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We develop a theory of energy relaxation and thermalization of hot carriers in clean quantum wires.

Our theory is based on a controlled perturbative approach for large excitation energies and emphasizes

the important roles of the electron spin and finite temperature. Unlike in higher dimensions, relaxation

in one-dimensional electron liquids requires three-body collisions and is much faster for particles

than holes which relax at nonzero temperatures only. Moreover, comoving carriers thermalize more

rapidly than counterpropagating carriers. Our results are quantitatively consistent with a recent

experiment.
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Introduction.—The behavior of electrons confined to
move in one spatial dimension is frequently described
within the Tomonaga-Luttinger model which assumes a
linear dispersion relation for the electrons. In this model,
all excitations move at the same velocity so that electron-
electron interactions become particularly significant.
Consequently, the electron system can no longer be de-
scribed as a Fermi liquid but instead is expected to form a
Luttinger liquid. In recent years, much effort has been
expended on elucidating the consequences of Luttinger-
liquid physics in quantum wires [1].

A peculiar consequence of the Tomonaga-Luttinger
model is the absence of inelastic processes for hot particles
or holes. As emphasized by a recent experiment [2], the
physics of energy relaxation is much richer in real quantum
wires with a nonlinear dispersion. In this experiment, hot
carriers of well-defined energy and momentum are injected
into a quantum wire and their energy relaxation is probed
in cleverly designed transport measurements. The experi-
ment shows not only that hot carriers relax but also that
energy relaxation is much more efficient for hot particles
than for hot holes, in stark contrast to electron liquids in
higher dimensions. Moreover, a simple model [2] repro-
ducing the observations assumed that thermalization oc-
curs much faster among comoving electrons than between
right- and left-moving carriers.

Foci of recent theoretical work on 1D electron systems
were nonequilibrium effects in ideal [3–5] and disordered
Luttinger liquids [6] as well as deviations from Luttinger-
liquid theory due to the nonlinear dispersion [7–12].
Nonequilibrium physics of systems with nonlinear disper-
sions has been accessible within a perturbative approach
for weak interactions [13–15]. The latter is peculiar be-
cause pair collisions are ineffective for a quadratic disper-
sion. Indeed, by momentum and energy conservation, pair
collisions result either in zero-momentum transfer or ex-
change of the momenta of the colliding particles. Both
processes do not change the electronic distribution

function. The kinetics of real 1D electron systems therefore
involves three-body collisions [13].
Consider an electron injected into the quantumwire with

an excitation energy � which is measured from the Fermi
energy �F and large compared to temperature T. Because
of the quadratic dispersion �k ¼ @

2k2=2m, its velocity
differs from that of the electrons in the Fermi sea by at
least �v ¼ �=mvF. (Here, vF is the Fermi velocity.)
According to the condition for the validity of the Born
approximation [16], we thus expect a perturbative ap-
proach to energy relaxation to be appropriate when � �
mvF

~Uð0Þ=@, where ~UðqÞ is the Fourier transform of the
electron-electron interaction. In Luttinger liquids, the
difference between the spin and charge velocities is
vc � vs ’ ~Uð0Þ=�@, so that the condition can also be
recast as vc � vs � �v. Hence, spin and charge do not
separate appreciably during the collision process.
Here, we develop a theory of energy relaxation and

thermalization in clean quantum wires in this perturbative
regime. While some of the basic physics—such as the
asymmetry between hot particles and holes—was under-
stood [7,9,17], no systematic and quantitative theory of this
fundamental property of clean 1D electron systems exists
to date. Specifically, we emphasize the important roles of
finite temperature, Coulomb interaction, and spin which
are not appreciated in the existing literature but are impor-
tant for understanding the experiment [2].
Basic processes and results.—The asymmetry in energy

relaxation between hot particles and holes can be readily
understood from the basic three-body collisions as
sketched in Fig. 1. Suppose a hot particle 1 on, say, the
right-moving branch transfers momentum q1 to a right
mover in the Fermi sea. Because of the positive curvature
of the dispersion, the energy loss �� of the hot particle
exceeds the energy of the created particle-hole (p-h) pair.
This mismatch can be fixed by simultaneously exciting a
left-moving p-h pair [Fig. 1(a)]. In line with the energy
mismatch, the energy transfer to the left-moving p-h pair is

PRL 105, 226407 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 NOVEMBER 2010

0031-9007=10=105(22)=226407(4) 226407-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.226407


of order ð�=�FÞ��. The typical energy loss �� of hot
particles in a single three-body collision is of order �.

Compare this with the relaxation of hot holes sketched in
Fig. 1(e) where, for a given momentum transfer, the energy
gain due to filling the hole by a higher-energy electron is
smaller than the energy cost of exciting a comoving p-h
pair. Fixing this energy mismatch therefore requires a
counterpropagating electron to give up energy. Clearly, at
T ¼ 0 this is forbidden by the Pauli principle and the hole
is unable to relax. Indeed, this conclusion remains true for
arbitrary n-body processes [2].

Hot holes do relax, however, at finite T. Because of
thermal smearing, the counterpropagating electron can
give up an energy of order T. Thus, the hot hole can relax,
with a maximal energy loss of ��� �FT=�. This implies
that hot holes float towards the Fermi energy in many small
steps as long as � � �T . Here, �T ¼ ffiffiffiffiffiffiffiffiffi

�FT
p

is a character-
istic energy scale introduced by finite temperature.
Conversely, for � � �T , the energy loss of the hole per
three-body collision is comparable to its energy.

Although hot particles always relax in a few three-body
collisions, the energy scale �T is also relevant in this case.
Indeed, for � � �T , the energy transfer to the counter-
propagating p-h pair is small compared to temperature.
This has two important consequences. First, the phase
space of the left-moving p-h pair is no longer controlled
by the typical energy transfer �2=�F but by temperature T
so that the energy-relaxation rate of hot particles becomes
temperature dependent. Second, it is no longer relevant
whether the counterpropagating electron gains or loses
energy so that for � � �T energy relaxation becomes
equally fast for hot particles and holes.

Although these three-body collisions generate both a
right- and a left-moving p-h pair, these are fundamentally
asymmetric in their energies. Because of the parametri-
cally larger energy transfer to the comoving p-h pair,
thermalization will happen more rapidly between electrons
of the same chirality than between electrons of opposite
chiralities. Injection of, say, right-moving hot particles can
thus lead to different temperatures of right- and left-
moving electrons over significant distances as appears to
be the case in experiment [2]. We also note that the relevant
thermalization rate among electrons of the same chirality is

controlled by the hole relaxation rate even when injecting
hot particles, since the relaxation of hot particles neces-
sarily involves the excitation of deep holes.
We now summarize our quantitative results for energy

relaxation in a spinful electron liquid with Coulomb inter-
actions [18]. (Their derivation is sketched further below.)
For the energy-relaxation rate of hot particles, we find

1=�p ¼ ð9�F=32�3
@Þðe2=�@vFÞ4½�ð�Þ�2ð�=�FÞ2 (1)

at high energies � � �T , and

1=�p ¼ ð3c1�F=4�3
@Þðe2=�@vFÞ4½�ð�Þ�2ðT=�FÞ (2)

at low energies � � �T . Here, �ð�Þ ¼
lnj1=2kFaj lnj�=4�Fj in terms of the wire width a and
the Fermi wave vector kF with kFa � 1, � is the dielectric
constant of the host material, and c1 ¼ 4 lnð2Þ � 1.
For � � �T , the hole relaxation rate

1=�h ¼ ð2�F=�@Þðe2=�@vFÞ4½�ð�Þ�2ðT=�Þ2 (3)

is smaller than 1=�p (at the same �) by a factor ð�T=�Þ4.
Conversely, for � � �T , Eq. (2) also applies to hole re-
laxation. Finally, a temperature difference between right-
and left-moving carriers equilibrates at the rate

1=�inter ¼ ð9c2�F=28�5
@Þðe2=�@vFÞ4½�ðTÞ�2ðT=�FÞ3;

(4)

with c2 � 103:9 [20]. The results in Eqs. (1)–(4), based on
the processes shown in Figs. 1(a)–1(c) and 1(e), dominate
over the competing class of processes of Fig. 1(d) if at least
one of two conditions is met: temperature is not too high,
T � �F=ðkFdÞ4, or energy is not too low, � � �T . (Here, d
is the distance to a nearby metallic gate.)
Derivation.—We start with the Boltzmann equation for

the electronic distribution function nðk; tÞ ¼ n0ðkÞ þ
�nðk; tÞ, linearized about the Fermi-Dirac function n0ðkÞ,

@tn1 ¼ � X

23102030
W123

102030n
0
1n

0
2n

0
3 �n

0
10 �n

0
20 �n

0
30
X3

i¼1

½yi � yi0 �: (5)

Here, yi ¼ �ni=½n0i �n0i �, ni ¼ nðkiÞ, and �ni ¼ 1� ni. The
initial (final) states of the three-body collisions are labeled
by i (i0), and the corresponding collision integral involves
the generalized Fermi golden rule

FIG. 1 (color online). Basic three-body relaxation processes of hot particles (a)–(d) and hot holes (e). (a) Small-q process T123
102030 and

2kF processes (b) T123
301020 and (c) T123

103020 . The remaining processes follow by exchanging 10 $ 20. (d) Competing relaxation process

involving only comoving electrons. (e) A small-q relaxation process of hot holes. Dotted lines: �F.
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W123
102030 ¼

2�

@
jh102030jVG0Vj123icj2�ðE� E0Þ: (6)

Here, G0 denotes the free Green’s function and the sub-
script c stands for ‘‘connected’’ scattering events, in which
all three particles participate [13]. The (unscreened)
Coulomb interaction takes the form V ¼ ð1=2LÞPk1k2q�1�2

Vqa
y
k1þq�1

ayk2�q�2
ak2�2

ak1�1
with Vq ’ ð2e2=�Þ lnð1=qaÞ.

Our results are dominated by processes with large momen-
tum transfers of order 2kF, where screening due to nearby
gates can be neglected.

Setting �n1 ¼ �k1;kFþ�=@vF
and neglecting secondary

collisions, we obtain, via ð@t þ ��1Þ�n1 ¼ 0, the total
scattering rate of hot particles,

1

�
¼ X

23102030
W123

102030n
0
2n

0
3 �n

0
10 �n

0
20 �n

0
30 : (7)

The transition amplitude for three-body scattering from
j123i to j102030i is the sum of two processes with small
momentum transfers q � kF and four processes involving
momentum transfers of order 2kF; cf. Figs. 1(a)–1(c).

The matrix element in Eq. (6) can be decomposed as
h102030jVG0Vj123ic ¼ P

Pð102030Þð�1Þp��1�2�3;Pð�10�20�30 Þ
T123
Pð102030Þ, where ð�1Þp denotes the parity of the permuta-

tion P. Following Ref. [13], we find for the two small-q
processes [cf. Fig. 1(a)], to leading order in �=�F,

T123
102030 ¼ ðVq1=8�FL

2ÞðVq1 � Vq3Þ; (8)

and the corresponding amplitude with 10 $ 20 (and thus
q1 $ p1 ¼ k1 � k20 , where qi ¼ ki0 � ki). Similarly, we
find for the four 2kF processes [cf. Figs. 1(b) and 1(c)]

T123
301020 ¼ �T123

203010 ¼ ðV2kF=2@vFq1L
2ÞðV2kF � Vp1

Þ; (9)

and the corresponding amplitudes with 10 $ 20.
Remarkably, the electron spin plays an important role in

the transition matrix element for three-body scattering.
Indeed, the amplitudes of the individual 2kF processes
in Eq. (9) are larger by a factor �F=@vFq1 than those of
the small-q processes in Eq. (8). When the total spin of the
three colliding particles is maximal, or when fermions are
spinless, the leading contribution to the individual 2kF
processes cancels from their sum, resulting in contributions
of the same order from the small-q and the 2kF processes
(in line with the classification of interactions for spinless
fermions). In contrast, when the total spin of the three
colliding particles is 1=2, there is no cancellation in the
sum over the 2kF processes. The latter are thus parametri-
cally larger and dominate in the three-body scattering rates.
[Note that for Coulomb interactions, the enhancement of
order (�F=�) is larger than the concurrent logarithmic
reduction stemming from the replacement of Vq1 by the

smaller V2kF .]

The importance of the electron spin follows from the
symmetry of the wave function. When the total spin of
the three colliding particles is maximal, or when fermions

are spinless, their orbital wave function must be odd, and
the relevant amplitudes are suppressed by the exchange
effect. In contrast, no such suppression occurs when the
total spin of the three colliding particles is 1=2, since
the interacting particles can be in the same orbital state.
Integrating over the momenta of the left-moving p-h

pair and doing the spin sums in Eq. (7), we can now extract
the partial scattering rate Pdq1dp1 that the hot particle
generates comoving particles near k10 and k20 ,

P ðq1; p1Þ ¼ 3�F
8�3

@

L4

ð@vFÞ2
½ðT123

301020 Þ2 þ ðT123
302010 Þ2�

� q3=kF

ðe@vFq3=T � 1Þ n
0
k1þp1þq1

�n0k1þp1
�n0k1þq1

:

(10)

By exchange symmetry, q1 and p1 enter symmetrically into
P ðq1; p1Þ. Here, the factor involving q3 ¼ �p1q1=2kF
quantifies the phase space �maxf@vFjq3j; Tg of the left-
moving p-h pair. The colliding right movers contribute the
familiar phase space ��2, resulting in a total phase space
��2 maxfT; �2=�Fg for the three-body collision.
We can now employ Eq. (10) to obtain the energy-

relaxation rate 1=�p of hot particles. Equation (10) shows

that the typical energy loss per three-body collision is of
order � so that 1=�p follows directly from integrating

Eq. (10) over q1 and p1. At T ¼ 0, this integration yields
Eq. (1) above. The dominant ��2 dependence emerges
from the total phase space��4 combined with the singular
dependence of the amplitude in Eq. (9) at small q1; p1,
yielding a factor �1=�2 in the partial scattering rate.
Once � � �T at higher T, the phase space of the left

movers is controlled by temperature. In this limit, the total
scattering rate diverges logarithmically in the infrared, as
1=�� R

0
��=@vF

dq1=q1. This singularity is regularized in

the energy-relaxation rate which can be estimated from
1=�p ¼ R

dq1dp1ð��=�ÞP ðq1; p1Þ in terms of the energy

loss �� ¼ @vF minfjq1j; jp1jg. This yields Eq. (2). The
basic dependences on � and T can again be understood
from the phase-space and amplitude factors. We note that
the singularity also does not carry over into a solution of
the Boltzmann equation (5) as long as the injected electron
distribution has a finite spectral width.
The derivation of the hole relaxation rate proceeds in

close analogy. A hole injected at k10 generates two holes at
k1 ¼ k10 � q1 and k2 ¼ k10 � p1 in a three-body collision.
The corresponding partial rate P ðq1; p1Þ is given by
Eq. (10) with the replacement k1 ! k10 , changes of sign
of q1, p1, and q3, and the exchange n0 $ �n0. A crucial
modification is the sign change of q3, which limits the
small momentum transfer process to jq3j & T=@vF and
thus the energy loss �� of holes to ��� �2T=� when � �
�T . Hence, complete energy relaxation proceeds by mul-
tiple collisions and the energy-relaxation rate 1=�h can be
obtained from d�=dt ¼ R

dq1dp1��P ðq1; p1Þ through
�h ¼

R
�
0 d�

0ðd�0=dtÞ�1. Performing the remaining
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integrals gives Eq. (3). This is slower than the relaxation of
hot particles by ð�T=�Þ4 since holes not only relax in
ð�=�TÞ2 steps, but phase space is also smaller by
T=ð�2=�FÞ. As discussed above, the energy-relaxation
rate becomes equal for particles and holes when � � �T .

We briefly comment on the competing process shown in
Fig. 1(d), which involves comoving electrons only. In this
process, two electrons near the Fermi energy are scattered
in opposite directions in energy, allowing a high-energy
particle to relax slightly. Assuming that the interaction is
screened for these small momentum transfers, a similar
calculation yields their contribution 1=�p � ð�F=@Þ�
ðe2=�@vFÞ4ðT=�FÞð�6T=�2�40Þln4jd=aj to the energy-

relaxation rate. (Here, �0 ¼ @vF=d.) By comparing with
Eqs. (1) and (2), we conclude that these processes are
subdominant when � � �T or T � �F=ðkFdÞ4 [21].

Finally, we note that the thermalization rate for a given
temperature difference �T between right- and left-moving
electrons can be obtained in a standard manner by expand-
ing the Boltzmann equation to linear order in �T. This
yields the result quoted in Eq. (4) above.

Comparison with experiment.—The experiment [2] did
not measure the � dependence of the energy-relaxation
rate, but provides bounds. The energy-relaxation rate was
inferred to be larger (smaller) than 1011 s�1 for particles
(holes) with �� �F=3. This is consistent with our results
which predict [22] 1=�p � 1011 s�1 and 1=�h �
5� 109 s�1 for � � �F=3. We also find 1=�inter �
106 s�1, implying that temperature differences between
left and right movers are sustained over long distances.

Conclusion.—One-dimensional electron systems out of
equilibrium were brought into focus by recent experiments
in various contexts such as carbon nanotubes [23], quan-
tum Hall edge states [24,25], or quantum wires [2,26].
Here, we have discussed equilibration and thermalization
of hot carriers in real quantum wires, emphasizing the
important roles of spin and finite temperature within a
perturbative approach for large excitation energies. Our
work was motivated by and provides a quantitative frame-
work for a recent experiment [2]. It elucidates a funda-
mental property of 1D electron liquids and thus has
ramifications for 1D electron systems beyond quantum
wires. Finally, our work also points to open issues. First
and foremost, it would be interesting to understand the fate
of energy relaxation for small excitation energies, where
one must simultaneously cope with nonequilibrium and
nonperturbative effects of the interactions.
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