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Topological quantum information processing relies on adiabatic braiding of non-Abelian quasiparticles.
Performing the braiding operations in finite time introduces transitions out of the ground-state manifold and
deviations from the non-Abelian Berry phase. We show that these errors can be eliminated by suitably designed
counterdiabatic correction terms in the Hamiltonian. We implement the resulting shortcuts to adiabaticity for
simple protocols of non-Abelian braiding and show that the error suppression can be substantial even for
approximate realizations of the counterdiabatic terms.
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Introduction. It is envisaged that the information processing
of topological quantum computers relies on adiabatic braiding
of non-Abelian quasiparticles [1–5]. Exchanging two nonabe-
lions does not leave the quantum state unchanged, possibly
up to a sign (as for fermions or bosons) or phase (as for
Abelian anyons) factor, but rather effects a unitary rotation
in a degenerate subspace of ground states. The ground-state
degeneracy grows exponentially with the number of non-
Abelian quasiparticles, and quantum information processing
corresponds to manipulating the system’s ground state by
braiding operations. Majorana bound states in topological su-
perconducting phases constitute the simplest example of such
nonabelions [6], and there has been considerable experimental
effort towards realizing a possible hardware [7–13], following
a series of theoretical proposals [14–22].

Topological quantum information processing is immune
to local sources of decoherence when braiding is performed
adiabatically [1]. Quite generally, adiabaticity is protected by
the gap of the underlying topological phase. Here we want
to ask the question whether it is possible to realize the exact
adiabatic quantum dynamics of the braiding operation, albeit
in a finite time interval. There are obvious motivations why this
would be desirable: First, any topological quantum computer
would operate at a finite clock speed which necessarily entails
possibly small, but nonzero, errors. Second, a topological
quantum computer would presumably have to operate faster
than parasitic decoherence processes such as quasiparticle
poisoning or deviations from perfect ground-state degeneracy
originating in the finite spatial extent of the Majorana quasi-
particles. In both cases, such a scheme could then be used
to offset the incurred errors, enabling longer computations or
higher clock speeds.

Demirplak and Rice [23] as well as Berry [24] introduced
a protocol that emulates the adiabatic dynamics of any nonde-
generate Hamiltonian H0(t) as the exact quantum dynamics in
finite time. This scheme is known alternately as transitionless
quantum driving or a shortcut to adiabaticity [25–29]. The
prize that comes with the shortcut is that the adiabatic quantum
dynamics of H0(t) is generated by a Hamiltonian H (t), which
differs from H0 by counterdiabatic terms H1(t). This shortcut
to adiabaticity does not apply directly to the adiabatic braid-
ing of non-Abelian quasiparticles because of the associated
ground-state degeneracy. Here, we first generalize this scheme
to systems with degenerate manifolds of states where adiabatic

dynamics generates non-Abelian Berry phases. Then, we apply
this generalized shortcut to non-Abelian statistics, using a
simple model for braiding of Majorana bound states. Within
this model, the braiding of Majorana zero modes is based
on judiciously chosen temporal variations of the couplings
between a number of Majorana end states. We find that
shortcuts to non-Abelian braiding can be implemented by
introducing a small number of additional local couplings.

Shortcuts to adiabaticity for degenerate systems. The exact
quantum dynamics of a Hamiltonian H (t) is generated by the
corresponding time-evolution operatorU(t) which satisfies the
Schrödinger equation

i∂tU(t) = H (t)U(t). (1)

Thus, we can give an explicit expression for the Hamil-
tonian H (t) generating any prescribed quantum dynamics
U(t),

H (t) = i[∂tU]U†. (2)

The shortcut to adiabaticity [23,24] follows by inserting into
this expression the adiabatic time-evolution operator

U(t) =
∑

n

e−i
∫ t

0 dt ′En(t ′)+iγn(t)|ψn(t)〉〈ψn(0)| (3)

for the Hamiltonian H0(t), with instantaneous eigenval-
ues En(t), instantaneous eigenstates |ψn(t)〉, and Berry
phase γn(t) = i

∫ t

0 dt ′〈ψn(t ′)|∂t ′ψn(t ′)〉. One finds that H (t) =
H0(t) + H1(t) with the so-called counterdiabatic terms [23,24]

H1(t) = i
∑

n

(|∂tψn〉〈ψn| − |ψn〉〈ψn|∂tψn〉〈ψn|). (4)

Such shortcuts to adiabaticity have recently been implemented
experimentally for effective two-level systems arising in
trapped Bose-Einstein condensates [30] and for the electron
spin of a single nitrogen vacancy center [31].

Following Wilczek and Zee [32], we now consider a
Hamiltonian H0(t) whose instantaneous spectrum, defined
through

H0(t)
∣∣ψn

α (t)
〉 = En(t)

∣∣ψn
α (t)

〉
, (5)

includes one or more sets of states |ψn
α (t)〉 which remain

degenerate for all t . Here, α = 1, . . . ,dn labels the states within
the degenerate subspace n of multiplicity dn.
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We first define |ηn
α(t)〉 as the adiabatic solution of the time-

dependent Schrödinger equation

i∂t

∣∣ηn
α(t)

〉 = H0(t)
∣∣ηn

α(t)
〉
, (6)

with initial condition |ηn
α(0)〉 = |ψn

α (0)〉. In the adiabatic limit,
the time-evolved state need not remain parallel to |ψn

α (t)〉 but
will in general be a linear combination of all basis states within
the degenerate subspace,

∣∣ηn
α(t)

〉 =
∑

β

Un
αβ

∣∣ψn
β (t)

〉
. (7)

Inserting this expansion into the time-dependent Schrödinger
equation yields an equation for the coefficient matrices Un,

i∂tU
n = Un(En1 − An), (8)

where An
αβ = i〈ψn

β |∂tψ
n
α 〉 denotes the non-Abelian Berry

connection [32]. This is solved by

Un(t) = e−i
∫ t

0 dt ′En(t ′)T̃ ei
∫ t

0 dt ′An(t ′) (9)

in terms of time-ordered exponentials.
The adiabatic time evolution of the Hamiltonian H0(t)

follows the time-evolution operator

U(t) =
∑
n,α

∣∣ηn
α(t)

〉〈
ηn

α(0)
∣∣ =

∑
n,αβ

Un
αβ

∣∣ψn
β (t)

〉〈
ψn

α (0)
∣∣. (10)

Now we use Eq. (2) to derive the Hamiltonian H (t) for which
this is the exact time-evolution operator. Inserting Eq. (10)
into (2), we obtain the shortcut to adiabaticity (all quantities
evaluated at time t)

H = i
∑

n

∑
αβ

{
[(Un)†U̇n]βα

∣∣ψn
α

〉〈
ψn

β

∣∣

+ [(Un)†Un]βα

∣∣∂tψ
n
α

〉〈
ψn

β

∣∣}. (11)

The second term in H simplifies due to unitarity of Un,
(Un)†Un = 1. Combining unitarity and Eq. (8), we also have
i(Un)†U̇n = (En1 − An), which simplifies the first term. With
these identities, we readily find H (t) = H0(t) + H1(t) with

H1 = i
∑

n

⎡
⎣∑

α

∣∣∂tψ
n
α

〉〈
ψn

α

∣∣ −
∑
αβ

∣∣ψn
α

〉〈
ψn

α

∣∣∂tψ
n
β

〉〈
ψn

β

∣∣
⎤
⎦ .

(12)
These counterdiabatic terms generalize the shortcut to adia-
baticity to systems with degenerate spectra and non-Abelian
Berry connections.

Majorana systems. In view of topological quantum in-
formation processing, we specifically consider the counter-
diabatic terms for a Bogoliubov–de Gennes Hamiltonian in
Majorana representation,

H0 = i
∑
nα

εnγn,2α−1γn,2α. (13)

Here, both εn and the γn,α are explicitly time dependent
and associated with the instantaneous Hamiltonian. The
instantaneous many-body spectrum of H0 contains degenera-
cies whenever an eigenenergy εn vanishes or when one or
several nonzero εn are degenerate. The Majorana eigenmodes
associated with εn are denoted by γn,α , where α takes on 2N

values for an N -fold degenerate energy εn. The counterdiabatic
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FIG. 1. (Color online) (a) Y junction with central Majorana γ0

and three outer Majoranas γj (j = 1,2,3). The outer Majoranas are
coupled to the inner Majoranas with strength 	j . (b) Basic step of
the braiding procedure, moving a zero-energy Majorana from the end
of wire 1 to the end of wire 3 by varying the 	j . Dark (light) wires
indicate zero (nonzero) couplings 	j . Dark red circles correspond
to zero-energy Majoranas, and light blue circles indicate Majoranas
acquiring a finite energy by coupling. In the intermediate step, the
zero-energy Majorana is delocalized over the three Majoranas along
the light wires. (c) Three steps as described in (b) result in braiding
the zero-energy Majoranas γ1 and γ2.

terms H1 guarantee that the time evolution generated by the full
Hamiltonian H0 + H1 does not take the Majorana eigenmodes
γn,α out of the subspace n. At the same time, H1 should not alter
the time evolution within these subspaces. In the Supplemental
Material [33] we show that these conditions yield

H1 = i

4

∑
nα

γ̇n,αγn,α − i

8

∑
n,αβ

γn,α{γn,α,γ̇n,β}γn,β . (14)

This result complements the counterdiabatic terms in first
quantization in Eq. (12).

Application to non-Abelian braiding. A minimal model for
non-Abelian braiding starts from a Y junction of three one-
dimensional topological superconductors, labeled wire 1, 2,
and 3, as illustrated in Fig. 1(a) [34–36]. If all three arms are
in the topological phase, there are four Majorana bound states
in this system. Three of these are located at the outer ends of
the three wires, with Bogoliubov operators labeled γj for wire
j , and a fourth Majorana mode γ0 is located at the junction of
the three wires. As long as the three arms have a finite length,
these outer Majorana bound states hybridize with the central
Majorana and the system is described by the Hamiltonian

H0 = i

3∑
α=1

	αγ0γα. (15)

This Hamiltonian couples the central Majorana γ0 to a linear
combination of the outer three Majoranas. We can thus readily
bring it to the form of Eq. (13),

H0 = ih	γ0γ	, (16)

with γ	 = (1/h	)
∑3

α=1 	αγα and h	 = [	2
1 + 	2

2 +
	2

3]1/2. For any choice of the couplings 	j , there are also two
linearly independent combinations of the outer Majoranas
which do not appear in the Hamiltonian and thus remain true
zero-energy Majoranas. Due to these zero-energy modes,
the two eigenvalues of H0 are each doubly degenerate.
Specifically, when just one of the couplings 	j is nonzero,
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these two zero-energy Majoranas can be identified with
the Majoranas located at the ends of those wires with zero
coupling.

We assume that we can change the couplings 	j as a
function of time. We can now imagine the following braiding
procedure [34,36]. Initially, only 	3 is nonzero. Then, γ1

and γ2 are zero-energy Majoranas. In a first step, we move
a zero-energy Majorana from the end of wire 1 to the end
of wire 3, without involving the zero-energy Majorana γ2, as
shown in Fig. 1(b). To this end, first increase 	1 to a finite
value. The zero-energy Majorana originally located at the end
of wire 1 is now delocalized and a linear combination of γ1 and
γ3. We then localize the Majorana zero mode at the end of wire
3 by reducing 	3 down to zero, leaving only 	1 nonzero. The
braiding process is completed by two completely analogous
moves [see Fig. 1(c)]: We first move the zero-energy Majorana
from the end of wire 2 to the end of wire 1, and finally the
zero-energy Majorana from wire 3 to wire 2. The combined
effect of this procedure is to exchange the initial zero-energy
Majoranas at the ends of wires 1 and 2. One can check
easily [36] that the change of the state of the system under
this adiabatic exchange is described by the familiar braiding
matrix U12 = exp(πγ1γ2/4).

When performing this exchange operation over a finite
time interval, there will be corrections to the adiabatic time
evolution. We can now apply one of the non-Abelian shortcut
formulas in Eqs. (12) or (14). As shown in the Supplemental
Material [33], we obtain

H1 = i

2
γ̇	γ	 = i

2h2
	

∑
α<β

(	β	̇α − 	α	̇β)γαγβ. (17)

Thus, the shortcut is based on additional couplings between
the outer Majoranas, while the adiabatic braiding protocol only
uses couplings between the central and the outer Majoranas
[see Fig. 2(a)]. Specifically, during the basic step of moving a
zero-energy Majorana from the end of wire i to wire j , only
the couplings 	i and 	j are nonzero. According to Eq. (17),
performing this step accurately in finite time merely requires
the additional coupling between γi and γj .

Practical implementation. There has been considerable
work on how to implement braiding based on one-dimensional
superconducting phases [34–39]. The couplings of the Ma-
joranas can, e.g., be varied by changing the length of the
intervening topological section. However, this may not be

(a)

1 0

3

2

(b)

FIG. 2. (Color online) (a) Minimal implementation required for
braiding with the shortcut protocol. The additional couplings needed
for the shortcut protocol are shown in blue. (b) Wire network with
many Majoranas allowing for pairwise exchanges of neighboring
Majoranas including the shortcut protocol. Implementing the shortcut
merely requires the addition of local couplings within the network.

easily compatible with the geometric constraints imposed
by the shortcut protocol [cf. Fig. 2(a)]. A better approach
may be to vary the magnitude of the topological gap. Both
methods control the overlap of the Majorana end states and
hence their coupling. Physically, this can be achieved, say, in
quantum-wire based realizations, by changing the chemical
potential by means of a gate electrode [34] or a supercurrent
in the adjacent s-wave superconductor [40].

More controlled variations of the Majorana couplings may
be possible by exploiting charging effects [36] or by quantum
dots [37]. For simplicity, assume that the quantum dot has
a single level which is tunnel coupled to the ends of two
topological wires with their Majorana end states. When the
dot level is far from the Fermi energy, there is essentially no
coupling between the adjacent Majoranas. Conversely, when
the dot level is close to the Fermi energy, the Majoranas
become strongly coupled. This approach modifies the coupling
of the Majoranas by conventional gate control of a quantum-
dot level and is also compatible with the geometric constraints
of the shortcut protocol.

So far, we have focused on the exchange of two Majoranas
within the minimal setting of a Y junction. Of course, one
can readily imagine a scheme in which there is an entire
keyboard of Majoranas and any two neighboring Majoranas
can be readily braided. Importantly, amending this scheme
to implement the counterdiabatic terms merely requires addi-
tional local couplings, as shown in Fig. 2(b).

Robustness. The manipulation of the quantum state is
independent of the precise braiding path as long as the
exchange is performed adiabatically. In contrast, the diabatic
corrections are sensitive to the details of the braiding protocol.
Consequently, the counterdiabatic terms (17) are not topolog-
ically protected, depend on the specifics of the braiding path,
and, for full effect, have to be implemented exactly for a given
H0(t).

However, we find that one can reach substantial reduc-
tions in the diabatic errors even when the shortcut protocol
is implemented only with reasonable accuracy. We have
computed the diabatic errors numerically, both for the bare
braiding protocols and for approximate implementations of the
counterdiabatic terms. Specifically, we consider the diabatic
errors for

Hλ(t) = H0(t) + λH1(t). (18)

For λ = 1, the counterdiabatic terms exactly compensate the
diabatic corrections for any duration of the braiding protocol.
As approximate implementations of the counterdiabatic terms,
we consider relative errors of 10% (λ = 0.9) and 30% (λ =
0.7). We compute both the transition probability out of the
degenerate subspace and the accumulated deviation from the
adiabatic Berry phase.

Implementing the basic step [shown in Fig. 1(b)] of the
braiding protocol in Fig. 1(c) by 	1(t) = 	 sin ϕ(t) and
	3(t) = 	 cos ϕ(t), with ϕ(t) increasing from 0 to π/2,
both the transition probability and the phase error exhibit
a power-law dependence on the protocol duration T . The
power law depends on the specific choice for ϕ(t). Choosing
the latter such that the first derivative vanishes at the end
points yields a T −4 dependence. In fact, we find that for each
order m of vanishing time derivatives, the T dependence of
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FIG. 3. (Color online) Diabatic errors vs duration of braiding
protocol for the transition probability out of the degenerate subspace
of the initial state. The inset shows the phase error relative to the
non-Abelian Berry phase. For both quantities, curves are shown in
the absence of counterdiabatic terms [λ = 0 in Eq. (18)] and with
counterdiabatic terms with 10% (λ = 0.9) and 30% (λ = 0.7) relative
error. There would be no diabatic error if the counterdiabatic errors
were implemented exactly.

the errors scale with a power 2(m + 1), which is a well-
known effect (see, e.g., Ref. [41]; the additional factor of
2 arises since we consider expectation values rather than
amplitudes). Corresponding numerical results are included
with the Supplemental Material [33]. We also find similar
power laws for the protocol given in Ref. [36], in which one
initially increases 	1, leaving 	3 constant, and then reduces
	3 to zero in a second step [33].

Exponentially small transition rates can be realized by
choosing 	1(t) = 	 sin2 ϕ(t) and 	3(t) = 	 cos2 ϕ(t). Now
the gap assumes a minimum during the protocol as in the
familiar Landau-Zener process. For the numerical calculation
presented in Fig. 3 we have chosen ϕ(t) to have a smooth
derivative. The diabatic transition rate is indeed exponential in
the protocol duration, which is somewhat counterintuitive as
the transition rate actually decreases relative to the previously
discussed protocols, although the gap is smaller. The phase
error also exhibits exponential scaling, as shown in the inset
of Fig. 3.

An exact implementation of the counterdiabatic terms fully
corrects for these errors. As can be seen from Fig. 3, a
suppression by two orders of magnitude merely requires an
implementation which is accurate at the 10% level. Even a
very rough implementation at the 30% level still substantially
reduces the errors. More generally, we find that the relative
error scales approximately as (1 − λ)2 with the accuracy
of the implementation of H1. This can be understood by
treating the mismatch to the counterdiabatic Hamiltonian
(λ − 1)H1(t) perturbatively (the power of 2 arises because the
errors involve squared wave-function overlaps). It is also worth
noting that the approximate counterdiabatic terms suppress
the diabatic error, but do not modify its scaling with protocol
duration.

Conclusions. In summary, we have generalized the concept
of shortcuts to adiabaticity to non-Abelian Berry phases and
showed how this can in principle be used to implement
non-Abelian braiding operations exactly in a finite time. Such
protocols can substantially improve the accuracy of braiding
operations performed in a finite time interval. It is interesting to
note that our scheme bears some resemblance with the concept
of quasiadiabatic continuity for topological phases [42].

In this Rapid Communication we have focused on a
simple model of non-Abelian braiding which excludes the
quasiparticle continuum. The current protocols are there-
fore useful whenever there is a separation of scales be-
tween the finite-energy subgap states and the magnitude
of the topological gap. Including the quasiparticle con-
tinuum is an interesting problem for future research. It
should also be interesting to extend the current considera-
tions for Majorana zero modes to more exotic non-Abelian
quasiparticles.

Note added. Recently, we became aware of Ref. [43], which
independently introduces shortcuts to non-Abelian manipula-
tions in the context of holonomic quantum computation.
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