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Relaxation mechanisms of the persistent spin helix
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We study the lifetime of the persistent spin helix in semiconductor quantum wells with equal Rashba and linear
Dresselhaus spin-orbit coupling strengths. In order to address the temperature dependence of the relevant spin
relaxation mechanisms we derive and solve a semiclassical spin diffusion equation taking into account the effects
of spin-dependent impurity scattering, cubic Dresselhaus spin-orbit coupling and electron-electron interactions.
For the experimentally relevant regime we find that the lifetime of the persistent spin helix is mainly determined
by the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron interactions. We propose that
even longer lifetimes can be achieved by generating a spatially damped spin profile instead of the persistent spin
helix state.
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I. INTRODUCTION

Within the field of spintronics,1–3 semiconductor devices
with spin-orbit coupling have attracted great attention over
the past years because they offer a setting where electronic
spin polarizations can be generated and manipulated in the
absence of ferromagnetism or external magnetic fields.4 This
opens the perspective of adding the spin degree of freedom
to the existing semiconductor logic in information technology
without encountering the challenge of artificially integrating
local magnetic fields in devices. From the point of view of
such applications it is clearly desirable to maximize the spin
lifetimes and coherence lengths in semiconductor spintronics
devices.

In this respect an ideal candidate is the persistent spin helix
(PSH), a spin-density wave state with infinite lifetime, which
exists in two-dimensional electron systems with Rashba and
linear Dresselhaus spin-orbit interaction of equal magnitude5,6

due to the SU(2) symmetry of the corresponding Hamiltonian.6

On a less abstract level this can be understood as the combined
effect of diffusion and spin precession: the momentum-
dependent spin-orbit field is in plane and perpendicular to
the PSH wave vector, and its magnitude grows linearly with
the projection of the momentum argument on the direction
of this wave vector. If, for instance, a spin-up electron starts
at the crest of z-spin polarization and travels at the Fermi
velocity in the direction of the PSH wave vector, its spin
precesses precisely by an angle of 2 π during the time it takes
to cover the distance of one PSH wavelength. If the electron
propagates off direction, the spin will still match the phase of
the PSH everywhere because the larger traveling time to, e.g.,
the neighboring crest is exactly compensated by the smaller
precession frequency.

One promising progress in this context is the recent
realization of the persistent spin helix in a GaAs/AlGaAs
quantum well by Koralek et al.7 They used transient spin
grating spectroscopy8 to optically excite a sinusoidal profile
of out-of-plane spin polarization with the “magic” PSH wave
vector. Due to the presence of symmetry-breaking effects in a
real quantum well, instead of a state with infinite lifetime, two
decaying modes were observed. Koralek et al. named these
two modes the spin-orbit-reduced and -enhanced modes—the

latter being the PSH. Although the lifetime of the observed
PSH mode is not infinite it is still of the order of 100 ps,
exceeding typical transient spin grating lifetimes by two orders
of magnitude. Intriguingly, the temperature-dependent lifetime
of the PSH displays a maximum close to 100 K.

In order to improve the lifetimes it is necessary to figure out
what the dominant relaxation mechanisms are. The tempera-
ture dependence of the PSH lifetime suggests the involvement
of electron-electron interactions,7 which are known to relax
spin currents via the spin Coulomb drag effect.9–12 However,
since electron-electron interactions respect the SU(2) symme-
try of the PSH state, they cannot be the sole reason for a finite
lifetime but in addition a symmetry-breaking term must be
present.6 Here, we consider extrinsic spin-orbit interaction13

and cubic Dresselhaus spin-orbit interaction14 as a possible
source of symmetry breaking as proposed by Koralek et al.7

It is the purpose of the present work to develop a theoretical
understanding of the PSH lifetime and how this lifetime could
be enhanced. In particular we consider the effect of electron-
electron interactions in the diffusive D’yakonov-Perel’ regime.
Regarding candidate SU(2) breaking mechanisms, our model
(Sec. II) takes into account the effect of extrinsic spin-orbit
coupling, which results from the interaction of the conduction
electron spins with impurities, as well as the cubic Dresselhaus
spin-orbit interaction, which is known to be present in the
experimental quantum well to a non-negligible amount.7 In
Sec. III we derive a diffusion equation for the spin density in
our model system [Eq. (56)] and discuss the contribution of
the different symmetry-breaking mechanisms. In Sec. IV we
present analytical solutions for a definite crystal orientation
and initial condition [reflected in the more compact diffusion
equation (67)] and the simplified situation where only one
symmetry-breaking mechanism is present. We propose that
a spatially damped spin profile could enhance the lifetime
compared to the PSH lifetime. For the parameters of the
GaAs/AlGaAs quantum well used by Koralek et al.7 (Sec. V)
it turns out that electron-electron interactions in combination
with cubic Dresselhaus spin-orbit interaction are the key
ingredients to understand the temperature dependence of the
PSH lifetime. Detailed conclusions and an outlook are given
in Sec. VI.
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II. MODEL

In an envelope-function description15 of the conduction-
band electrons in semiconductor quantum wells, the spin-orbit
interaction takes the form of a momentum-dependent, in-plane
effective magnetic field. The two dominant contributions to
this field are linear in the in-plane momentum: The Rashba
field,16 which has winding number 1 in momentum space, is
caused by structure inversion asymmetry and can be tuned by
changing the doping imbalance on both sides of the quantum
well. The linear Dresselhaus17 contribution, in contrast, has
winding number −1 and its physical origin is the bulk inversion
asymmetry of the zinc-blende-type quantum well material. It is
proportional to the kinetic energy of the electron’s out-of-plane
motion and therefore decreases quadratically with increasing
well width. In addition, a small cubic Dresselhaus spin-orbit
interaction is present as well.

Thus we write the Hamiltonian for conduction-band elec-
trons in the (001) grown quantum well as

H = H0 + Himp + He−e. (1)

The first term represents a two-dimensional electron gas
(2DEG) with a quadratic dispersion and intrinsic spin-orbit
interaction

H0 =
∑
s,s ′;k

ψ
†
ks ′ H0s ′s ψks (2)

with the 2 × 2 matrix in spin space

H0 = εk + b(k) · σ . (3)

The ψ
†
ks (ψks) are creation (annihilation) operators for elec-

trons with momentum k and spin projection s. Within the
standard envelope function approximation15 one finds εk =
h̄2k2

2 m
where m is the effective mass. The vector of Pauli matrices

is denoted by σ and the in-plane spin-orbit field

b(k) = bR(k) + bD(k) (4)

contains Rashba as well as linear and cubic Dresselhaus spin-
orbit interactions18 (henceforth h̄ ≡ 1),

bR(k) = α vF

(
ky

−kx

)
, (5)

bD(k) = vF cos 2φ

[
β ′
(−kx

ky

)
− γ

k3

4

(
cos 3θ

sin 3θ

)]

+vF sin 2φ

[
β ′
(

ky

kx

)
+ γ

k3

4

(
sin 3θ

− cos 3θ

)]
. (6)

Here, vF is the Fermi velocity, the angle θ gives the direction
of k with respect to the x axis, and φ denotes the angle between
the latter and the (100) crystal axis. The strength of the Rashba
spin-orbit field is controlled by α and the coefficient for linear
Dresselhaus coupling β ′ contains a momentum-dependent
renormalization due to the presence of cubic Dresselhaus
coupling,

β ′ = β − γ k2/4, (7)

where the “bare” linear Dresselhaus coefficient β is related
to the one for cubic Dresselhaus γ via β = γ 〈k2

z 〉 = γ (π/d)2

(d being the quantum well width). We assume in the following
that the spin-orbit interaction is small as compared to the Fermi
energy EF , i.e., bF /EF � 1, where bF ≡ b(kF ) with kF being
the Fermi momentum.

Furthermore, we have included in Eq. (1) electron-impurity
interactions,

Himp = 1

V

∑
s,s ′;k,k′

ψ
†
k′s ′Uk′ks ′s ψks , (8)

(henceforth volume V ≡ 1). The impurity potential is a matrix
in spin space,

Ûkk′ = V
imp
kk′ ({Ri})

(
1 + σz

iλ2
0

4
[k × k′]z

)
, (9)

where the spin-dependent part arises from extrinsic spin-orbit
interaction13 of the conduction electrons with the impurity
potential. In real space, the matrix operator for electron-
impurity interactions reads

Û (x) = V imp(x) + iλ2
0

4
[σ × ∇V imp(x)] · ∇, (10)

with V imp(x) =∑i v(x − Ri), where v(x) denotes the poten-
tial of each single impurity, {Ri} are the impurity positions,
eventually to be averaged over. The material parameter λ0 =
4.6 × 10−10 m, obtained from band-structure calculations for
GaAs,15 characterizes the spin-orbit coupling for conduction-
band electron spins in the presence of electric fields. (It is
also contained in the Rashba spin-orbit coupling constant,
where the electric field is not the one of impurity potentials
but of the confining quantum well potential.) Equation (9),
with V

imp
kk′ ({Rj }) =∑j v(k′ − k) e−i(k′−k)·Rj , is obtained from

Eq. (10) by Fourier transformation.
Finally, the Hamiltonian (1) contains electron-electron

interactions,

He−e = 1

2

∑
k1 ···k4
s1 ,s2

Vk3,k4,k1,k2 ψ
†
k4s2

ψ
†
k3s1

ψk1s1ψk2s2 (11)

with a Thomas-Fermi screened Coulomb potential of the form
Vk3,k4,k1,k2 = v(|k3−k1|)

ε(|k3−k1|) δ �k1+ �k2− �k3− �k4,0 where v(q) = h̄22 π
m q a∗ and

ε(q) ≈ 1 + 2
q a∗ with a∗ = h̄24 π ε0 εr

m e2 being the effective Bohr
radius. For the GaAs dielectric constant we take a standard
value, εr = 12.9.

III. SPIN-DIFFUSION EQUATION

In this section, starting with the semiclassical kinetic
Eq. (15) for the spin density, whose origin is explained in
Appendix VI, we derive the general spin-diffusion Eq. (56).
This derivation is based on the expansion of the spin density
in terms of winding numbers [Eqs. (20)–(23)] and uses the
separation of time scales in the D’yakonov-Perel’ regime.19

More precisely, by momentum integration of the kinetic
equation, we derive continuity Eqs. (20)–(31) for the isotropic
spin components and generalized Ohm’s laws (36)–(45) and
(52) and (53) for the anisotropic spin components. Plugging the
steady-state solutions for the anisotropic spin components into
the isotropic equations, we arrive at the general spin-diffusion
Eq. (56). It is valid for general initial and boundary conditions
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and takes into account all SU(2) breaking elements of our
model as presented in the previous section. Equation (56) is
the basis for investigating the lifetime of the persistent spin
helix in the following Secs. IV and V, where the choice of
a definite initial condition similar to the experiment7 reduces
the problem to the 2 × 2 diffusion equations (67) and (84),
respectively.

A. Semiclassical kinetic equation

Our goal is to describe the dynamics of the spin density
in real space. Using the Nonequilibrium statistical operator
method20 (see Ref. 22 and Appendix VI) we derive kinetic
equations for the charge and spin components of the Wigner-
transformed density matrix

ρ̂k(x,t) = nk(x,t) + sk(x,t) · σ , (12)

which relates to the electron wave function in real space
according to

ρk;ss ′ (x,t) =
∫

d r eik·r〈ψ†
s ′ (x − r/2,t) ψs(x + r/2,t)〉. (13)

If we restrict our calculation to the zeroth order in b/EF

and furthermore neglect terms that are nonlinear in the spin
density sk(x,t),23 the equations for charge and spin read

∂t nk + v · ∂x nk = J
imp
k + J e−e

k , (14)

2 sk × b(k) + ∂t sk + v · ∂x sk = J imp
k + J e−e

k (15)

with vi = ki/m, where the index i = x,y labels the in-
plane spatial directions. Note that spin and charge equations
decouple in this approximation because the gradient terms
containing ∂ki

b(k), which would couple the spin and charge
equations, are of higher order in b/EF . Moreover, in the
diffusive limit bF τ � 1 (where τ is the momentum relaxation
time), they would yield terms of higher order in this small
parameter bF τ .14,25 On the right-hand side of Eqs. (14) and
(15), respectively, we have the scalar and vector collision
integrals for impurity scattering,

J
imp
k = −

∑
k′

Wkk′ δ(�ε) �n

{
1 + λ4

0

16
[(k × k′)z]2

}
, (16)

J imp
k = −

∑
k′

Wkk′ δ(�ε)

⎧⎪⎨
⎪⎩�s + λ2

0

2
[k × k′]z

⎛
⎜⎝

−s ′
y

s ′
x

0

⎞
⎟⎠+ λ4

0

16
[k × k′]2

z

⎛
⎜⎝

sx + s ′
x

sy + s ′
y

sz − s ′
z

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , (17)

with the transition rate Wkk′ = 2 π ni |v(k′ − k)|2, where ni is the impurity concentration, �ε ≡ εk − εk′ , �n ≡ nk − nk′ and
�s ≡ sk − sk′ , as well as electron-electron scattering,

J e−e
k1

= 2 π
∑
2,3,4

(2|V1234|2 − V1234V1243)δ(�ε̃) [(1 − n1)(1 − n2) n3 n4 − (1 ↔ 3,2 ↔ 4)], (18)

J e−e
k1

= 2 π
∑
2,3,4

δ(�ε̃)

{
(1 − n1)(1 − n2) n3 n4

[
2|V1234|2

(
s3

n3
− s1

1 − n1

)

−V1234V1243

(
s3

n3
+ s4

n4
− s1

1 − n1
− s2

1 − n2

)]
− (1 ↔ 3,2 ↔ 4)

}
. (19)

Here, we abbreviated j ≡ k j (where j = 1,2,3,4 labels initial
and final states of the two collision partners) and �ε̃ ≡ εk1 +
εk2 − εk3 − εk4 .

In our approximation the charge kinetic Eq. (14) decou-
ples from the spin kinetic Eq. (15) and is independently
solved by the Fermi-Dirac distribution nk(x,t) = f (εk) =
[1 + e(εk−EF )/kBT ]−1, where kB denotes the Boltzmann con-
stant and T is the temperature. Since we are not interested in
charge transport or local charge excitations, we assume that the
charge distribution is given by this spatially uniform solution.
In the next subsection we use the spin kinetic Eq. (15) to
derive a drift-diffusion equation for the real space spin density,
cf. Refs. 14,18,25, and 26.

B. Spin-diffusion equation in the D’yakonov-Perel’ regime

In the following, we consider the D’yakonov-Perel’19

regime of strong scattering and/or weak spin-orbit interaction,
bF τ � 1. During the time interval τ between two collisions
that alter the momentum of an electron—and thereby b(k)—its

spin precesses around the spin-orbit field only by the small
angle bF τ . This results in a random-walk behavior of the
spin.27 In contrast to the weak scattering limit bF τ � 1,
the spin polarization is actually stabilized by scattering in
the strong scattering regime bF τ � 1: the stronger the
scattering, the slower the D’yakonov-Perel’ spin relaxation—a
phenomenon often referred to as “motional narrowing” in
analogy to the reduction of linewidths in NMR spectroscopy
due to disorder in the local magnetic fields.

In the spirit of the derivation by D’yakonov and Perel’19 we
will exploit the separation of the time scales that govern the
evolution of isotropic (in momentum space) and anisotropic
parts of the spin distribution function. Since we deal with
a spatially inhomogeneous spin density we also have to
assume that the time scale connected to the gradient term
in Eq. (15) is large as compared to the transport time, i.e.,
vF q τ � 1, where q is a typical wave vector of the Fourier
transformed spin density. Thus when speaking of “orders in
bF τ” in the following, we actually have in mind “orders in
max{bF τ, vF q τ }.”
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In order to solve the spin kinetic Eq (15) we split off
an isotropic component S(x,t) from the spin density sk

and expand the remaining anisotropic component in winding
numbers and powers of momentum k,

sk = −2 π

m
f ′(εk) S + sk,1 + s̃k,1 + sk,3, (20)

with

sk,1 = f ′(εk)
k

m

∑
n=±1

δkn(x,t) ei n θ , (21)

s̃k,1 = f ′(εk)
k3

k2
F m

∑
n=±1

δ k̃n(x,t) ei n θ , (22)

sk,3 = f ′(εk)
k3

k2
F m

∑
n=±3

δkn(x,t) ei n θ . (23)

The anisotropic components of the distribution function arise
due to the gradient term in the Boltzmann equation and the
precession about the spin-orbit field. Since the spin-orbit fields
(5), (6) contain terms with winding numbers ±1 and ±3,
only these winding numbers have to be considered for the
anisotropic part of the spin density to lowest order in bF τ ,
as will become clear below. Furthermore, one can show that
the spin density contains only the same powers of k as the
corresponding driving terms in Hamiltonian (3). Thus we
consider a k and a k3 term in the ansatz for the winding number
±1 terms of the spin density (21) and (22), because the winding
number ±1 terms of the kinetic Eq. (15) are the gradient term,
the linear Rashba and Dresselhaus spin-orbit fields as well

as the renormalization of the linear Dresselhaus term due to
cubic Dresselhaus spin-orbit interaction. The winding number
±3 component of the spin density (23), on the other hand,
contains only a k3 term because only the cubic Dresselhaus
spin-orbit field contributes to winding number ±3 in the kinetic
equation (15).

In the following we consider pointlike impurities, i.e.,
isotropic scattering with τ−1 = m ni v(0)2. Furthermore, we
assume low temperature T � TF ≡ EF /kB and perform a
Sommerfeld expansion up to order (T/TF )2 in all momentum
integrations. In this procedure we encounter integrals of the
form (n = 2,3,4,6,8)∫ ∞

0
dεk f ′(εk) kn = −kn

F zn(T ) (24)

with z2 = 1 and the Sommerfeld functions (see Appendix VI)

z3 (T ) = 1 + π2

8

T 2

T 2
F

+ O
(

T 4

T 4
F

)
, (25)

z4 (T ) = 1 + π2

3

T 2

T 2
F

, (26)

z6 (T ) = 1 + π2 T 2

T 2
F

, (27)

z8 (T ) = 1 + 2 π2 T 2

T 2
F

+ O
(

T 4

T 4
F

)
. (28)

With the goal of obtaining diffusion equations for the real-
space spin density we start by momentum integration of the
kinetic equation, 1

(2π)2

∫
dk [Eq. (15)], using the ansatz (20).

This yields the isotropic equation for the isotropic component
of the spin density,

∂t Sx = k2
F

2 π

{
1

2m
(∂xδk̂c,x + ∂yδk̂s,x) + αvF δk̂c,z − βvF (sin 2φδk̄c,z + cos 2φδk̄s,z)

}
− z4 γey Sx, (29)

∂t Sy = k2
F

2 π

{
1

2m
(∂xδk̂c,y + ∂yδk̂s,y) + αvF δk̂s,z + βvF (sin 2φδk̄s,z − cos 2φδk̄c,z)

}
− z4 γey Sy, (30)

∂t Sz = k2
F

2 π

{
1

2m
(∂xδk̂c,z + ∂yδk̂s,z) − αvF (δk̂c,x + δk̂s,y) + βvF [sin 2φ(δk̄c,x − δk̄s,y) + cos 2φ(δk̄c,y + δk̄s,x)]

}
(31)

with

δ k̂c(s) = δkc(s) + z4δ k̃c(s),

δ k̄c(s) = δ k̂c(s)−ζ (z4δkc(s) + z6δ k̃c(s) + z6δkc3(s3)), (32)

δ k̄c(s) = δ k̂c(s)−ζ (z4δkc(s) + z6δ k̃c(s) − z6δkc3(s3)),

where

ζ = γ k2
F

4 β
(33)

represents the ratio of cubic and linear Dresselhaus coupling
strengths and

δkc(c3) = 2 Re δk1(3), δ k̃c = 2 Re δ k̃1,
(34)

δks(s3) = −2 Im δk1(3), δ k̃s = −2 Im δ k̃1.

Here, the compact notation is to be understood component-
wise. For instance, the x component of δ k̄s reads explicitly
δk̄s,x = δk̂s,x −ζ (z4δks,x + z6δk̃s,x + z6δks3,x).

Equations (29)–(31) can be seen as continuity equations
for the spin density where the anisotropic components δkc(s),
δkc(s)3, and δ k̃c(s) play the role of (generalized) spin currents.
The impurity collision integral (17) contains a spin-dependent
part due to extrinsic spin-orbit interaction, which acts as a sink
for in-plane spin polarization with the Elliot-Yafet relaxation
rate13

γey =
(

λ0 kF

2

)4 1

τ
. (35)

This relaxation mechanism can be understood as the net effect
of the electron spins precessing by a small angle around
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the extrinsic spin-orbit field during the collision with an
impurity. Since this field is perpendicular to the electronic
motion, i.e., it points in the z direction, the z component of
the isotropic spin density is unaffected by the Elliot-Yafet
mechanism.

The anisotropic components δkc(s), δ k̃c(s), and δkc3(s3) can
in turn be expressed in terms of the isotropic spin density Si

by integrating the kinetic Eq. (15) times velocity, where, this
time, we omit the time derivative. The justification for doing
so is that, in order to capture the slow precession-diffusion
dynamics of the real-space density, we can interpret the time
derivative as a coarse-grained one, i.e., ∂t S → �S/�t with
�t ≈ b−1

F � τ . Then the fast relaxation of the anisotropic
components into the steady state at the beginning of each

time interval �t contributes only in higher order in bF τ to
the average over �t . Thus to leading order, it is sufficient
to find the (quasi)equilibrium solutions for the anisotropic
coefficients. Another way of seeing this is in analogy with
the Born-Oppenheimer approximation: similarly to the fast
moving electrons in a molecule, which almost instantaneously
find their equilibrium positions with respect to the slowly
vibrating nuclei, the anisotropic parts of the spin distribution
quickly adjust to the momentary isotropic spin density. The
backaction of the anisotropic parts on the isotropic spin density
is then well described using their steady-state solution.

By integrating 1
(2π)2

∫
dk vx(y) [Eq. (15)] for the steady state,

equating terms of the same order in k, and solving for the
coefficients, we obtain the following anisotropic equations:

δkc,x = 4π [αvF (1 + z4γswτ1) − βvF sin 2φ(1 − z4γswτ1)]τ1Sz + 2π

m
τ1(∂xSx + z4γswτ1∂ySy), (36)

δkc,y = −4 πβvF τ1 cos 2φ (1 − z4γswτ1) Sz + 2 π

m
τ1(∂x Sy − z4γswτ1∂y Sx), (37)

δkc,z = 4 π (−αvF + βvF sin 2φ) τ1Sx + 4 πβvF τ1 cos 2φ Sy + 2 π

m
τ1∂x Sz, (38)

δks,x = −4 πβvF τ1 cos 2φ (1 − z4γswτ1) Sz + 2 π

m
τ1(∂y Sx − z4γswτ1∂x Sy), (39)

δks,y = 4π [αvF (1 + z4γswτ1) + βvF sin 2φ(1 − z4γswτ1)] τ1Sz + 2 π

m
τ1(∂y Sy + z4γswτ1∂x Sx), (40)

δks,z = 4 πβvF τ1 cos 2φ Sx − 4 π [αvF + βvF sin 2φ] τ1Sy + 2 π

m
τ1∂y Sz, (41)

δk̃c,x = −δk̃s,y = 4 πβvF ζ sin 2φτ̃1

(
1 − z6

z4
γswτ̃1

)
Sz, (42)

δk̃c,y = δk̃s,x = 4 πβvF ζ cos 2φτ̃1

(
1 − z6

z4
γswτ̃1

)
Sz, (43)

δk̃c,z = −4 π βvF ζ τ̃1(sin 2φ Sx + cos 2φ Sy), (44)

δk̃s,z = −4 π βvF ζ τ̃1(cos 2φ Sx − sin 2φ Sy). (45)

The spin densities Si act as sinks and sources in the equations
for the anisotropic coefficients δk±1,±3,i ,δk̃±1,i . Since the
spin densities Si are determined by the initial conditions
at t = 0, they are of zeroth order in bF τ , whereas the
anisotropic coefficients δk±1,±3,i ,δk̃±1,i are already first order
in bF τ . Had we included parts with higher winding numbers
±2, ± 4, ± 5, . . . in our ansatz, these would have been
generated only indirectly via the δk±1,±3,i ,δk̃±1,i (all of which
are already of first order in bF τ ) and would therefore be of
even higher order in bF τ .

In Eqs. (36)–(45) we have defined the rate of “swapping of
the spin currents”28 as

γsw =
(

λ0 kF

2

)2 1

τ
, (46)

which is due to extrinsic spin-orbit interaction like the Elliot-
Yafet rate γey [Eq. (35)], but lower order in λ0. It leads to a
“swapping of spin currents” because a finite γsw generates,

e.g., a Sy spin current flowing in the y direction in response to
a gradient of the Sx spin density in x direction [see Eq. (40)].
Equations (36)–(45) are valid to linear order in τ γsw � 1.

Since the anisotropic components δk±1 and δ k̃±1 are related
to (generalized) spin currents, the anisotropic Eqs. (36)–(45)
express generalized Ohm’s laws. The effective relaxation times
for the anisotropic parts of the spin-distribution function are
obtained as the inverse sum of the collision integrals for normal
impurity scattering, spin-dependent impurity scattering, and
electron-electron scattering,

τ1 =
(

1

τ
+ γey z6 + 1

τe−e,1

)−1

, (47)

τ̃1 =
(

1

τ
+ γey

z8

z4
+ 1

z4 τ̃e−e,1

)−1

. (48)

Here, the temperature-dependent rates τ−1
e−e,1, τ̃

−1
e−e,1 account

for the decay of the respective component (sk,1 or s̃k,1)
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of the spin distribution due to two-particle Coulomb
scattering.

The rate at which winding-number ±1 and linear-in-k
components of the spin distribution relax due to electron-

electron interaction is

τ−1
e−e,1 = �(n = 1, p = 1, l = 1), (49)

where

�(n,p,l) = −1

kB T k
p+l

F m (2π )4

∫ ∫ ∫
dk1 dk2 dk3 δ(�ε̃)kl

1[1 − f (εk3 )][1 − f (εk1+k2−k3 )]f (εk1 )f (εk2 )

× {2|V (|k1 − k3|)|2
{
cos(n[θ3 − θ1]) k

p

3 − k
p

1

} +V (|k1 − k3|)V (|k2 − k3|)
× [

k
p

1 + cos(n[θ2 − θ1])kp

2 − cos(n[θ3 − θ1])kp

3 − cos(n[θ1+2−3 − θ1]) |k1 + k2 − k3|p
]}

. (50)

It is related to the spin Coulomb drag conductivity from Refs. 9–11 via the Drude formula. The analogous expression for the
winding-number ±1 but cubic-in-k components is

τ̃−1
e−e,1 = �(n = 1, p = 3, l = 1) (51)

with �(n,p,l) from Eq. (50).
To find the anisotropic equations for δk±3 we follow a similar procedure as before and integrate 1

(2π)2

∫
dk e±i3θ [Eq. (15)],

which results in

δkc3 = γ vF k2
F π τ3

⎛
⎜⎝

sin 2φ Sz

− cos 2φ Sz

cos 2φ Sy − sin 2φ Sx

⎞
⎟⎠ , (52)

δks3 = γ vF k2
F π τ3

⎛
⎜⎝

cos 2φ Sz

sin 2φ Sz

− sin 2φ Sy − cos 2φ Sx

⎞
⎟⎠ (53)

with

τ3 =
(

1

τ
+ γey

z8

z3
+ 1

z3 τe−e,3

)−1

. (54)

The electron-electron scattering rate that enters the effective relaxation time (54) for the winding-number ±3 parts of the spin
distribution is given by Eq. (50) as

τ−1
e−e,3 = �(n = 3, p = 3, l = 0). (55)

Finally, we insert the steady-state solutions for the anisotropic coefficients (36)–(45) and (52)–(53) into the isotropic Eqs. (29)–(31)
and obtain a closed set of coupled diffusion equations for the three spatial components of the spin density,

∂t S =

⎛
⎜⎝

D ∇2 − �x − γcd z6 − γey z4 L Kxz ∂x − M ∂y

L D ∇2 − �y − γcd z6 − γey z4 Kyz ∂y − M ∂x

−Kzx ∂x + Mz ∂y −Kzy ∂y + Mz ∂x D ∇2 − �x − �y − 2 γcd z6 − �sw

⎞
⎟⎠ S. (56)

On its diagonal the matrix operator contains the genuine diffusion terms with ∇2 = ∂2
x + ∂2

y and the Elliot-Yafet relaxation rate
γey due to extrinsic spin-orbit interaction. In addition, it contains the D’yakonov’-Perel’ relaxation rates �x(y) and γcd, which
reflect the randomization of the spin orientation due to precession (between the collisions) about the winding-number ±1 and
winding-number ±3 spin-orbit fields, respectively. The Sx component is relaxed as a consequence of precession about the y

component of the spin-orbit field only, and vice versa. In contrast, the Sz component is relaxed by the precession about the full
spin-orbit field. Thus the relaxation rate of Sz due to precession is the sum of the ones for Sx and Sy , plus a correction �sw for
processes that involves the swapping of the spin currents due to extrinsic spin-orbit interaction. Due to precession there are also
off-diagonal rates L, which couple the in-plane spin components, as well as several off-diagonal mixed diffusion-precession
rates, which are accompanied by partial derivatives. In terms of the parameters of our model and previously defined quantities,
the coefficients in the spin-diffusion Eq. (56) are given by

γcd = 1
8 v2

F γ 2 k6
F τ3, (57)

�x(y)(φ) = 1

4
,q2

0

(
D ∓ β

α
[2 D − ζ z4 (D + D̃)] sin 2φ + β2

α2
[D − ζ z4 (D + D̃) + ζ 2z6 D̃]

)
, (58)

�sw = 1

2
q2

0 γsw

[
D τ1 z4 − β2

α2

(
D τ1 z4 − ζ D̃ τ̃1 z6 − ζ D τ1 z2

4 + ζ 2 D̃ τ̃1
z2

6

z4

)]
, (59)
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Kxz(yz)(φ) = q0

(
D ∓ β

α

[
D − 1

2
ζ z4 (D + D̃)

]
sin 2φ

)
+ 1

2
γsw q0

(
τ1 D z4 ± β

α
[τ1 D z4 − ζ τ̃1 D̃ z6] sin 2φ

)
, (60)

Kzx(zy)(φ) = q0

(
D ∓ β

α

[
D − 1

2
ζ z4 (D + D̃)

]
sin 2φ

)
+ 1

2
γsw τ1 q0 D z4

[
1 ± β

α
(1 − ζ z4) sin 2φ

]
, (61)

M(φ) = cos 2φ q0
β

α

[
D − 1

2
ζ z4 (D + D̃)

]
− 1

2
γsw q0 cos 2φ

β

α
[τ1 D z4 − ζ τ̃1 D̃ z6], (62)

Mz(φ) = cos 2φ q0
β

α

[
D − 1

2
ζ z4 (D + D̃)

]
− 1

2
γsw τ1 q0 D z4 cos 2φ

β

α
(1 − ζ z4) , (63)

L(φ) = cos 2φ
1

2
q2

0
β

α

[
D − 1

2 ζ z4 (D + D̃)
]

(64)

with the PSH wave vector

q0 = 4 vF m α (65)

and the effective diffusion constants

D = 1
2 v2

F τ1, D̃ = 1
2 v2

F τ̃1. (66)

Here and in the following, in the definition of quantities with
bracketed indices such as Kxz(yz) in Eq. (60), the upper sign of
± or ∓, respectively, refers to the index without parentheses
and the lower sign to the index in parentheses.

At T = 0, we have zn = 1 and electron-electron interac-
tions are absent, such that D̃ = D. Then, if we leave out
extrinsic spin-orbit interaction in the spin-diffusion Eq. (56), it
agrees with the one presented in Ref. 18 (except that we obtain
a different sign of L). If we further omit cubic Dresselhaus
spin-orbit interaction in our diffusion equation, it also concurs
with the one of Ref. 6 provided that the spin-charge coupling
is negligible.

IV. PERSISTENT SPIN HELIX IN THE PRESENCE
OF SYMMETRY-BREAKING MECHANISMS

In this section, we use the spin-diffusion Eq. (56) to
calculate the lifetime of the persistent spin helix in the presence
of symmetry-breaking mechanisms. We consider extrinsic
spin-orbit interaction, cubic Dresselhaus spin-orbit interaction,
or simple spin-flip scattering as possible symmetry-breaking
mechanisms. In order to allow for simple analytical solutions
we discuss each of the symmetry-breaking mechanisms sepa-
rately. In the case of cubic Dresselhaus spin-orbit interaction
we neglect at first the renormalization of the linear Dresselhaus
spin-orbit interaction [see Eq. (7)]. This is formally achieved
by setting ζ = 0 in Eqs. (58)–(64) while keeping the γcd term
in Eq. (56). However, we will include the renormalization
of the linear Dresselhaus spin-orbit interaction when we
discuss a possible stationary solution in the present section
and also when we compare to the experimental results in a
GaAs/AlGaAs quantum well in Sec. V.

We choose our coordinate system such that the x axis points
into the (110)-crystal direction, corresponding to φ = π

4 in
Eqs. (58)–(64). Considering an initial spin polarization that
is uniform in the x direction, then due to L(π

4 ) = M(π
4 ) = 0

the Sx component decouples from the Sy and Sz components

and we can set Sx = 0. For α = β Eq. (56) reduces for the
remaining Sy and Sz components to

∂t S =
(

D ∂2
y − q2

0 D − X 2 q0 D ∂y

−2 q0 D ∂y D ∂2
y − q2

0 D − N X

)
S, (67)

where the relaxation rates due to the respective symmetry-
breaking mechanism are represented by X and an integer N

according to Table I.
For the SU(2) symmetric situation X = 0 there exists a

steady-state solution with wave vector q0. This is the persistent
spin helix state. More precisely, for an initial spin polarization
of the form

S(x,t = 0) = S0(0, 0, cos q0y), (68)

similar to the experimental setup,7 one finds that the time-
dependent solution to Eq. (67) is

SX=0(y,t) = S0

2

( [
e−4 q2

0 D t − 1
]

sin q0y[
e−4 q2

0 D t + 1
]

cos q0y

)
. (69)

For t → ∞, i.e., in the stationary limit, this reduces to the
persistent spin helix state. The solution (69) can, for instance,
be found by using a Laplace transformation to eliminate the
time variable. Then the spatial part reduces to an eigenvalue
problem. After solving the eigenvalue problem, Eq. (69) is
then obtained by applying the inverse Laplace transformation.

In the presence of symmetry-breaking mechanisms, i.e., for
X �= 0, one can still find a steady-state solution of the form

Sy(y) = −S0

2
e−y/lX C1 sin qXy, (70)

Sz(y) = S0

2
e−y/lX (C2 sin qXy + cos qXy) . (71)

TABLE I. Specification of X and N in Eq. (67).

Simple spin flips Extr. spin-orbit int. Cubic Dress.

X 1/τsf γey γcd z6

N 1 0 2
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This solution is a spatially damped persistent spin helix state
with coefficients given by

l−1
X = q0

2

√
2 � + (N + 1) ξ − 2, (72)

qX = q0

2

√
2 � − (N + 1) ξ + 2, (73)

C1 = 4
√

2 � − (1 + N ) ξ + 2

ξ 2 (−8(N2 − 1) + (N − 1)3ξ )
[4 + (3 N + 1) ξ

−N (N − 1) ξ 2 − (4 + (N − 1) ξ ) �], (74)

C2 = 8 − (N − 1)2ξ 2 − 4 (2 � − (N + 1) ξ )

(N − 1) ξ
√

8 (N + 1)ξ − (N − 1)2ξ 2
, (75)

where ξ ≡ X/(q2
0 D) and � ≡ √

(1 + ξ )(1 + N ξ ). In the
absence of symmetry-breaking mechanisms (ξ → 0) the t →
∞ asymptotics of Eq. (69), i.e., the truly persistent spin helix
state, is recovered. The spatially damped persistent spin helix
state (70),(71) could in principle be excited with the initial
spin-polarization profile

S(x,t = 0) = S0 e−y/lX (0, 0, cos qXy) . (76)

Although the spatially damped persistent spin helix is
clearly a steady-state solution when the symmetry breaking is
caused by simple spin flips or extrinsic spin-orbit interaction,
it is not obvious that this applies also to the case of cubic
Dresselhaus spin-orbit interaction, since we have neglected the
renormalization of the linear Dresselhaus spin-orbit interaction
(ζ �= 0), which might lead to a finite lifetime of the spatially
damped state. Nevertheless, even when the renormalization
of the linear Dresselhaus spin-orbit interaction is taken into
account one can still find a steady-state solution of the form
70–75 when the ratio of the linear Rashba and Dresselhaus
spin-orbit interactions is given by

β

α
= D

D − 1
2 ζ z4 (D + D̃)

. (77)

According to Eqs. (60) and (61), we then have
Kyz(π

4 ) = Kzy(π
4 ) = 2 q0 D, as in Eq. (67). Furthermore,

�y(π
4 ) = q2

0 D [1 + F (T )] and �z(π
4 ) = q2

0 D [1 + 2 F (T )]
with the temperature-dependent dimensionless function
F (T ) = 1

4 ( D2−ζz4 D (D+D̃)+ζ 2z6 D D̃

D2−ζz4D(D+D̃)+ 1
4 ζ 2z2

4(D+D̃)2 − 1). Thus the spin-

diffusion equation can still be cast into the form of Eq. (67)
when the symmetry-breaking rate X is redefined as X̃ = X +
q2

0D F (T ). For this symmetry-breaking rate X̃ and spin-orbit
couplings satisfying Eq. (77) the spatially damped spin profile
of the form (70)–(75) is again infinitely long-lived.

This stationary state should in principle be realizable in the
GaAs/AlGaAs quantum well used in Ref. 7 because there the
ratio of β/α almost fulfills relation (77) at a temperature of T =
100 K. For the parameters of the GaAs/AlGaAs quantum well
of Ref. 7 the steady-state solution (70)–(75) is characterized by
a wave vector of qX̃ ≈ q0 and a damping length of only slightly
more than a PSH wavelength, lX̃ ≈ 1.06 2 π

q0
. Although a spin

grating with such a strong spatial damping might be difficult
to realize, it should be noted that the required damping length
is ∝ ζ−1, so that one can expect much longer damping lengths
for thinner quantum wells, where the importance of cubic

Dresselhaus spin-orbit coupling (as compared to linear one) is
reduced.

We now want to consider the conventional PSH solution.
When we stick to an initial spin polarization with the form of
a plane wave (68) similar to the experimental setup7 the time-
dependent solution of Eq. (67) is characterized by a double-
exponential decay,

Sy(y,t) = S0

2
sin q0y

4 q2
0 D(e−t/τR − e−t/τE )√(

4 q2
0 D
)2 + (N − 1)2 X2

, (78)

Sz(y,t) = S0

2
cos q0y

[
e−t/τR + e−t/τE

+ (N − 1) X(e−t/τR − e−t/τE )√(
4 q2

0 D
)2 + (N − 1)2 X2

]
(79)

with the spin-orbit-enhanced and -reduced lifetimes

τ−1
E(R) = 2 q2

0 D + 1

2
(N + 1) X

∓ 1

2

√(
4 q2

0 D
)2 + (N − 1)2 X2. (80)

In the absence of any symmetry-breaking relaxation mech-
anism, i.e., for X = 0, the proper persistent spin helix
state is recovered (τE = ∞). Expanding Eq. (80) for small
X/(4 q2

0 D) � 1 we obtain

τE ≈ 2

(N + 1)
X−1 +

(
N − 1

N + 1

)2 1

4 q2
0 D

, (81)

τR ≈ 1

4 q2
0 D

− (N + 1) X

2
(
4 q2

0 D
)2 . (82)

The reduced lifetime τR is not very sensitive to details of
the symmetry-breaking mechanism as long as the latter is
weak. Correspondingly, the temperature dependence of the
reduced lifetime τR is almost independent of the precise
mechanism [and is given by the electron-electron relaxation
rate τ−1

e−e,1 contained in D via τ1; see Eq. (47)]. The temper-
ature dependence of the enhanced lifetime τE , by contrast,
depends crucially on the symmetry-breaking mechanism
under consideration and thus offers a way to discriminate
between the different symmetry-breaking mechanisms. For
small symmetry-breaking terms the enhanced lifetime τE is
proportional to the inverse of the respective scattering rate X−1.
Therefore also the temperature dependence of τE is determined
by the respective scattering rate. For simple spin-flip scattering
X = τ−1

sf we expect a temperature-independent lifetime τE due
to constant τsf . For extrinsic spin-orbit interactions, X = γey, to
leading order in X/(4 q2

0 D) the only temperature dependence
comes from the Sommerfeld corrections. Thus τE decreases
quadratically with temperature. For cubic Dresselhaus spin-
orbit interaction one finds

τE ≈ 2
3 γ −1

cd z−1
6 (83)

and therefore τE is proportional to τ−1
3 [see Eq. (57)].

Since τ3 decreases with temperature because of enhanced
electron-electron scattering τ−1

e−e,3 [see Eq. (54)] the lifetime
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τE increases initially with temperature due to the motional nar-
rowing effect in the D’yakonov-Perel’ regime. The presence
of the Sommerfeld function z6, on the other hand, leads to
a decrease of τE with increasing temperature. Thus for cubic
Dresselhaus spin-orbit interaction we find that the temperature
dependence is governed by a competition between increasing
and decreasing contributions. We will compare this theoretical
interpretation with experimental results for the persistent spin
helix in GaAs/AlGaAs quantum wells7 in the next section.

V. PERSISTENT SPIN HELIX IN GAAS/ALGAAS
QUANTUM WELLS

In order to address the lifetime of the PSH observed exper-
imentally in GaAs/AlGaAs quantum wells7 we consider cubic
Dresselhaus alongside with extrinsic spin-orbit interaction as
possible symmetry-breaking mechanisms. We also include the
renormalization of the linear Dresselhaus coupling constant
due to cubic Dresselhaus spin-orbit interaction [ζ �= 0 in
Eqs. (58)–(64)]. Analogously to the previous section we can
set Sx = 0 and then the spin-diffusion Eq. (56) reduces for the
remaining components Sy and Sz to

∂t S =
(

D ∂2
y − Y Kyz(π

4 ) ∂y

−Kzy(π
4 ) ∂y D ∂2

y − Z

)
S (84)

with

Y = �y(π/4) + γcd z6 + γey z4, (85)

Z = �x(π/4) + �y(π/4) + 2 γcd z6 + �sw. (86)

For an initial spin polarization of the form S(x,t = 0) =
S0 (0, 0, cos q0y) the time-dependent solution is given by a
double-exponential function,

Sy(y,t) = S0

2
sin q0y

2 Kyz q0 (e−t/τR − e−t/τE )√
4 Kyz

(
π
4

)
Kzy

(
π
4

)
q2

0 + (Z − Y )2
,

(87)

Sz(y,t) = S0

2
cos q0y

[
e−t/τR + e−t/τE

+ (Z − Y )(e−t/τR − e−t/τE )√
4 Kyz

(
π
4

)
Kzy

(
π
4

)
q2

0 + (Z − Y )2

]
, (88)

with the spin-orbit-enhanced relaxation rate τE and a spin-
orbit-reduced relaxation rate τR now given by

τ−1
E(R) = 1

2 (Y + Z) + q2
0 D

∓ 1
2

√
(Y − Z)2 + 4 q2

0 Kyz(π/4) Kzy(π/4). (89)

In order to compare our theory with the experimental find-
ings of Ref. 7 we need to calculate the coefficients that occur
in Eq. (89)—in particular the temperature-dependent rates
for electron-electron scattering. Figure 1(a) shows numerical
results for τ−1

e−e,1, τ̃−1
e−e,1, and τ−1

e−e,3 for the parameters of Ref. 7.
For the practical reason of obtaining continuous curves for the
lifetimes we have interpolated the discrete set of points we
obtained by Monte Carlo integration of Eqs. (49)–(55) with a
fit to the functional form AT 2 + B T 2 ln T . This form has been

FIG. 1. (a) Temperature-dependent relaxation rates due to
electron-electron interactions, τ−1

e−e,1 (solid curve), τ̃−1
e−e,1 (dot-dashed

curve) and τ−1
e−e,3 (dashed curve), as numerically computed from Eq.

(49) using the experimental parameters of Ref. 7. For comparison:
the inverse transport time at T = 100 K is τ−1 = 1ps−1. We use this
value of the inverse transport time as an input for the calculation of the
PSH lifetimes over the whole temperature range depicted in Fig. 2.
(b) The resulting effective relaxation rates: τ−1

1 (solid), τ−1
3 (dashed),

and τ̃−1
1 (dot-dashed); cf. Eqs. (47), (48), and (54).

shown to be the correct low-temperature behavior of the spin
Coulomb drag conductivity at low temperatures in Ref. 11.
With these electron-electron scattering rates we find for the
effective scattering rates in Eqs. (47), (48), and (54) the results
depicted in Fig. 1(b).

In Fig. 2, we show the numerical results for the temperature
dependence of the spin-orbit-enhanced and -reduced lifetimes
τE(R) where we use the experimental parameters of Ref. 7,
which are in turn partly obtained from fits to the theory
of Ref. 14. In particular, we take TF = 400 K, α = 0.0013
for the Rashba spin-orbit interaction and γ vF = 5.0eVÅ

3

for the cubic Dresselhaus spin-orbit interaction. We adjust
the linear Dresselhaus spin-orbit interaction to β = 1.29 α in
order to maximize τE for T = 75 K—the temperature at which
also in the experiment the spin-orbit interaction was tuned to
maximize τE .

Note that over the whole temperature range depicted in
Fig. 2 we use for the transport relaxation time the value τ = 1
ps, which we know to be correct at T = 100 K.29 Thus since
the experimental τ exhibits a neat decrease with increasing
temperature (e.g., roughly one order of magnitude between
5 and 100 K) due to mechanisms that are not included in
our model, we cannot expect our results to accurately match
the experimental data for very low and high temperatures.
However, at intermediate temperatures around 100 K, i.e.,
in the temperature range where our theory should be most
applicable, we find very good agreement between our theory
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FIG. 2. (Color online) (a) Temperature-dependent lifetimes of the
enhanced (red/gray) and reduced (blue/black) modes. The points
are experimental data from Ref. 7. Solid lines are the respective
theoretical curves including extrinsic and cubic Dresselhaus spin-
orbit interactions as well as electron-electron interactions; the thin
dashed line is the simplified result from Eq. (83). In panel (b) we
zoom in on the theoretical curve of panel (a) close to the maximum of
τE . The dashed line is the theoretical curve without extrinsic spin-orbit
interaction. Panel (c) depicts the results of a calculation, where
we include extrinsic and cubic Dresselhaus spin-orbit interaction
but exclude electron-electron interactions. [Also here, a comparison
as in (b) would show that the influence of the extrinsic spin-orbit
interactions is marginal.]

(solid lines) and the experimental lifetimes (dots); see Fig. 2(a).
We observe a maximum in τE roughly where the experimental
data points exhibit one. Also the size of τE , as well as
of τR , is very close to the experimental values. Since the
scattering rates due to extrinsic spin-orbit interaction are very
small in the GaAs/AlGaAs quantum well under consideration,
i.e., γey/γcd ≈ 10−4 and τ γsw ≈ 3 × 10−3, effects of extrinsic
spin-orbit interaction turn out to be negligible; see Fig. 2(b).
A calculation that includes extrinsic spin-orbit interactions

and electron-electron interactions but excludes cubic Dres-
selhaus spin-orbit interaction (not depicted in Fig. 2) yields
enhanced lifetimes that exceed the experimental ones by a
factor ∼103.

Interestingly, the simple result (83) for the enhanced
lifetime, where we neglected the renormalization of the linear
Dresselhaus spin-orbit interaction due to cubic Dresselhaus
spin-orbit interaction, is a fairly good approximation [see
dashed curve in Fig. 2(a)]. Thus the simple interpretation
of the temperature dependence of τE can also be extended
to the present situation. The formation of the maximum in
τE at intermediate temperatures around 100 K is caused by
the competition between two effects: on the one hand τE

increases with temperature due to increasing electron-electron
scattering, which leads in the presence of symmetry-breaking
cubic Dresselhaus spin-orbit interaction to the usual motional-
narrowing effect in the D’yakonov-Perel’ regime; cf. Ref. 30.
On the other hand the magnitude of Sommerfeld corrections in-
creases with temperature reducing the lifetime τE in two ways:
(i) by increasing the effective cubic Dresselhaus scattering rate
γcd z6, and (ii) by increasing the linear renormalization of the
Dresselhaus spin-orbit interaction, which leads to a detuning
of the Rashba and the effective linear Dresselhaus spin-orbit
interactions.

The important effect of electron-electron interaction for
the temperature dependence of the lifetimes τE and τR

can also be deduced from Fig. 2(c), where we show the
lifetimes excluding the effect of electron-electron interactions.
Obviously the initial increase of the lifetimes with temperature
is absent for both τE and τR in the absence of electron-electron
interaction.

At low temperatures and at high temperatures deviations
between our theory and the experimental lifetimes are more
pronounced. We suppose that at high temperatures symmetry-
breaking mechanisms that are not captured by our model
(e.g., effects involving phonons) could become important.
Furthermore, since the Fermi temperature in the GaAs/AlGaAs
quantum well under consideration is only TF = 400 K we
cannot expect our calculation, which is based on a low-
order Sommerfeld expansion, to be as accurate in the high-
temperature range above 200 K. The disagreement at low
temperatures, on the other hand, results most likely from
the fact that we do not take into account the temperature
dependence of the transport lifetime but rather use the
experimental 100-K transport lifetime τ (100 K) = 1 ps at
all temperatures. In reality, however, the transport lifetime
increases with decreasing temperature7 such that bF τ1 � 1 for
low temperatures, i.e., the system is outside the D’yakonov-
Perel’ regime and our theory is no longer applicable. In this
low-temperature regime other approaches that account for
strong spin-orbit interaction could be used.31,32

VI. CONCLUSIONS

Using a spin coherent Boltzmann-type approach we have
derived semiclassical spin-diffusion equations for a two-
dimensional electron gas with Rashba and Dresselhaus spin-
orbit interactions including the effect of cubic Dresselhaus
and extrinsic spin-orbit interactions as well as the influence of
electron-electron interactions. Based on this approach we have
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analyzed the role of electron-electron interaction in generating
a finite lifetime of the persistent spin helix state.

Our calculation shows that the Hamiltonian has to contain
SU(2)-breaking terms such as cubic Dresselhaus or extrinsic
spin-orbit interactions in addition to electron-electron inter-
actions, otherwise the persistent spin helix remains infinitely
long lived. We find that in this respect the effect of extrinsic
spin-orbit interaction is negligible in the quantum wells used in
the experiment by Koralek et al.7 Instead, the experimentally
observed temperature dependence of the lifetime of the per-
sistent spin helix, which displays a maximum at intermediate
temperatures close to 100 K, is caused by the interplay of
cubic Dresselhaus spin-orbit interaction and electron-electron
interactions. The formation of the maximum can be understood
as follows: due to electron-electron interactions the scattering
rates of the winding-number ±3 components of the spin-
distribution function grow with increasing temperature. Since
the inverse of these rates enters the effective scattering rate in
the D’yakonov-Perel’ regime, electron-electron interactions
increase the PSH lifetime with temperature. On the other
hand, Sommerfeld corrections of the cubic Dresselhaus spin-
orbit interaction enter directly into the expressions for the
effective scattering rates and thus decrease the lifetime of
the PSH state with increasing temperature. Also the devia-
tions from the SU(2) point due to a renormalization of the
linear Dresselhaus coupling constant by cubic Dresselhaus
spin-orbit interaction increase with temperature and thus
effectively reduce the lifetime of the PSH state. Since these
corrections due to cubic Dresselhaus spin-orbit interaction
dominate for larger temperatures, whereas the effect of
electron-electron interaction prevails for lower temperatures,
a maximum of the PSH lifetime emerges at intermediate
temperatures.

Our theory reproduces qualitatively the lifetime of the PSH
state in the whole temperature range accessed experimentally
by Koralek et al.7 For intermediate temperatures close to
the maximum, i.e., in the regime where our diffusive theory
should be valid, we find also quantitative agreement with the
experimental data.

In order to maximize the lifetime, we propose to use a
spatially damped sinusoidal spin profile as an initial condition
for a transient spin grating spectroscopy experiment. When
cubic Dresselhaus spin-orbit interaction represents the only
SU(2) symmetry-breaking element, the proposed spin-density
profile is infinitely long lived similar to the PSH state in the
absence of symmetry-breaking terms.

As a prospect for future work it may be interesting to include
also disorder in the local Rashba spin-orbit coupling or spin-
dependent electron-electron scattering in order to apply our
theory to situations where the cubic Dresselhaus spin-orbit
interaction is less dominant. These relaxation mechanisms are
currently discussed in the context of spin relaxation in (110)-
grown GaAs quantum wells.33,34
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APPENDIX A: DERIVATION OF THE
BOLTZMANN EQUATION

In this appendix we present the general expressions from
Zubarev’s nonequilibrium statistical operator formalism22 that
has served us as a starting point for the derivation of the kinetic
equations (14) and (15), including in particular the collision
integrals 16–19. For a general nonequilibrium problem, with
the Hamiltonian H = H0 + V containing an exactly solvable
single-particle part H0 and an interaction V , this formalism
allows us to derive a closed set of equations that describe
the irreversible temporal evolution of the density matrix
〈ψ†

l′ψl〉t = Tr[ρ(t) ψ
†
l′ψl] correctly to second order in V . Here

l,l′ are possibly composed indices, e.g., for momentum and
spin. For details of the derivation, see Ref. 22. The kinetic
equation in the Born approximation (second order in V )
reads

∂t 〈ψ†
l′ψl〉t − i 〈[H0,ψ

†
l′ψl]〉t = J

(1)
ll′ (t) + J

(2)
ll′ (t), (A1)

where the second term on the left-hand side becomes a linear
combination of elements of the density matrix. On the right-
hand side we have the first order (in V ) mean-field term

J
(1)
ll′ (t) = i 〈[V,ψ

†
l′ψl]〉trel (A2)

and the second-order collision term in Markovian form,

J
(2)
ll′ (t) = − lim

η→0+

∫ t

−∞
dt ′ eη(t ′−t)

〈
[V (t ′ − t),[V,ψ

†
l′ψl]]

+ i
∑
m m′

δJ
(1)
ll′ (t)

δ〈ψ†
m′ψm〉trel

ψ
†
m′ψm

〉t

rel

. (A3)

In both terms the average is with respect to the relevant
statistical operator, i.e., 〈A〉rel ≡ Tr[ρrel(t) A], where ρrel(t)
is an asymptotic statistical operator that maximizes the
information entropy (hence the time irreversibility) and allows
for a decomposition of the averages according to Wick’s rule.
The latter point is what makes the derivation of a kinetic
equation for the density matrix in closed form possible. The
density matrix is the relevant variable for which the self
consistency relation 〈ψ†

l′ψl〉trel = 〈ψ†
l′ψl〉t holds by construc-

tion of the relevant statistical operator. The time dependence
of V (t ′ − t) in Eq. (A3) is according to the Heisenberg
picture.

Taking for H0 the spin-orbit coupled Hamiltonian from
Eq. (3) and identifying V = Himp + He−e, with the Hamiltoni-
ans for electron-impurity interaction (8) and electron-electron
interaction (11), one obtains, upon Wigner transformation and
first-order gradient expansion of the left-hand side, the kinetic
Eqs (14) and (15) for the charge and spin parts of the density
matrix with the collision integrals (16)–(19). Note that the
statistical average implies also an average over the impurity
positions (which are assumed to be distributed uniformly).
In the case of electron-impurity interaction the mean-field
contribution (A2) and correspondingly the term containing J

(1)
ll′

in the collision integral vanish. In the case of electron-electron
interaction, the second term in Eq. (A3) cancels contributions
from the first term that correspond to disconnected diagrams
in diagrammatic approaches, and we neglect the mean-field
contribution.23
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APPENDIX B: SOMMERFELD FUNCTIONS

From the standard Sommerfeld technique in the theory of
the Fermi gas it is well known that the approximation∫ ∞

0
dε g(ε) f (ε) =

∫ EF

0
dε g(ε) + π2

6
(kBT )2 g′(EF )

+O(T 4/T 4
F ) (B1)

holds, where f (ε) is the Fermi distribution and g(ε) is a
function of the energy that varies slowly for ε ≈ EF . In the
derivation of the spin diffusion equations we have to deal with
powers of momentum k2,k3,k4,k6,k8. Since the dispersion is

quadratic and the 2d DOS is constant, the problem reduces to
(n = 1, 3

2 ,2,3,4)∫ ∞

0
dε εn f ′(ε) = −

∫ ∞

0
dε n εn−1 f (ε)

= −(EF )n
[

1 + n (n − 1)
π2

6

(
kB T

EF

)2
]

+O(T 4/T 4
F ). (B2)

Thus the powers k3,k4,k6, and k8 are not simply replaced by
−k3

F , . . . − k8
F but acquire corrections in the form of the factors

z3, . . . z8; see Eqs. (25)–(28).
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of Nonequilibrium Processes (Akademie Verlag, Berlin, 1996),
Vol. 1.

23In principle, an additional Hartree-Fock precession term (second
order in sk and first order in the electron-electron interaction
V ) on the left-hand side of Eq. (15) could become important
(Ref. 24), as well as quadratic in sk terms in the collision integrals.
However, for small polarization these effects can be neglected. The
clean (double-)exponential decay of the transient spin grating as
documented in Fig. 1(a) of Ref. 7 is a hint that in this particular
experiment nonlinear effects are irrelevant.

24D. Stich, J. Zhou, T. Korn, R. Schulz, D. Schuh, W. Wegscheider,
M. W. Wu, and C. Schüller, Phys. Rev. Lett. 98, 176401 (2007).
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