of the zero-modes is only determined by
the total flux, just like in the Atiyah-Singer theorem. In the
presence of a mass m these zero-modes turn into degener-
ate threshold modes. Depending on the sign of the total
flux, they sit either at the E =+m or at the E =−m
threshold of the gapped spectrum.
In this paper we focus on Aharonov’s and Casher’s

pedestrian argument. In section we point out how simply
it also extends to some of the Hamiltonians that have
been considered for multilayer graphene. Stability of zero-
modes in rippled bilayer graphene was already considered
by Katsnelson and Prokhorova [13], there in the general
but abstract language of the Atiyah-Singer theorem, thus
applying to a compact manifold, in this case the torus
resulting from periodic boundary conditions. Our result is
complementary by applying to the infinite plane. It also
offers a simple generalization to multilayers. The pedes-
trian argument goes beyond the Atiyah-Singer theorem
by showing that the same zero-modes are present also
when the effective flux though the graphene sheet is not
an integer. Finally, our argument is of pedagogic value as
it does not require any higher mathematics and also gives
concrete wave functions.
We extend the discussion by including a mass term. In

a single layer this corresponds to breaking the sublattice
symmetry of the bipartite honeycomb lattice, like in
experiments [14] on hydrogenated single layers. In a
multilayer a gap can also been introduced by a transverse
potential, like in experiments [15,16] on gated bilayers. A
mass term turns the zero-modes into degenerate threshold
modes sitting at the gap energy (see figs. 1 and 2). In
the quantum Hall problem such a term would split the
sharp zero-energy Landau level peak into two sharp peaks,
symmetrically shifted around zero and related to the two
valleys (fig. 2). Because of the valley degeneracy breaking
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Fig. 1: An imagined typical spectrum for electrons in graphene
with a gap and a random magnetic field due to ripples.
(The horizontal distribution carries no meaning.) The two
valleys K and K′ are time-reversed copies in absence of a
real magnetic field. For ripples without any spatial symmetries
the spectrum of each valley will in general be non-degenerate
and of random spacing, except for the threshold modes at
|E|=m. Their degeneracy depends only on the total effective
flux ΦK =−ΦK′ = 4.1φ0. The rest of the spectrum is symmetric
around E = 0 due to supersymmetry.
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Fig. 2: Same sketch as in fig. 1 but now including a real
magnetic field with ΦEM =−3.2φ0. (The horizontal position
only used to guide the eye.) The quasi-Landau levels are broad-
ened by the ripples, except the Landau level of the threshold
modes. However, with Φrip = 1.1φ0 and therefore Φ

K =ΦEM+

Φrip =−2.1φ0 and ΦK′ =ΦEM−Φrip =−4.3φ0 the threefold
degeneracy of the threshold modes at E =−m (E =+m)
of valley K (K′) becomes twofold (fourfold). The rest of the
spectrum is in each valley symmetric about E = 0 due to
supersymmetry.

combination of ripples and an external magnetic field the
two peaks would be of different sizes. Such a splitting has
actually been observed experimentally [7,17], but has been
attributed to other mechanisms.
A known but often not mentioned point is that all

the mentioned topological arguments for a sharp peak at
zero energy or at a threshold energy seem to fail if scalar
potentials, for example induced by ripples or by impurities,
are not negligible. This important caveat is brought up in
section, but will remain an open question both for single-
layer and multilayer graphene.
The third part of the paper makes a note on the

symmetry of the spectrum, as illustrated in figs. 1 and 2.
Apart from the threshold modes, the spectrum of each
valley remains symmetric around the zero of energy also
in presence of both a non-uniform vector potential and a
mass term, provided the mass is constant and that the
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scalar potential is zero. This symmetry in not due to the
chiral symmetry σzHm,A0,Aσz =−H−m,−A0,A within each
valley, which is only enough to explain this symmetry
in the massless case for example studied in ref. [5]. The
more general reason of this symmetry we relate instead
to the supersymmetric quantum mechanics formulated by
Witten [18]. Further benefits of this remark could come
from connecting to the rich literature on analytic results
based on supersymmetry, for example on scattering of
Dirac electrons in slowly decreasing magnetic fields in
which asymptotic states are difficult to define. Since the
multilayer Hamiltonians also have the supersymmetric
structure, we expect that many such analytic results
should have analogs in the multilayer case.

Threshold modes in rippled graphene. – Assume a
general magnetic field B(x, y) = ∂xAy − ∂yAx of compact
support, i.e. there is a finite disk outside which B(x) = 0.
Define the Dirac operators Π=−i∇+A and Π± =Πx±
iΠy. We set �= e= 1. The argument by Aharonov and
Casher, that we review at the end of the paper, shows
that a massless 2d Dirac Hamiltonian

H = v

(
0 Π−
Π+ 0

)
, (1)

has n zero-modes, where n� 0 is only determined by the
total flux Φ=

∫
d2xB =±φ0(n+ ε) (with φ0 = h/e and

0< ε� 1) and hence independent of the shape of the
magnetic field. In the presence of a mass term δH =mσz
these n zero-modes turn into n threshold modes, either
with energy E =+m or with E =−m, depending of the
sign of the flux. These solutions are of the form

ψ+m =

(
u
0

)
,

u(x) = f(z)eW (x),

Π+u= 0,

or

ψ−m =
(
0
v

)
,

v(x) = f(z∗)e−W (x),

Π−v= 0,

(2)

where z = (x1+ ix2)/2. For single valuedness and regular-
ity, f has to be a polynomial. The magnetic field enters
into W (x) = 1

φ0

∫
d2x′B(x′) ln |x−x′|, which far away

from the region with the magnetic field behaves asymptot-
ically as e±W (x) ∼ |x|±Φ/φ0 . Normalizabilty requires the
exponent to be negative and requires f to be maximally
of degree n− 1. This gives n linearly independent polyno-
mials and hence n threshold modes, which are zero-modes
in the massless limit.
Note that the zero-modes remain when a non-integer
flux quantum is added, but a new zero-mode appears.
For |Φ|/φ0 = n+1= ñ integer flux quanta, the ñth solu-
tion u∝ zñ−1|x|−ñ is not strictly square integrable in
the plane. On a compact manifold this “marginal” mode
becomes normalizable, therefore the ñ=Φ/φ0-fold degen-
eracy of the lowest Landau level on a torus.
The valley K of graphene is described by the Hamil-

tonian (1) with v≈ 106m/s, complemented with the scalar
potential δH =−1A0 and here possibly with the addi-
tion of a sublattice symmetry breaking term δH =mσz.

The potential m(x) acts with opposite signs on the two
inequivalent orbitals A and B of the bipartite honeycomb
lattice. The components of the spinor (u, v)T = (ψKA , ψ

K
B )
T

refer to these orbitals. The gauge field Aµ (µ= 0, 1, 2)
is here a sum of the electromagnetic part Aµ,EM and an
effective field Aµ,rip due to ripples. The ripples have a

characteristic length of 102 Å [1,2], and are therefore of
too small wave number to connect the two Dirac points of
the order ∼ 1 Å−1. (Inter -valley disorder potentials could
arise from e.g. Peierls instabilities. Zero-modes due to a
Kekule dimerization of graphene has been considered in
ref. [19].) The Hamiltonian for valley K′ is HK

′
=−vσ ·

(−i∇+AEM−Arip)−1A0−mσz acting on (ψK′B , ψK
′
A )
T.

Thus, the effective magnetic field due to ripples changes
sign, but not the external magnetic field. In absence of
an external magnetic field the two valleys are mapped
onto each other under time-reversal σx(H

K)∗σx =HK
′
,

thus preserving the time-reversal symmetry of the total
graphene Hamiltonian also in presence of ripples. With
both AEM and Arip non-zero the degeneracy between the
two valleys is lifted.
In this context we note that in the absence of a scalar

potential but with a non-zero gap term mσz the threshold
modes of the two valleys sit at the same energy if |Φrip|>
|ΦEM|. For example, with Φrip > 0 the threshold modes of
both valleys sit at E =−m. In the time-reversal invariant
case AEM = 0 (fig. 1) both valleys count the same number
of threshold modes and they are related by time-reversal
ψK

′
−m = σx(ψK−m)∗. In the opposite case |Φrip|< |ΦEM|,
including the quantum Hall scenario, the threshold modes
of the two valleys sit at opposite energies (fig. 2). Only in
the special case Φrip = 0 are they equally many. In general,
in a quantum Hall problem with a sublattice symmetry
breaking gap mσz, the zero-energy Landau level peak in
the density of states is split into two symmetrically shifted
peaks centered at E =+m and E =−m, respectively, but
of different sizes due to the different fluxes ΦK =ΦEM+
Φrip and Φ

K′ =ΦEM−Φrip. Experiments [7,17] find at
low temperatures the zero-energy Landau level peak to
be split into two peaks, resulting in a plateau in the
magnetoresistance at zero doping. We find it suggestive
that the two peaks appear to be of different sizes. However,
the splitting was attributed to counterpropagating edge
channels dominating the longitudinal resistivity [20] or to
Zeeman splitting in the real spin [21].
The effective vector potential derived from the rippling

is given by Arip = g2(uxx−uyy, 2uxy) [22] in terms of the
strain tensor uij ≡ 12 (∂iuj + ∂jui+(∂ih)(∂jh)) with u(x)
and h(x) being the in-plane and out-of-plane distortions,
respectively. g is a coupling parameter that depends on the
properties of the bonds. Observe that A does not change
under h→−h. A buckled-up ripple gives therefore a flux
of the same sign as the equivalent buckled-down ripple.
Thus, the fluxes of the ripples always add up. The flux of
one ripple of length l and height h can be estimated to
be |Φ|/φ0 ∼ h2/al, with a being the bond length of the
honeycomb lattice [22]. Index theorems, or the explicit
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solution found by Aharonov and Casher, explain why
ripples can lead to degenerate zero-modes or threshold
modes.
The accompanying effective scalar potential

δH = 1g1(uxx+uyy) destroys this exact degeneracy
(as it is non-uniform). An approximate degeneracy could
still hold if g1 is small enough. However, it is far from
obvious that this is the case for monolayer graphene,
considering estimates [23] for carbon nanotubes with
g1 ≈ 30 eV and g2 ≈ 1.5 eV. On the other hand, it is not
impossible that the bare value of the scalar potential could
be substantially reduced for example through screening.
As far as we know this has not been clarified. It remains
therefore unclear to us if the observed sharpness of the
zero-energy Landau level is really due to index theorems,
with some mechanism suppressing the scalar potential,
or if it must be attributed to some other reason. As for
multilayers, to which we now turn to, we do not know of
any such estimates. With the above caveat mentioned, we
now go on to analyze threshold modes in multilayers for
the case that the scalar potentials would turn out to be
negligible there.

Threshold modes in multilayer graphene. – The
intense study of monolayer graphene has been followed
by that of tight-binding models for bilayer and multilayer
graphene, with low-energy continuum models similar to
the monolayer one [24–27]. These multilayer sheets have
exotic properties of their own, but offer also an interesting
interpolation back to the source material graphite. In the
simplest tight-binding model, the electrons at the valley
K in a bilayer are in a low-energy range described by the
effective Hamiltonian

Heff ∝
(
0 ΠJ−
ΠJ+ 0

)
. (3)

with J = 2 [24]. This Hamiltonian acts on the spinor
(ψA, ψB̃) in a bilayer arranged so that the B-orbitals of the

AB-layer are placed on top of the Ã-orbitals in the ÃB̃-
layer, giving the leading inter-layer tunneling channel. The
superposed orbitals Ã and B dimerize in the low-energy
limit, leaving effectively the A and B̃ orbitals.
For a three layers and beyond [25–27] there are several

ways of stacking the layers, for example the Bernal
stacking (ababa . . .) —the most common form in natural
graphite— or the rhombohedral stacking (abcabc . . .),
with a, b, and c denoting the three different placements
of honeycomb sheets that can occur in a stacking. With
the simplest approximation for inter-layer tunneling one
obtains for a rhombohedrally stacked N -layer the effective
Hamiltonian (3) with J =N . For a Bernal stacked N -layer
one finds instead

Heff ∼
⊗
Ji

HJi ,
∑
i

Ji =N (4)

with Ji = 2, except J1 = 1 if N is odd —thus a tensor
product of bilayer and monolayer Hamiltonians. Other

stackings give a structure that is intermediate between
the rhombohedral and the Bernal one [27].
Also multilayer graphene sheets form ripples [28], and

the existence and stability of zero-modes is interesting
to address. Particularly, Katsnelson and Prokhorova [13]
gave a formal proof, based on the Atiyah-Singer index
theorem complemented with a result [29] on indices
of composed elliptical operators. They showed that the
mentioned bilayer Hamiltonian on a compact 2d manifold
(in particular the torus obtained from assuming periodic
boundary conditions) has zero-modes, precisely twice as
many as the monolayer Hamiltonian (1). The contribution
of the present paper is to note in a pedestrian way
(although now for an infinite plane) that this fact and the
generalization to arbitrary J follow from the argument of
Aharonov and Casher with the following straightforward
extension. Assume Φ to be negative. There are the n zero-
modes (u, v)T = (f(z)eW (x), 0)T that satisfy Π+fe

W = 0.
Since Π+ =−i∂z∗ +A+ it follows that:

Π+(z
∗)jfeW =−ij(z∗)j−1feW . (5)

As a consequence, all j = 0, . . . , J − 1 give wave functions
u= (z∗)jf(z)eW (x) that are zero-modes of ΠJ+u= 0. The
Hamiltonian (3) has therefore nJ zero-modes and the total
Hamiltonian (4) has nN zero-modes, independently of the
shape of the gauge field and independent of the stacking
configuration. In the presence of a constant mass termmσz
in the Hamiltonian, these zero-modes turn into degenerate
threshold modes, exactly as for monolayer graphene.
In the special case of a constant1 negative magnetic field

B the subspace of zero-modes is nothing but the J first
Landau levels with Π+/

√−2B being a lowering operator
of the Landau level index. The Dirac Landau levels with
energy E ∝±√j �= 0 are given by (u, v)T = (ϕlj , ±ϕlj−J )T
with j � J and in terms of the Landau level j wave
functions φlj(z, z

∗) of a spinless Schrödinger Hamiltonian.
The zero-modes are given by (ϕlj , 0)

T with j = 0, . . . ,
J − 1. In particular, the zero-energy Landau level of a
bilayer has twice the degeneracy of the corresponding
monolayer analog [24].

A supersymmetric spectrum. – In addition to the
note on threshold modes in multilayers, we will also make
a note on the rest of the spectrum. The chiral symmetry

σzHm,A0,Aσz =−H−m,−A0,A (6)

within each valley and valid for all J implies that the
symmetry of the spectrum around E = 0 is broken by a
scalar potential or a mass term. (For the massive case
and J odd, the particle-hole conjugation σxH

∗
m,Aµ

σx =
−Hm,−Aµ guarantees a symmetric spectrum per valley,
if instead gauge potentials are absent. For J even, let

1For a constant magnetic field B the assumption of compact
support is not fulfilled. However, in this case the solution to
∂z∗W =−iA+ and ∂zW = iA− is trivial. For the symmetric gauge
A= 1

2
B(−y, x), for example, one finds W =B|z|2.
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σx→ σy.) In particular, there are threshold modes either
only at E =+m or only at E =−m, depending on the sign
of the total flux.
Amazingly, however, the rest of the spectrum within

each valley remains symmetric, even whenm �= 0, provided
the mass term m is constant and the scalar potential A0
is zero. With these conditions the property

0 = [H2, σz] =

{
H,
1

2
[H,σz]

}
, (7)

is fulfilled, which we note holds for any J and arbitrary
A. It implies that the Hermitian operator

i

2
[H,σz] = i

(
0 −Π−
Π+ 0

)
(8)

maps positive-energy states into negative-energy states,
except the threshold modes, which it kills. In the massless
limit it coincides with the chiral symmetry (6), except for
zero-modes.
To be more fancy, the symmetry is a manifestation

of supersymmetry as defined in supersymmetric quantum
mechanics [18]. The Dirac Hamiltonian is one important
example [30], but we can obviously generalize to the multi-
layer Hamiltonians. This has already been noted [31] in
the study of the quantum Hall spectrum in multilayers.
However, the quantum Hall spectrum is highly degener-
ate, and we want to stress that the supersymmetry in
multilayers holds for arbitrary magnetic fields and that the
minimum message of supersymmetry is most clearly seen
in random fields. The real usefulness of redressing (7) into
supersymmetry would be if one could make contact with
the rich literature on analytic results based on the latter.
(Supersymmetry, for instance, explains why the Dirac
equation for some potentials, in particular 3d Dirac elec-
trons in a Coulomb potential, can be solved exactly and
the spectrum can be constructed algebraically.) One thing
that might be interesting for the study of ripples could be
results on scattering of Dirac particles in slowly decreas-
ing magnetic fields when asymptotic states are not easy to
define, see e.g. ref. [10]. For results relying on supersym-
metry, we expect that similar results should hold for the
supersymmetric Hamiltonians of multilayer graphene.
The essential structure is that there is a unitary

self-adjoint operator τ (in our case σz) with τ
2 = 1 for

which there is a decomposition of H in Hermitian parts
H =Hodd+Heven such that [Heven, τ ] = {Hodd, τ}=
{Heven,Hodd}= 0. In such a case one can go on to form the
supersymmetric Hamiltonian H= 12H2odd = 2Q21 = 2Q22 ={Q,Q†} and the supercharges Q1 = 12Hodd, Q2 = i[Q1, τ ]
and Q= 12 (Q1+ iQ2) with {Q1,Q2}= 0 and Q2 = 0.
We recognize 2Q1 as the massless Dirac Hamiltonian
and Q2 as the operator (8) conjugating the spectrum of
the massive Dirac Hamiltonian. Q and Q† are fermionic
ladder operators to be discussed below. For the Hamil-
tonian H =Dx(x)σx+Dy(x)σy +mσz (for multilayers

D± =ΠJ±) one finds

H2 =

(
D−D+ 0
0 D+D−

)
+m2 = 2H+m2. (9)

A supersymmetric Hamiltonian H is obviously positive
definite. Because of [H,Q] = 0, all positive-energy eigen-
values Ei of H correspond to a degenerate doublet{(

ui
0

)
,

(
0
vi

)}
, (10)

one state coined “bosonic” and the other “fermionic”. The
supercharges

Q=
(
0 D−
0 0

)
and Q† =

(
0 0

D+ 0

)
(11)

act as fermionic ladder operators stepping between them.
The two states in one doublet are linear combinations
of two eigenstates of H related by Q2. (In particu-
lar, in the case of the constant B the doublets are
{(ϕlj , 0)T, (0, ϕlj−J)T}.)
The exceptions are the zero-modes of H, also zero-

modes of all the supercharges. (Thus, the zero-modes of
Hm=0 or the threshold modes of H.) Supersymmetry does
not imply their existence. If they exist they do not need
to come in pairs since they are killed both by Q and by
Q†. (Equivalently, the threshold modes of H cannot be
conjugated by Q2.)
The asymmetry in number of bosonic and fermionic

zero-modes is the Witten index, which equals the Atiyah-
Singer index for the operators D± when they have the
Fredholm property. (See e.g. ref. [10].) For Dirac opera-
tors on an infinite plane, the Witten index defined as the
asymmetry between bosonic and fermionic states should
equal the number of zero-modes given by the Aharonov
and Casher argument. However, with the analytical defi-
nition of the Witten index discussed in ref. [10], it actu-
ally remains Φ/φ0 also on the infinite plane. The Witten
index is then only related but not identical to the number
of zero-modes according to Aharonov and Casher.

Summary. – In this paper we pointed out that
Aharonov-Casher argument for zero-modes for 2d Dirac
electrons in a magnetic field generalizes naturally to the
low-energy Hamiltonians studied in the case of multilayer
graphene. We also discussed the relationship of this work
to that of Katsnelson and Prokhorova [13], who gave a
formal proof for bilayers based on the Atiyah-Singer index
theorem. We extended the discussion to the presence of
a uniform gap, in which case the degeneracy remains
and might still be observable as a peak in the density
of states, but at non-zero energy with the zero-modes
instead being threshold modes.
Further, we made a note on the symmetry of the spec-

trum within each valley in the presence of an arbitrary
magnetic field. In the massless case the chiral symmetry
guarantees a symmetric spectrum. Apart from the asym-
metry of the threshold modes, the multilayer spectrum
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remains symmetric for a uniform non-zero mass term. We
related this to the supersymmetric structure of the consid-
ered multilayer Hamiltonians. We expect that many of the
analytic results based on the supersymmetry of the Dirac
Hamiltonian should have analogs applying to the Hamil-
tonians of multilayer graphene. Interesting applications
might be found for example for the study of scattering
in a non-uniform magnetic background.
All these arguments fail if the scalar potential is not

negligible compared to the vector potential. We brought
up this issue but do not know of any solid answers neither
for single-layer nor for multilayer graphene.
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Appendix: Aharonov’s and Casher’s argument.
– The two-dimensional Dirac equation 0 = (H −E)ψ for
electrons of mass m and charge −1 is determined by
the Hamiltonian H =Πxσx+Πyσy +mσz. (c= �= e= 1,
hence φ0 = h/e= 2π.) The threshold modes at E =+m
have to satisfy ψ+m = (u, 0)

T and Π+u= 0. Likewise,
there are threshold modes E =−m of the form ψ−m =
(0, v)T provided Π−v= 0. It will now be investigated
which of these possibilities really gives normalizable wave
functions. Introduce z = (x+ iy)/2, i.e. ∇2 = ∂z∂z∗ and
Π+ = (−i∂z∗ +A+) with A± =Ax± iAy. The Ansatz
u(x) = f(z)eW (x), with f(z) an arbitrary analytic func-
tion, satisfies 0 =Π+u= fe

W (−i∂z∗W +A+). Acting
with ∂z on ∂z∗W =−iA+ gives the Poisson equation
∇2W =B− i∇·A . Thanks to the boundary conditions
given by the compact support of B this equation can
be inverted with the help of ∇2x ln|x−x′|= 2πδ(x−x′),
resulting in

W (x) = F (z)+G(z∗)+
∫
d2x′

2π
(B(x′)

−i∇·A(x′)) ln |x−x′|, (A.1)

with F (z) and G(z∗) arbitrary analytic functions. We put
F (z) = 0 as it is already accounted for by f(z). Also,
∂z∗W =−iA+ implies G(z∗) = 0. Similarly, the Ansatz
v(x) = f(z∗)e−W

∗(x) results in the same W as for u.
Choosing Coulomb gauge ∇·A= 0 implies W ∗ =W =
1
φ0

∫
d2x′B(x′) ln |x−x′|.

Far away from region of flux (i.e. |x|> |x′| and ln |x−
x′| ∼ ln |x|) one has asymptotically e±W (x) ∼ |x|±Φ/2π.
Normalizability imposes that only E =+m (E =−m)
threshold modes can exist for Φ< 0 (Φ> 0). The degen-
eracy of these modes comes from the possible choices
of f(z). Single valuedness of the wave function requires
f(z) =

∑
s∈Z asz

s and normalizability at |x| →∞ requires

deg f < |Φ|/φ0− 1 = n+ ε− 1, where 0< ε� 1. Normaliz-
ability within the region of flux requires B(x) to be
non-singular and all powers in f to be non-negative. Thus,
f is a polynomial in z (or z∗) of maximal degree n− 1.
There are n linearly independent polynomial deg f �
n− 1, therefore the n-dimensional subspace of threshold
modes.
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