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We consider current shot noise and the full counting statistics in a chain of quantum dots which exhibits a
continuous nonequilibrium phase transition as a function of the tunnel couplings of the chain with the elec-
trodes. Using a combination of analytical and numerical methods, we establish that the full counting statistics
is conventional away from the phase transition, but becomes, in a well-defined sense, essentially non-Gaussian
on the critical line, where the current fluctuations are controlled by the dynamic critical exponent z. We find
that signatures of the critical full counting statistics persist in quantum-dot chains of finite length.
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I. INTRODUCTION

It is by now well established that nonequilibrium current
fluctuations in nanoscopic conductors yield much informa-
tion which is not contained in the current-voltage character-
istics. Most prominently, the second moment of the nonequi-
librium current fluctuations, known as shot noise,1 is
sensitive to effects of quantum statistics on the current flow
and provides access to the charge of excitations. Experiments
accessing the higher moments of the current fluctuations are
now becoming available,2 in some cases including measure-
ments of the entire full counting statistics.3,4

The full counting statistics5,6 �FCS� generalizes the
concept of photon counting statistics in quantum optics to
nanoscopic conductors and characterizes the current fluc-
tuations by means of the entire distribution function PT�Q�
of the charge Q passing through the conductor during a
time interval of length T. The FCS has been investigated
in a wide variety of systems, including but not limited
to superconducting7 and normal-superconductor hybrid
systems,8 tunnel junctions,9 chaotic cavities,10 spin-
correlated systems,11 quantum dots in the Coulomb
blockade12 and Kondo regimes,13 single-molecule
junctions,14,15 and nanoelectromechanical systems.16

A common feature of the FCS in all of these systems is
that any cumulant ��Qn�� of the FCS is proportional to T.
This implies that in a well-defined sense, the FCS is essen-
tially a Gaussian distribution with only small deviations. In
fact, if we express the FCS in terms of the variable q= �Q
− �Q�� /�T which measures the fluctuations of the transferred
charge in units of its typical magnitude as determined by the
variance ���Q2����T, then all cumulants ��qn�� of the res-
caled FCS PT�q� other than the variance tend to zero as
T→�.

It is the purpose of the present paper to show that the FCS
of a chain of quantum dots can behave in a fundamentally
different manner, having cumulants �n�2� which scale as

��Qn�� � Tn/3 �1�

in an appropriate “thermodynamic limit.” This means that all
cumulants of the FCS, when rescaled by the variance as de-
scribed above, are of the same order, implying that the FCS
is essentially non-Gaussian. This result is a consequence of a
continuous nonequilibrium phase transition occurring in the

system. Its critical indices are known exactly and the expo-
nent appearing in Eq. �1� can be identified with n /2z, where
z=3 /2 is the dynamic critical exponent. We explore the FCS
of the system and its consequences for current noise by a
combination of analytical and numerical techniques, paying
particular attention to an analysis of finite-size corrections
which would be relevant in experimental realizations.

II. MODEL

Consider a series of N weakly coupled metallic quantum
dots as shown in Fig. 1 under the following conditions: �i�
The voltage between neighboring dots is sufficiently large
and energy relaxation within the dots fast enough that trans-
port is unidirectional, i.e., electrons always tunnel in the di-
rection of the voltage bias �say to the right�. �ii� Due to the
Coulomb blockade, the quantum dots can only switch be-
tween two neighboring charge states which we denote by
n=0 and n=1. �iii� The tunneling rates between dots are
equal to �0, while the rate for entering the first dot from the
left reservoir �leaving the last dot to the right reservoir� is
tunable �e.g., by a gate electrode� and equal to ����. A more

FIG. 1. �Color online� �a� Schematic depiction of the quantum-
dot chain. �b� Mean-field phase diagram of the dot occupations. �c�
T dependence of variance ��Q2�� both on ��=�=0.5� and away
from ��=0.3, �=0.7� the critical line.
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detailed discussion of these conditions including the electro-
statics of the quantum-dot chain is relegated to the Appendix.
When ignoring correlations between the occupations ni of
different quantum dots within a mean-field description, the
rate of tunneling between quantum dots i and i+1 is given by
�0ni�1−ni+1�. Thus, we can describe transport through this
quantum-dot chain by the rate equations

dni

dt
= �0�ni−1�1 − ni� − ni�1 − ni+1�� + �Ji − �Ji+1 �2�

for 2	 i	 �N−1�. The occupations of the first and last dots
are similarly determined by the equations dn1 /dt=��1−n1�
−�0n1�1−n2�+�J1−�J2 and dnN /dt=�0nN−1�1−nN�−�nN
+�JN−�JN+1. Since we will be interested in computing cur-
rent fluctuations, we have already included Langevin sources
�Ji into the rate equations which account for the stochastic
nature of the tunneling processes. In analogy with the
Boltzmann-Langevin approach to fluctuations of the distribu-
tion function,17,18 the Poisson nature of the tunneling pro-
cesses gives ��Ji�t��Jj�t���=�0ni−1�1−ni��ij��t− t�� for the
correlation function of the Langevin sources.

The stationary states of Eq. �2� are well known from
studies19,20 of the totally asymmetric simple exclusion pro-
cess �TASEP� of which the quantum-dot chain under consid-
eration is a particular realization. Remarkably, the stationary
states exhibit different phases as function of � and �. This is
summarized in the phase diagram Fig. 1 which exhibits low-
and high-density phases I and II, which are separated from a
maximal-current phase III by a continuous nonequilibrium
phase transition. �The transition between the high- and low-
density phases is first order.� These results are well estab-
lished by exact solutions and simulations,19,20 but can also be
obtained in essence at mean-field level.

The mean-field occupation profile ni can be derived
from a recursion relation based on current conservation
c=ni�1−ni+1�.19 �Here and in the following, we use units of
time such that �0=1.� One finds that the occupations
ni=� �ni=1−�� in the low-density �high-density� phase are
constant in the bulk. Near the boundary of the chain, they
relax to the bulk value �denoted by n̄ in the following� within
a distance 
=1 /2�1−2n̄�. The divergence of the correlation
length 
 at n̄=1 /2, i.e., along the phase transition line be-
tween the high- or low-density phase and the maximal-
current phase, signals the occurrence of a continuous phase
transition. In analogy with second-order phase transitions in
thermal equilibrium, 
 can also be extracted from a linear-
ized mean-field description of the density-density fluctua-
tions of the model based on Eq. �2�.21 From these results, one
also concludes that the respective average currents through
the chain are equal to c=��1−��(c=��1−��).

The current fluctuations, including the entire distribution
function, have been discussed for several related models in a
number of publications.22–27 These works focused on exact
solutions for infinite chains and ring geometries with particu-
lar choices of initial conditions. Here, we employ an alterna-
tive field theory description starting from �the approximate�
Eq. �2� which builds on existing approaches to the FCS of
nanoscopic conductors28 and which also provides a conve-
nient starting point to discuss finite-size systems.

III. FIELD-THEORY DESCRIPTION OF THE FCS
IN THE THERMODYNAMIC LIMIT

In terms of the charge Qi passing the bond between quan-
tum dots i−1 and i,

Qi = 	
0

T

dt�ni−1�1 − ni� + �Ji� , �3�

the FCS �generalized to the joint distribution function of all
the Qi� is defined by

PT�
Qi�� =�

i

��Qi − 	
0

T

dt�ni−1�1 − ni� + �Ji���
�J

. �4�

In performing the average over the �J, we need to remember
that the occupations ni must satisfy the Boltzmann-Langevin
equation �2� and are thus themselves dependent on the �J.
We can formally average independently over occupations
and Langevin sources after enforcing the Boltzmann-
Langevin equation by means of � functionals in the aver-

age. Doing so, passing to the Fourier transform P̃T�
�i��
=�
idQi exp�i� j� jQj�PT�
Qj��, and exponentiating the func-
tional � functions, we obtain28

P̃T�
�i�� =
1

Z	 

i

�d�i�t���eiS�n,�J, �5�

with the action

S = �
j
	 dt�� j�nj−1�1 − nj� + �Jj�

+ � j� �nj

�t
− nj−1�1 − nj� + nj�1 − nj+1� − �Jj + �Jj+1�� .

�6�

The prefactor Z ensures the normalization condition P̃T�
�i
=0��=1. Moreover, we have made the counting fields � j time

dependent for simplicity of notation. P̃T�
� j�� follows by set-
ting � j�t�=� j for 0	 t	T and zero otherwise. Performing
the Gaussian average over �J, passing to the continuum limit
�with the distance between quantum dots set to a=1�, and
integrating over the constraint field � j, we obtain after
lengthy but straightforward manipulations

S = −	 dxdt���x
−1�tn

+
i

2c
��tn + �xj −

1

2
�x

2n��x
−2��tn + �xj −

1

2
�x

2n�� , �7�

where c= n̄�1− n̄� denotes the average current in terms of the
average occupation n̄. For simplicity, we removed a trivial
term from this action such that its Fourier transform gives a
shifted FCS defined as the distribution function of Q−cT, a
quantity with zero average. In the following, this shifted
charge variable will be denoted by Q.

It is important to note that the action Eq. �7� is non-
Gaussian in the occupation field n due to the presence of
the terms involving j=n�1−n�. Writing n= n̄+�n, we have
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�xj= �1−2n̄��x�n−2�n�x�n. One finds by power counting
that the nonlinear convective terms are irrelevant away from
the critical line well inside the high- and low-density phases
where n̄�1 /2 but become relevant at the continuous phase
transition where n̄=1 /2. We now turn to an analysis of the
FCS based on the action Eq. �7�.

Employing the action �7� in the absence of the non-
linear convective terms yields a Gaussian FCS which
is fully described by the variance of Q. Using ��Q2��
=− �

��2 ln P̃T��� ��=0, we obtain

��Q2�� = c	
−T/2

T/2

dtdt�	 d


2�

1

N�
q


2e−i
�t−t��

�
 − vq�2 + q4/4
�8�

in terms of the drift velocity v=1−2n̄. Performing the time
and frequency integrations gives

��Q2�� = 2c	 dq

2�

1 − exp�− q2T/2� cos�vqT�
q2 . �9�

For nonzero v, i.e., well inside the high- and low-density
phases, the exponential factor in the numerator can be re-
placed by unity and we obtain ��Q2��=cvT.

The result for ��Q2�� is strikingly different on the critical
line where v=0. Here, one finds from Eq. �9� �i.e., within
linearized mean-field theory� that ��Q2��=c�2T /�. The cru-
cial observation is that the variance no longer scales propor-
tional to T. Equation �9� suggests that we can identify the
exponent of T in this relation as 1 /z in terms of the dynamic
critical exponent z which takes the value z=2 within linear-
ized mean-field theory.

Indeed, this identification allows us to extend our results
beyond linearized mean-field theory. For v=0, the full action
Eq. �7� is closely related to the one-dimensional Burgers
equation

�t� − 2��x� −
1

2
�x

2� = �x� �10�

for a field ��x , t� driven by a Langevin source ��x , t� with
correlator ���x , t���x� , t������x−x����t− t��. This suggests
that the true variance of the quantum-dot chain obeys
��Q2���T1/z, where z is the exact dynamic critical exponent
z=3 /2 of the Burgers equation.29 This is confirmed by our
numerical simulations as shown in Fig. 1�c�.

Within linearized mean-field theory, the FCS satisfies the
scaling relation PT�Q�=T−1/4f�Q /T1/4� in terms of a scaling
function f�x�. This can be seen directly from the linearized
version of the action Eq. �7� with v=0 by noting that it
remains invariant under the rescalings t→ t /T, x→x /T1/2,
n→nT1/4, and �→�T1/4. In view of our results for the vari-
ance, one may then expect that the exact FCS satisfies the
scaling relation

PT�Q� =
1

T1/2z f�� Q

T1/2z� , �11�

with z=3 /2. This is indeed nicely confirmed by our numeri-
cal simulations as shown in Fig. 2. This scaling relation is at
the heart of the anomalous FCS of the quantum-dot chain
under considerations. Indeed, the result for the cumulants in

Eq. �1� is an immediate consequence of this relation.
From the point of view of current experiments, it is also

interesting to calculate the power spectrum S�
�
=2�d�ei
���I�t��I�t+��� of the current I�t�. Far from the
critical line, we readily obtain

S�
� = 2c
1

N�
q


2

�
 − vq�2 + q4/4
, �12�

within linearized mean-field theory. Evaluating the sum over
q yields

S�
� = c�v2 Re�v2 − 2i
�−1/2 + Re�v2 − 2i
�1/2� , �13�

which leads to a constant noise power S�
�=2cv for small

. Sufficiently far from the critical line, this result is in good
agreement with our simulations �see Fig. 3�a��.

On the critical line, linearized mean-field theory predicts

S�
� = c
1/2. �14�

The particular value of the exponent in this relation is an
artifact of linearized mean-field theory. The true scaling of
S�
� at small frequencies can be extracted from the relation
��Q2��=��d
 /�
2�S�
�sin2�
T /2� combined with Eq. �1�
from which we read off that S�
��
1−1/z. This is confirmed
nicely by our simulations, as shown in Fig. 3�b�.

In the vicinity of the critical line, i.e., for a small but finite
drift velocity v, the noise power S�
� crosses over between
the linearized mean-field theory results for small frequencies
and the critical behavior for larger frequencies �see Fig.
3�b��. This can be understood in terms of the correlation
length 
=1 /2v. Once 
�v2, excitations do not drift far
enough during a time 
−1 to explore the finite correlation
length of the system, v /
�
. As a result, linearized mean-
field behavior applies only for 
�v2 while the system ap-
pears critical for 
�v2.
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FIG. 2. �Color online� Full counting statistics of the totally
asymmetric exclusion process vs a scaled charge variable Q on the
critical line �main panel� ��=�=0.5�, where the FCS is essentially
non-Gaussian and far from the phase transition �inset� ��=0.3,
�=0.7�, where the scaled FCS converges to a Gaussian for large T.
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IV. FINITE-SIZE CORRECTIONS

Any experimental realization would contain only a finite
number N of quantum dots. In this section, we discuss
to which degree signatures of the critical full counting statis-
tics persist in finite-size systems. For finite N, one expects
that the full counting statistics obeys Eq. �11� up to times
T�Nz. Within linearized mean-field theory, this can be ob-
tained by the following argument. In a finite-length system,
the upper limit for the correlation length 
=1 /2v is

=N, from which we can extract an effective drift velocity
v given by veff=1 / �2N�. Thus, we expect finite-size effects
to become relevant once veffT=N which immediately yields
the above estimate with z=2. Thus, the anomalous scaling
persists up to values of T which are large multiples of
the microscopic tunneling rate 1 /�0 even for moderate val-
ues of N.

It turns out that the signatures of the critical electron dy-
namics remain most pronounced in the variance and the
noise power. This is shown in Fig. 4�a� which exhibits the
variance ��Q2�� as function of T for small system sizes. It is
apparent from the plots that a sublinear T dependence is
observed for small T for chains as short as N=4. The depen-
dence is close to the nonlinear behavior expected in the in-
finite system when T is not too large and crosses over to
linear behavior only for larger T in accordance with the dis-
cussion in the previous paragraph. Indeed, we can extract the
maximal T up to which critical behavior persists from ��Q2��

by plotting ��Q2�� /T2/3 vs T �see the inset of Fig. 4�b��. In
this plot, critical full counting statistics is indicated by a
constant while deviations from the constant at large T indi-
cate significant finite-size corrections. Extracting a Tmax for
different N and plotting Tmax vs N nicely fits the expected
Tmax�N3/2 dependence with the exact exponent z=3 /2 �see
Fig. 4�b��.

Experimentally, it may be more accessible to study the
noise power as a function of frequency. At small frequencies

�Tmax

−1 �1 /Nz, the behavior should be noncritical while the
critical scaling S�
��
1/3 would persist at larger frequen-
cies. This expectation is borne out by our numerical results
�see Fig. 5�.

One also expects the transition to smear over a certain
range of tunneling rates � and � when N is finite, implying
that in finite-size systems signatures of the critical electron
dynamics should be visible even away from the nominal
transition line. The region over which the transition becomes
smeared can be estimated as follows. As argued above, criti-
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FIG. 3. �Color online� Current noise as function of frequency 

�a� well away from the critical line �with parameters �=0.2, �=1
−�� and �b� at �near� the critical line with parameters �=0.5
��=0.425� and �=1−�. Simulation data are compared to the pre-
dictions of linearized mean-field theory �Eq. �13�� and the critical
scaling S�
��
1/3. The assignment of symbols and lines is given in
the legends within the figures.
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cal behavior is visible when vTmax�N, i.e., for v�N1−z.
Using that v=1−2n̄, we find a critical region �n̄−1 /2�
�1 / �2N1/2�. This estimate is consistent with our numerical
results as shown in Fig. 6. This figure shows that the depen-
dence of the variance ��Q2�� on T exhibits sublinear behavior
in the entire critical region. Moreover, it is demonstrated in
the inset that the dependences are rough power laws with
exponents close to 2/3 throughout the critical region, while
the exponent approaches unity outside of the critical region.

V. CONCLUSIONS

We have shown that a chain of quantum dots may realize
a totally asymmetric exclusion process and thus exhibit a
nonequilibrium phase transition as function of the tunnel
couplings to the leads which results in critical full counting
statistics of the current fluctuations. We find that the non-
equilibrium phase transition controls the dynamics over a

wide range of time scales even in quantum-dot chains of
finite length. Our minimal model assumes that the hopping
rates between quantum dots are all equal. Due to the expo-
nential sensitivity of tunneling, this would presumably be
exceedingly difficult to realize in a lateral arrangement of
quantum dots. Instead, it appears more promising to employ
a vertical setup30 in which the tunneling barriers and the
quantum dots can be formed by a well-defined number of
monolayers. We expect that including weak backscattering or
rare double occupation of a dot would leave our results
qualitatively unchanged. Nevertheless, it would be interest-
ing to study their consequences as well as the influence of
variations in the tunneling rates in more detail.

It would also be interesting to identify other systems
which exhibit a critical full counting statistics, especially
systems whose dynamics is more directly controlled by
quantum mechanics. An intriguing possibility is transport
near a quantum phase transition.
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APPENDIX: ELECTROSTATICS
OF A QUANTUM-DOT CHAIN

In this appendix, we briefly discuss the electrostatics of a
quantum-dot chain. We consider metallic quantum dots with
a continuous spectrum so that the tunnel rates can be as-
sumed to be a linear function of the energy gained in a tun-
neling process. To derive this energy gain, we model the
quantum-dot chain by the equivalent circuit shown in Fig. 7
which is described by the capacitance matrix C defined as

q = �qd

qe
� = �Cdd Cde

Ced Cee
��vd

ve
� = Cv , �A1�

where the index d�e� enumerates the quantum dots �elec-
trodes�. The charges and the potentials on the dots and elec-
trodes are denoted by q and v, respectively.

Up to irrelevant constants, the energy of the system takes
the form

U =
1

2
vd

TCddvd. �A2�

In an infinite chain, the energy difference �Ui induced by a
tunneling event from the ith to the �i+1�th dot becomes
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FIG. 5. �Color online� Noise power as function of frequency for
quantum-dot chains with N=10, 20, and 50. Note that one recovers
the critical scaling for sufficiently large frequency for all system
sizes.
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FIG. 7. Equivalent circuit of the quantum-dot chain. White
�black� dots indicate quantum dots �electrodes�.
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�Ui � − V0 +
1 + ni+1 − ni

Cg

+
C

Cg
�ni+2 − ni+1 + ni − ni−1 − 1

Cg
− 2V0� �A3�

to first order in the weak-coupling limit C�Cg. Here, 
ni�
denote the occupation numbers of the initial state and we use

units with e=1. The weak-coupling limit C�Cg ensures that
the contribution to the energy arising from interdot interac-
tions is small compared to the contribution of the gate ca-
pacitances. According to Eq. �A3�, we conclude that double
occupation and backscattering are strongly suppressed as
long as kBT�V0�e2 /Cg while the tunneling rates are ap-
proximately equal as long as C�Cg.

1 For a review, see Y. M. Blanter and M. Büttiker, Phys. Rep. 336,
1 �2000�.

2 B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett. 91,
196601 �2003�.

3 S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P.
Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys.
Rev. Lett. 96, 076605 �2006�.

4 C. Fricke, F. Hohls, W. Wegscheider, and R. J. Haug, Phys. Rev.
B 76, 155307 �2007�.

5 L. S. Levitov and G. B. Lesovik, JETP Lett. 58, 225 �1993�; L.
S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845
�1996�.

6 Y. V. Nazarov, Ann. Phys. 8, 507 �1999�.
7 W. Belzig and Y. V. Nazarov, Phys. Rev. Lett. 87, 197006

�2001�.
8 B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 50,

3982 �1994�; W. Belzig and Y. V. Nazarov, Phys. Rev. Lett. 87,
067006 �2001�.

9 A. Shelankov and J. Rammer, Europhys. Lett. 63, 485 �2003�; L.
S. Levitov and M. Reznikov, Phys. Rev. B 70, 115305 �2004�.

10 M. J. M. de Jong, Phys. Rev. B 54, 8144 �1996�.
11 A. Di Lorenzo and Y. V. Nazarov, Phys. Rev. Lett. 93, 046601

�2004�; M. Kindermann, Phys. Rev. B 71, 165332 �2005�.
12 D. A. Bagrets and Y. V. Nazarov, Phys. Rev. B 67, 085316

�2003�.
13 A. O. Gogolin and A. Komnik, Phys. Rev. Lett. 97, 016602

�2006�.
14 J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 95,

056801 �2005�.
15 K.-I. Imura, Y. Utsumi, and T. Martin, Phys. Rev. B 75, 205341

�2007�.
16 F. Pistolesi, Phys. Rev. B 69, 245409 �2004�.

17 M. Kogan and A. Y. Shulman, Sov. Phys. JETP 29, 3 �1969�.
18 S. Kogan, Electronic Noise and Fluctuations in Solids �Cam-

bridge University Press, New York, 1996�.
19 B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys. 69, 667

�1992�.
20 For a review, see, e.g., G. M. Schütz, in Phase Transitions and

Critical Phenomena, edited by C. Domb and J. L. Lebowitz
�Academic, San Diego, 2001�, Vol. 19.

21 P. Pierobon, A. Parmeggiani, F. von Oppen, and E. Frey, Phys.
Rev. E 72, 036123 �2005�.

22 M. Prähofer and H. Spohn, in Current Fluctuations for the
Totally Asymmetric Simple Exclusion Process In and Out of
Equilibrium, edited by V. Sidoravicius, Progress in Probability
Vol. 51 �Birkhäuser, Boston, 2002�, p. 185.

23 T. Sasamoto, J. Stat. Mech. 2007, P07007 �2007�.
24 B. Derrida and J. L. Lebowitz, Phys. Rev. Lett. 80, 209 �1998�;

B. Derrida and C. Appert, J. Stat. Phys. 94, 1 �1999�.
25 T. Bodineau and B. Derrida, Phys. Rev. Lett. 92, 180601 �2004�.
26 L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.

Landim, Phys. Rev. Lett. 94, 030601 �2005�; J. Stat. Phys. 123,
237 �2006�.

27 T. Bodineau and B. Derrida, Phys. Rev. E 72, 066110 �2005�.
28 Our general approach here is closely related to D. B. Gutman, A.

D. Mirlin, and Y. Gefen, Phys. Rev. B 71, 085118 �2005�; S.
Pilgram, A. N. Jordan, E. V. Sukhorukov, and M. Büttiker, Phys.
Rev. Lett. 90, 206801 �2003�.

29 D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16,
732 �1977�.

30 See, e.g., T. Kodera, W. G. van der Wiel, K. Ono, S. Sasaki, T.
Fujisawa, and S. Tarucha, Physica E 22, 518 �2004� for a ver-
tical double-dot structure.

TORSTEN KARZIG AND FELIX VON OPPEN PHYSICAL REVIEW B 81, 045317 �2010�

045317-6


