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We discuss the effect of elastic deformations on the electronic properties of bilayer graphene membranes.
Distortions of the lattice translate into fictitious gauge fields in the electronic Dirac Hamiltonian that are explicitly
derived here for arbitrary elastic deformations, including in-plane as well as flexural (out-of-plane) distortions.
We include gauge fields associated to intra- as well as interlayer hopping terms and discuss their effects on
the electronic band structure and on the transport properties of suspended bilayer membranes. In particular, we
consider the electron-phonon coupling induced by the fictitious gauge fields and analyze its contribution to the
electrical resistivity. Of special interest is the appearance of a linear coupling for flexural modes, in stark contrast
to the case of monolayer graphene. This new coupling channel is shown to dominate the temperature-dependent
resistivity in suspended samples with low tension.
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I. INTRODUCTION

Graphene, a monolayer of carbon atoms, is the only
two-dimensional (2D) conducting elastic membrane, where
electrons have been shown to behave as massless Dirac
fermions.1,2 Since the experimental realization of graphene,
several authors investigated the interplay between its electronic
properties and externally induced mechanical deformations
(see, e.g., Ref. 3 and references therein). This question
acquires a particular interest since elastic distortions of the
honeycomb lattice translate into fictitious gauge fields in
the electronic Dirac Hamiltonian.3–7 Indeed, in presence
of deformations, the low-energy massless Dirac Hamil-
tonian of electrons in monolayer graphene is described
by H = vσ · (p + eA) with the fictitious vector potential
A ∝ (uxx − uyy,−2uxy),3–6 expressed in terms of the strain
tensor uij of the 2D membrane. The latter reflects the
symmetry of the system with respect to the plane of
graphene, as it is linear in the in-plane deformations and
quadratic in the out-of-plane (flexural) distortions. As a
direct consequence of this vector potential, it has recently
been observed experimentally that strained graphene bubbles
exhibit the formation of Landau levels corresponding to
magnetic fields as large as 300 T.8 This adds significant
motivation to recent works devoted to the investigation of
the so-called strain engineering, i.e., the tailoring of the
electronic properties of graphene via controllable elastic
deformations.9,10

Bilayer graphene membranes show an even richer scenario
which is attracting ever growing interest. This is partly
due to their larger potential for device applications, since
a gap in the spectrum can be induced by external electric
fields.11–15 From a fundamental point of view, the low-energy
electronic band structure of bilayer graphene shows fascinating
structures, such as the appearance of four massless Dirac
cones which evolve into a massive quasiparticle spectrum
at higher energy.12 Given the remarkable tunability of the
electron density in graphene devices, this opens the possibility
of observing a phase transition in the topology of the Fermi
surface (FS) as a function of the electron doping, the Lifshitz
transition (LT).16–18

The form of the fictitious gauge fields associated to defor-
mations in bilayer graphene has been investigated recently
for specific uniaxial in-plane deformations.17,18 However,
the generic form of the fictitious gauge fields associated to
arbitrary in-plane and out-of-plane elastic distortions is still
unknown. These fields can result in dramatic effects on the
electronic band structure, and are the starting point for any
systematic investigation of electron-phonon coupling and of
strain engineering in bilayer samples. In this paper, we address
this open question by explicitly deriving the form of the gauge
fields and discussing how they affect the electronic Dirac
Hamiltonian.

As a direct application of the fictitious gauge fields, we
discuss the contribution to the electronic resistivity of sus-
pended bilayer membranes due to electron-phonon coupling.
In contrast to the case of monolayers, the two layers are not
equivalent and the system does not exhibit a symmetry with
respect to out-of-plane deformations. This is reflected in the
appearance of a linear intrinsic coupling for flexural phonons in
bilayer graphene, in contrast to the purely quadratic one present
in monolayers.6,19–21 This new linear coupling channel results
in the dominant electron-phonon contribution to the resistivity
for suspended samples with low tension. The corresponding
linear temperature dependence is accompanied by a density
dependence that reveals whether the device is in the low or
high tension regime.

For completeness of treatment, in Appendix, we also
summarize the effects of deformations on the electronic band
structure, focusing on the special case of elastic deformations
yielding uniform fictitious gauge fields (like uniaxial strain,
pure shear, or a rigid shift between the two layers), including
some that have been recently discussed in the literature.17,18

These deformations qualitatively modify the electronic bands
at low energy by inducing the annihilation of two massless
cones beyond a critical value of strain. This affects the nature
of the LT and the energy at which it occurs, with observable
consequences on the formation of Landau levels (LL) under
perpendicular magnetic fields and on the single particle density
of states (DOS). These results reproduce those that appeared
recently17,18 and serve as a specific test for the general gauge
fields we deduce.
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The structure of the paper is as follows. In Sec. II,
we briefly summarize the electronic properties of bilayer
graphene, considering all hopping parameters in the original
tight-binding Hamiltonian. In Sec. III, we derive the explicit
expression for the fictitious gauge fields in bilayer graphene
under arbitrary elastic deformations, and deduce the effective
low-energy Hamiltonian for the two bands close to zero energy.
In Sec. IV, we discuss the electron-phonon coupling induced
by the fictitious gauge fields in suspended bilayer membranes
and analyze its contribution to the temperature-dependent
component of the resistivity. Finally, in Sec. V, we present
our conclusions. Appendix summarizes the electronic band
structure in the absence of deformations and in presence of
elastic distortions resulting in uniform fictitious gauge fields.
Here, we discuss their effect on the electronic low-energy
spectrum and the possibility of inducing topological LT at the
Fermi level.

II. ELECTRONS IN BILAYER GRAPHENE

The electronic properties of ideal bilayer graphene have
been studied in the past by several authors.12,13 The carbon
atoms in the two layers are identified by a layer index
(l = 1,2, for the first and second layer, respectively) and a
sublattice index (s = A,B), to distinguish inequivalent atomic
sites. In each layer, carbon atoms form honeycomb lattices
with nearest neighbor distance a = 1.42 Å. The three nearest
neighbours of type A are obtained from a central B atom by the
displacement vectors e1 = a (0,−1), e2 = a (

√
3/2,1/2), and

e3 = a (−√
3/2,1/2). In the Bernal stacking configuration for

a bilayer in the x-y plane, the atoms in layer 2 and sublattice A
(i.e., of type A2) are located directly above those of type B1,
at a distance c � 3.34 Å, as indicated in Fig. 1.

A1

A2=B1
B2

e1

e2

e3

FIG. 1. Atomic structure of perfect bilayer graphene in Bernal
stacking (top view). The honeycomb lattice with full (dashed) lines
corresponds to the upper (lower) layer l = 2 (l = 1). The atomic sites
A2 and B1 coincide once projected on the plane. The three vectors
ej , (j = 1,2,3) connecting A and B sites are indicated (see text for
more details).

On the contrary, B2 atoms are not located above A1 ones. In
fact, the pairs A1-A2, B1-B2, and A1-B2 are all separated by
the distance c̃ = √

c2 + a2 � 3.63 Å. The starting point for the
investigation of the electronic properties of bilayer graphene
is the tight-binding Hamiltonian in real space:

HTB = −tA1,B1

∑
RB1

3∑
j=1

|RB1〉〈RB1 + ej |

− tA2,B2

∑
RB2

3∑
j=1

|RB2〉〈RB2 + ej |

− tA2,B1

∑
RB1

|RB1〉〈RB1 + cẑ|

− tA1,B2

∑
RA1

3∑
j=1

|RA1〉〈RA1 + ej + cẑ|

− tA1,A2

∑
RA2

3∑
j=1

|RA2〉〈RA2 + ej − cẑ|

− tB1,B2

∑
RB2

3∑
j=1

|RB2〉〈RB2 + ej − cẑ| + H.c., (1)

where Rsl is the position of an atom in sublattice s and
layer l, and |Rsl〉 is the ket associated to the corresponding
localised orbital. For the interlayer hopping terms, we used
the identities RA2 = RB1 + cẑ, RB2 = RA1 + ej + cẑ, RA1 =
RA2 + ej − cẑ and RB1 = RB2 + ej − cẑ. In the tight-binding
Hamiltonian, tsl,s ′l′ represents the hopping energy between the
two neighboring sites at Rsl and Rs ′l′ . In bilayer graphene
samples, these hopping terms are given by tAj,Bj ≡ tj �
2.47 eV (with j = 1,2),22 tA2,B1 ≡ γ � 0.39 eV,23 tA1,B2 ≡
γ3 � 0.315 eV,24 and tA1,A2 = tB1,B2 ≡ γ4 � 0.044 eV.25 For
the sake of generality, in the Hamiltonian above we consider
the case in which the intralayer hopping energies t1 and
t2 can be different. This can be of relevance for supported
bilayer samples, where the direct contact between graphene
and the substrate may affect the hopping energy in one layer
with respect to the other. Electrons in the bilayer lattice are
described by Bloch states of the form

|ψk〉 =
∑
RA1

u
(A1)
k eik·RA1 |RA1〉 +

∑
RB1

u
(B1)
k eik·RB1 |RB1〉

+
∑
RA2

u
(A2)
k eik·RA2 |RA2〉 +

∑
RB2

u
(B2)
k eik·RB2 |RB2〉, (2)

with u
(sl)
k the amplitude of the wave function on the sublattice

s and layer l at wave vector k. In the 4 × 4 space of the Bloch
amplitudes (u(A1)

k ,u
(B2)
k ,u

(A2)
k ,u

(B1)
k ) the Hamiltonian thus takes

the form

H0 =

⎛
⎜⎝

0 −γ3fk −γ4f
∗
k −t1f

∗
k−γ3f

∗
k 0 −t2fk −γ4fk−γ4fk −t2f

∗
k 0 −γ

−t1fk −γ4f
∗
k −γ 0

⎞
⎟⎠ , (3)

with fk = ∑3
j=1 exp[ik · ej ], resulting in four energy bands.

Two of them are at high energy of order ±γ , while the other
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two touch close to zero energy, in the vicinity of two Dirac
points in the first Brillouin zone given by K±, with Kτ =
τ (4π/3

√
3a,0), where fKτ

= 0. In the vicinity of the two Dirac
points, the matrix Hamiltonian in Eq. (3) is expanded as

H
(+)
0 =

⎛
⎜⎜⎝

0 v3p v4p
† v1p

†

v3p
† 0 v2p v4p

v4p v2p
† 0 −γ

v1p v4p
† −γ 0

⎞
⎟⎟⎠ ,

(4)

H
(−)
0 =

⎛
⎜⎜⎝

0 −v3p
† −v4p −v1p

−v3p 0 −v2p
† −v4p

†

−v4p
† −v2p 0 −γ

−v1p
† −v4p −γ 0

⎞
⎟⎟⎠ ,

where p = px + ipy is the complex representation of the
two-dimensional momentum relative to the Dirac point,
vj = 3atj /2h̄ for j = 1,2 and vj = 3aγj/2h̄ for j = 3,4.
The values of tj and γj in bilayer graphene yield equal
intralayer velocities v1 = v2 = v � 8 × 105 ms−1 as well as
v3 � 105 ms−1 and v4 � 1.4 × 104 ms−1. The two valleys are
thus related by the symmetry H

(−)
0 = H

(+)∗
0 |p→−p . We now

introduce elastic deformations in the bilayer lattice and derive
the consequent fictitious gauge fields in the Dirac Hamiltonian
formalism.

III. FICTITIOUS GAUGE FIELDS IN BILAYER
GRAPHENE

A generic elastic deformation in the bilayer graphene
membrane induces a displacement of the atomic positions
that results in the modification of bond lengths between
neighboring atoms. The corresponding change in the hopping
energies results in corrections to the matrix elements of the
4 × 4 Hamiltonian H

(τ )
0 , yielding a shift of electronic momenta

analogous to that stemming from a vector potential. As a result,
mechanical deformations translate into fictitious gauge fields
in the Dirac Hamiltonian.

In addition, elastic deformations involving local variations
of areas induce fluctuations in the electronic density that
translate into scalar deformation potentials in each layer.4,5

As a result, symmetric deformations between the two layers
yield a global scalar potential in the bilayer Hamiltonian. In
contrast, antisymmetric distortions yield a difference in the
potential between the two layers that mimics the effect of an
interlayer electric field.26 The latter mechanism thus results in
a deformation-induced gap in the electronic spectrum even in
the absence of external gates.

In monolayer graphene the fictitious vector potential in-
duced by mechanical deformations has been investigated in
the past.3–6 The massless Dirac Hamiltonian describing the
low-energy properties of electrons in a deformed suspended
membrane has the form H (+) = vσ · (p + eA(+)) in the valley
τ = +, with v the electron velocity, σ = (σx,σy,σz) the
pseudospin vector of Pauli matrices in the sublattice space
and p = (px,py,0) the electronic momentum. The fictitious
vector potential is expressed as A(+) = σ0 h̄/t (∂t/∂a) [(uxx −
uyy)/2, − uxy] in terms of the in-plane hopping energy t and
of the strain tensor of the 2D membrane uij = (∂iuj + ∂jui +
∂ih ∂jh)/2, with σ0 the unit matrix in the sublattice space.

Here, u(r) is the vector field describing in-plane deforma-
tions and h(r) the scalar field associated with out-of-plane
(flexural) distortions. The symmetry with respect to the plane
of graphene is reflected in the quadratic contribution from
flexural deformations, as the effects on electrons due to the
displacements h(r) and −h(r) are identical. The Hamiltonian
in the other valley (τ = −) is given by H (−) = H (+)∗|p→−p ,
leading to fictitious vector potentials with opposite signs in
the two valleys. In particular, the fictitious magnetic fields
associated to the vector potentials have opposite signs in the
vicinity of the two inequivalent Dirac points, since the effects
of deformations do not break time-reversal invariance.

A. Effects of deformations in the electronic Hamiltonian

In order to calculate the vector potential in bilayer
graphene, we analyze the shift of the atomic positions under
a generic distortion. In-plane deformations in layer l are
described by the two-dimensional vector field u(l)(r), while
out-of-plane distortions are associated to a scalar field h(l)(r),
so that the atom at position r is shifted to r + u(l)(r) + ẑ h(l)(r).
Thus, in the tight-binding Hamiltonian, the hopping term
between |Rsl〉 and |Rs ′l′ 〉 undergoes the change tsl,s ′l′ →
tsl,s ′l′ + δtsl,s ′l′ . Here, δtsl,s ′l′ � (∂tsl,s ′l′/∂	sl,s ′l′)δ	sl,s ′l′ ,
with δ	sl,s ′l′ = |Rs ′l′ − Rsl + u(l′)(Rs ′l′) − u(l)(Rsl) +
ẑ[h(l′)(Rs ′l′)−h(l)(Rsl)]| − |Rs ′l′ − Rsl | the variation of
the corresponding bond length. Among the derivatives
∂tsl,s ′l′/∂	sl,s ′l′ only the intralayer one ∂tAl,Bl/∂	Al,Bl �
−3 tAl,Bl/	Al,Bl is known. For all the other cases, we will
assume typical values ∂tsl,s ′l′/∂	sl,s ′l′ � −ηsl,s ′l′ tsl,s ′l′/	sl,s ′l′ ,
with ηsl,s ′l′ of order one. Performing the Bloch band
analysis of the deformation-induced corrections to the tight
binding problem, we can thus obtain the contribution to
the Hamiltonian associated with elastic distortions. For this
purpose, it is convenient to introduce symmetric (S) and
antisymmetric (A) deformations in the layer index as follows:

u(S/A)(r) = u(2)(r) ± u(1)(r)

2
,

(5)

h(S/A)(r) = h(2)(r) ± h(1)(r)

2
,

where the upper/lower sign is associated to the symmet-
ric/antisymmetric channel. In terms of these modes, and using
a long-wavelength expansion of the variation of the bond
lengths δ	sl,s ′l′ , we deduce the corrections to the Hamiltonian
in the two valleys (τ = ±) in the Dirac matrix formalism as

δH (τ ) =

⎛
⎜⎜⎜⎝

D1 F
(τ )
3 F

(τ )†
4 F

(τ )†
1

F
(τ )†
3 D2 F

(τ )
2 F

(τ )
4

F
(τ )
4 F

(τ )†
2 D2 F (τ )

γ

F
(τ )
1 F

(τ )†
4 F (τ )

γ D1

⎞
⎟⎟⎟⎠ (6)

with

Dl=1,2 = g Tr
[
u

(l)
ij

]
,

F
(τ )
l=1,2 = 3

4
a

∂tl

∂a

[
u(l)

xx − u(l)
yy − iτ

(
u(l)

xy + u(l)
yx

)]
,

F
(τ )
3 = 3

2c̃

∂γ3

∂c̃
F[u(S), u(A), h(S), h(A)],
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F
(τ )
4 = 3

2c̃

∂γ4

∂c̃
F[u(S),−u(A),−h(S), h(A)],

Fγ = −2
∂γ

∂c

[
h(A) + u(A)2

c

]
. (7)

Here, u
(l)
ij = [∂iu

(l)
j + ∂ju

(l)
i + ∂ih

(l) ∂jh
(l)]/2 is the strain ten-

sor of the two-dimensional membrane in layer l and, in lowest
order in the deformation fields, we find

F[u(S), u(A), h(S), h(A)]

= ac[∂yh
(S) − iτ∂xh

(S)] + a2

2

{
u(S)

xx − u(S)
yy

− iτ
[
u(S)

xy + u(S)
yx

] } + 2a
[
u(A)

y − iτu(A)
x

]
. (8)

Thus the correction terms in the two valleys τ = ± are
related by the symmetry δH (−) = δH (+)∗. In Eq. (6), we also
introduced the term Dl representing the deformation potential
for the layer l associated to local variation of areas in a
distorted elastic medium,5 with g the deformation potential
coupling constant. While the bare value of g is estimated
around 20–30 eV,5 in graphene samples the coupling constant
is reduced by screening so that it effectively depends on the
electron density.19,27 In contrast, gauge fields are not affected
by screening.28 As a result, one expects that the vector potential
dominates in (significantly strongly) doped graphene, while
the deformation potential would be dominant in the immediate
vicinity of the Dirac point.

The terms F
(τ )
l=1,2 in Eq. (7) are the same as those appearing

in monolayer graphene. They are linear in the in-plane
deformations causing variations in the bond lengths. However,
the symmetry with respect to the x-y plane forces the coupling
with out-of-plane deformations to be quadratic. In contrast, in
the terms F

(τ )
3 and F

(τ )
4 it is interesting to notice the appearance

of a linear coupling between electrons and symmetric flexural
deformations [h(S)] for the skewed interlayer hopping terms
(A1-A2, B1-B2, and A1-B2). In view of the results for the
monolayer, protected by the symmetry with respect to the
plane, it may be surprising that such a term exists. However,
due to the rotation between the layers involved in the Bernal
stacking, the two layers are not equivalent. Thus, for skewed
interlayer bonds, the symmetric flexural deformations h(S)

and −h(S) induce locally different effects, resulting in the
appearance of a linear residual contribution in the fictitious
gauge fields. In more detail, this can be understood by
considering the bond lengths involved in the interlayer hopping
terms different from the “vertical” B1-A2 one. In Fig. 2,
the interlayer skewed bonds are illustrated under a generic
h(S) [and −h(S)] deformation. The two are evidently different,
due to the shift between the projected positions of the atoms
involved. The analysis of the figure also reveals why the F

(τ )
3

and F
(τ )
4 terms differ by the replacements h(S) → −h(S) and

u(A) → −u(A), as these preserve the bond lengths involved in
the corresponding hopping terms.

As far as long wavelength antisymmetric flexural deforma-
tions h(A) are concerned, they correspond to a local modulation
of the interlayer distance which preserves the structure of
Bernal stacking. Their only effect is thus to induce a numerical
renormalization of the velocities v3 and v4. In Eqs. (7) and (8),
this would merely lead to a subleading correction in h(A)/c̃ �

1'

1'
3'

3''

2

2

4''

1

2 3
4

4'

3'4'

1

2 3
4

1

2' 3''
4''

1

2'

u(2)

u(1)

u(2)

u(1)

−h(S)

h(S)
(a)

(b)

3'' > 3 > 3'

4' > 4 > 4''

3' = 4''

3' > 3 > 3''

4'' > 4 > 4'

4' = 3''

u(A)

−u(A)

No deformation

No deformation

B1 A1

B2A2

FIG. 2. Schematic description of the effect of deformations on
bond lengths. This side view, taken along the direction ej , shows
the atoms involved in intra and interlayer hopping processes in a
unit cell. (a) Bilayer under flexural deformations h(S) and −h(S).
The difference between the hopping lengths 3′ and 3′′ (as well as
between 4′ and 4′′) breaks the symmetry with respect to the plane
and is responsible for the appearance of a linear coupling with h(S)

in the gauge field F
(τ )
3 (and F

(τ )
4 ). The fact that 3′ = 4′′ leads to the

symmetry h(S) → −h(S) between F
(τ )
3 and F

(τ )
4 . (b) Same as in (a), but

for in-plane antisymmetric deformations u(A) and −u(A). The equality
4′ = 3′′ accounts for the symmetry u(A) → −u(A) between F

(τ )
3 and

F
(τ )
4 .

1 and |p|a/h̄ � 1 of the form δF = (2ac/h̄) h(A)(τpx + ipy),
which can be neglected.

Finally, the term Fγ is associated to the vertical interlayer
hopping B1-A2, which does not involve any skewed bond. As
a consequence it is not affected by symmetric deformations
h(S) and u(S). The variation of the bond length stems uniquely
from antisymmetric deformations. It is linear in the flexural
distortions h(A) and quadratic in the in-plane ones u(A).

The energy corrections F
(τ )
j (with j = 1, . . . ,4) in δH (τ )

thus affect the unperturbed terms vjp in H
(τ )
0 as fictitious gauge

fields acting on the electronic orbital degrees of freedom. The
symmetry H

(−)
0 + δH (−) = H

(+)∗
0 |p→−p + δH (+)∗, together

with F
(−)
j = F

(+)∗
j reveals that the fictitious gauge fields have

opposite signs in the two valleys, as in the monolayer case.
As a consequence, the fictitious magnetic fields generated by

165448-4



FICTITIOUS GAUGE FIELDS IN BILAYER GRAPHENE PHYSICAL REVIEW B 86, 165448 (2012)

elastic deformations are also opposite in the two valleys, as
requested by the fact that elastic deformations do not break
time-reversal invariance.

B. Explicit form of the fictitious vector potential

In order to express the effect of deformations on the
electronic momenta in terms of a vector potential, we can
rewrite the total Hamiltonian H

(+)
0 + δH (+) in the language

of Pauli matrices acting on the layer space (�α , with α ∈
{0,x,y,z}) and on the sublattice space (σα) as

H
(+)
0 + δH (+) = H (+)

p + Hγ + HD,

H (+)
p = H

(+)
0,p + δH (+)

p ,
(9)

Hγ = −γ − Fγ

2
(�x ⊗ σx + �y ⊗ σy),

HD = D(S)�0 ⊗ σ0 − D(A)�z ⊗ σ0 ,

with �0 and σ0 the identity matrices in the corresponding
spaces. The term H

(+)
0,p collects all contributions linear in vjp

and δH (+)
p the corrections Fj (with j = 1, . . . ,4), while Hγ

collects the terms involving γ and Fγ , and HD those related
to the deformation potentials. In the latter, we introduced
the symmetric and antisymmetric components D(S) = (D1 +
D2)/2 and D(A) = (D2 − D1)/2, corresponding to different
variations of areas in the two layers. In analogy with the
monolayer case, the Hamiltonian H (+)

p can be written as

H (+)
p = V(+) · [p + eA(+)] (10)

with H
(+)
0,p ≡ V(+) · p expressed in terms of the vector of

velocity matrices:

V(+) = (V (+)
x ,V (+)

y ) , with

V (+)
x = v1 + v2

2
�0 ⊗ σx + v1 − v2

2
�z ⊗ σx

+ v3

2
(�x ⊗ σx − �y ⊗ σy) + v4�x ⊗ σ0,

(11)
V (+)

y = v1 + v2

2
�0 ⊗ σy + v1 − v2

2
�z ⊗ σy

− v3

2
(�x ⊗ σy + �y ⊗ σx) + v4�y ⊗ σ0 .

In parallel, for the term δH (+)
p , by direct inspection one finds

δH (+)
p ≡ eV(+) · A(+) = δH

(+)
Re,p + δH

(+)
Im,p , with

δH
(+)
Re,p = Re[F (+)

1 ]
�0 + �z

2
⊗ σx

+ Re[F (+)
2 ]

�0 − �z

2
⊗ σx

+ Re[F (+)
3 ]

�x ⊗ σx − �y ⊗ σy

2

+ Re[F (+)
4 ] �x ⊗ σ0,

δH
(+)
Im,p = Im[F (+)

1 ]
�0 + �z

2
⊗ σy

+ Im[F (+)
2 ]

�0 − �z

2
⊗ σy

− Im[F (+)
3 ]

�x ⊗ σy + �y ⊗ σx

2

+ Im[F (+)
4 ] �y ⊗ σ0, (12)

leading to the vector potential

eA(+) = (eA(+)
x ,eA(+)

y ) ,

eA(+)
x = (V (+)

x )−1δH
(+)
Re,p, (13)

eA(+)
y = (V (+)

y )−1δH
(+)
Im,p .

In contrast to monolayers, for bilayer graphene in the general
case [with v1 �= v2, v3 �= 0, v4 �= 0 and all the associated
corrections F

(τ )
j ], the analytical expression for the vector

potential is quite cumbersome, due to the matrix structure
of the velocity vector V(+). For illustration purposes we
consider the simpler case v1 = v2 = v, F

(+)
1 = F

(+)
2 = F (+),

and v4 = F
(+)
4 = 0 leading to the compact expression

eA(+)
x

= Re[F (+)]

[
1

v
�0 ⊗ σ0 − v3

2v2
(�x ⊗ σ0 − i�y ⊗ σz)

]

+ Re[F (+)
3 ]

[
1

2v
(�x ⊗ σ0 − i�y ⊗ σz)

]
,

eA(+)
y

= Im[F (+)]

[
1

v
�0 ⊗ σ0 + v3

2v2
(�x ⊗ σ0 − i�y ⊗ σz)

]

− Im[F (+)
3 ]

[
1

2v
(�x ⊗ σ0 − i�y ⊗ σz)

]
. (14)

The terms proportional to v3 and F
(+)
3 are related to interlayer

hopping processes and are associated with the appearance
of the Pauli matrices �x,y , which involve mixing of the

two layers. In contrast, the special case v3 = F
(+)
3 = 0

would lead to two decoupled layers as far as H (+)
p is

concerned, each characterised by the vector potential eA(+) =
σ0/v (Re[F (+)], Im[F (+)]). Using the expression for F

(+)
1,2 in

Eq. (7) and the velocity v = 3at/2h̄ this indeed coincides with
the vector potential of a monolayer. The coupling between the
layers would still be present via the term Hγ which, however,
does not involve a vector potential.

C. Effective low-energy Hamiltonian

The 4 × 4 Hamiltonians H
(τ )
0 + δH (τ ) in Eqs. (4) and (6)

contain the complete information concerning the properties of
electrons and of their coupling to elastic deformations. The
unperturbed Hamiltonian H

(τ )
0 is diagonalized in terms of four

electronic bands, two of them touching at low energy, and two
describing split modes at high-energies of order ±γ , due to
the “vertical” B1-A2 interlayer hopping.

In order to analyze the low-energy sector of the spectrum,
we can produce an effective 2 × 2 Hamiltonian in the A1-B2
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subspace along the same line as done, e.g., in Refs. 12 and 29.
We consider the original 4 × 4 Hamiltonian H (τ ) = H

(τ )
0 +

δH (τ ) as made of four 2 × 2 blocks H
(τ )
ij , (i,j ∈ 1,2) with the

upper left block H
(τ )
11 describing the low energy sector. We

introduce the matrix Green’s function G(τ ) = [ε1 − H (τ )]−1,
with 1 the unit matrix, and by direct matrix inversion we get

G
(τ )
11 = [ε1 − H

(τ )
11 − H

(τ )
12 (ε1 − H

(τ )
22 )−1H

(τ )
21 ]−1. Thus the ef-

fective low-energy Hamiltonian is obtained as H
(τ )
eff = ε1 −

G
(τ )−1
11 � H

(τ )
11 − H

(τ )
12 (H (τ )

22 )−1H
(τ )
21 in the limit ε � γ . By

keeping only the lowest nonvanishing order in F
(τ )
j /γ � 1

and Dl/γ � 1, after lengthy but straightforward steps, we
obtain the effective low-energy Hamiltonian in the “+” valley:

H
(+)
eff =

(
D(S) − D(A) + �

2 v3P
(+)
3

v3P
(+)†
3 D(S) + D(A) − �

2

)
+ 1

γ

(
v1v4[P (+)†

4 P
(+)
1 + P

(+)†
1 P

(+)
4 ] v2

4[P (+)†
4 ]2 + v1v2P

(+)†
1 P

(+)†
2

v2
4[P (+)

4 ]2 + v1v2P
(+)
2 P

(+)
1 v2v4[P (+)

2 P
(+)†
4 + P

(+)
4 P

(+)†
2 ]

)
,

(15)

where we introduced the kinetic momenta P
(τ )
j = p + F

(τ )
j /vj

for j = 1, . . . ,4. The Hamiltonian in the “−” valley is then
expressed as H

(−)
eff = H

(+)∗
eff |p→−p . Without loss of generality,

from now on we focus on one valley (τ = +). The term Fγ

yields a small correction to the hopping energy γ that affects
the high-energy bands. However, it produces only subleading
corrections of order Fγ /γ � 1 to the low-energy Hamiltonian
(15), which are thus neglected.

In the effective Hamiltonian (15), we also included an on-
site energy difference � between the two layers describing the
effect of an interlayer electric field. This term, together with the
antisymmetric component of the deformation potential D(A)

has the physical effect of inducing a gap in the electronic
spectrum.26 Thus our results show that such a gap is in principle
realisable, without any inter-layer electric field, under different
variation of local areas for the two layers.

In the absence of deformations, the electronic band-
structure in each valley is characterised by four massless Dirac
cones at energies lower than ε∗ = γ v2

3/4v2 � 1.6 meV, while
at higher energies the spectrum is essentially parabolic. In
the latter regime electrons are effectively described in terms
of massive chiral particles with effective mass m = γ /2v2 �
0.05 me (me the free electron mass).12,13. The topology of the
Fermi surface thus undergoes a transition (Lifshitz transition)
at the critical energy ε∗, from four disconnected pockets at low
energy to a singly connected pocket at higher energies. A more
detailed analysis of the electronic band structure of bilayer
graphene and its modification under the action of uniform
fictitious gauge fields are presented in Appendix, in relation to
similar results recently discussed in the literature.17,18

The effective Hamiltonian (15) is the main result of this
paper. It can be used as the starting point for the investigation
of electromechanical properties of bilayer graphene under
arbitrary elastic deformations. In the following, we use the
Hamiltonian (15) to describe the electron-phonon coupling
and its contribution to the resistivity of suspended bilayer
graphene.

IV. PHONONIC CONTRIBUTION TO THE RESISTIVITY
VIA FICTITIOUS GAUGE FIELD COUPLING

As a direct application of the gauge fields we deduced in
Sec. III, we discuss the consequences of the corresponding

electron-phonon coupling on the resistivity of suspended
bilayer graphene. The interesting aspect to be pointed out is
the appearance of a linear coupling between electrons and
symmetric flexural phonons [h(S)] in the gauge field term
F

(τ )
3 .30 This is in contrast to the case of monolayer graphene,

where flexural phonons have a quadratic coupling protected
by symmetry with respect to the plane of the membrane.
The contribution to the resistivity due to flexural modes is
to be compared with the corresponding one due to in-plane
phonons.

In monolayers, this competition is driven by a combi-
nation of dispersion and coupling of the various phononic
modes.6,19 In-plane ones are hard to excite (they have
a linear dispersion) but have a strong linear coupling to
electrons. In parallel, flexural deformations are soft (they
have a quadratic dispersion in the absence of tension) but
have a weak quadratic coupling. If the tension is weak,
it has been shown that flexural phonons dominate the
in-plane modes as far as the resistivity is concerned.19,20

Recent measurements of the contribution to the resistivity
due to electron-phonon scattering in suspended monolayers
have indeed shown the dominant contribution by flexural
phonons.20

In bilayer graphene, the electron-phonon contribution to
the resistivity has been considered recently in direct analogy
with the monolayer case.31–33 In-plane phonons as well as
flexural modes with the quadratic coupling stemming from
intralayer deformations alone [D(S), F

(τ )
1 , and F

(τ )
2 ] preserve

the qualitative temperature-dependence of monolayer samples.
However, our analysis shows the appearance of a linear cou-
pling for symmetric flexural modes and offers the opportunity
of investigating soft modes (for weak tension) with a strong
linear coupling which were not considered so far. Here, we
discuss this new contribution and analyze its consequences for
transport.

A. Phonon dispersion in bilayer graphene

In order to study, the electron-phonon contribution
to the resistivity, we need to discuss the dispersion
of phonons in bilayer graphene. This is easily
obtained considering the elastic Lagrangian
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density34

L =
∑
l=1,2

Ll + Lcoupl with

Ll = 1

2
ρ0[u̇(l)2 + ḣ(l)2] − 1

2

[
2μu

(l)2
ij + λu

(l)2
kk

]
− 1

2
{κ[∇2h(l)]2 + �[∇h(l)]2},

Lcoupl = −1

2
ρ0�

2
in[u(1) − u(2)]2 − 1

2
ρ0�

2
F[h(1) − h(2)]2,

where ρ0 is the mass density in each layer, μ and λ are the
Lamé coefficients for in-plane stretching, κ is the bending
energy, and � is a sample specific coefficient describing the
degree of tension induced in the membrane.35 The term Lcoupl
models a harmonic confinement for the sliding of one layer
with respect to the other as well as for the modification of
the interlayer distance. Recent first-principles calculations36

produced the estimates �in � 5 × 1012 Hz and �F � 9 ×
1012 Hz. The Euler-Lagrange equations for the elastic La-
grangian at harmonic level are solved in terms of the symmetric
and antisymmetric deformations u(ν)(r) = ∑

q u(ν)
q exp(iq · r)

and h(ν)(r) = ∑
q h

(ν)
q exp(iq · r), with ν = S,A and u(ν)

q , h
(ν)
q

their Fourier transforms in the wave-vector space. The in-plane
phononic eigenmodes are given by longitudinal and transverse
components u

(ν,L)
q = u(ν)

q · q̂ and u
(ν,T )
q = u(ν)

q · q̂⊥, with q̂ =
q/|q| and q̂⊥ = ẑ × q̂. The dispersions of in-plane as well as
flexural (F ) deformations are

ω(ν,L)
q =

[
(2μ + λ)q2

ρ0

+ 2�2
in δν,A

]1/2

,

ω(ν,T )
q =

[
μq2

ρ0

+ 2�2
in δν,A

]1/2

, (16)

ω(ν,F )
q =

[
κq4 + �q2

ρ0

+ 2�2
F δν,A

]1/2

.

These results hold at harmonic level, while anharmonic
corrections due to the coupling between the two layers would
stiffen the bending coefficient κ . In realistic bilayer graphene
membranes, symmetric flexural phonons would thus disperse
as in the equation above, with a slightly renormalised bending
energy. This is in analogy with the dispersion of bending modes
in carbon- nanotubes.37–39 The antisymmetric modes are
gapped due to the harmonic interlayer couplings in Lcoupl and
do not give a relevant contribution to the resistivity in the linear
transport regime. In the following, we will thus concentrate on
the symmetric flexural deformations with a linear coupling
induced by F

(τ )
3 and discuss their contribution in comparison

with that of in-plane modes and of flexural modes with
quadratic intralayer coupling discussed elsewhere.31–33 We
will denote the dispersion of symmetric flexural modes as
ωq ≡ ω

(S,F )
q ∼ αq2 (where α = √

κ/ρ0 � 4.6 × 10−7 m2/s)
for q � q∗ and ωq ∼ αq∗q for q � q∗, where q∗ = √

�/κ is
a sample-specific wave vector related to the degree of external
tension. Even in the absence of tension, anharmonic elastic
corrections have been shown to induce a modification of the
dispersion of flexural phonons at low energy.6,40

B. Electron-phonon contribution to the resistivity

As far as the electron-phonon coupling is concerned, we
consider the gauge field term coupling proportional to F

(τ )
3

and focus on the high electron-density regime where the
Fermi wave vector kF is larger than the inverse mean-free
path due to disorder and electron-phonon scattering. In this
regime, a quasiclassical Boltzmann approach to transport
can be employed.41 Even in very clean bilayer samples,
this condition is so far fulfilled only for εF > ε∗, above the
Lifshitz transition, where the effective electronic dispersion
is parabolic. This corresponds to typical electronic densities
exceeding few 1010 cm−2. As a consequence, the relevant
electronic and electron-phonon coupling Hamiltonians in one
valley are given by

H
(+)
el � 1

2m

(
0 p†2

p2 0

)
,

H
(+)
el−ph �

(
0 F

(+)
3

F
(+)†
3 0

)
.

An electronic eigenstate with wave vector k and energy εk =
h̄2k2/2m is described by the spinor |k〉 = 1/

√
2 (1, exp[i2φk]),

with φk the angle of k with respect to the x axis.
In our case, the dominant coupling due to symmetric

flexural deformations is given by F
(+)
3 � g3 [∂yh

(S) − i∂xh
(S)],

with g3 = 3ac/2c̃ (∂γ3/∂c̃) the coupling strength. In Fourier
space, this corresponds to the electron-phonon coupling matrix

wQ = ig3QξQ

(
0 −iei�

ie−i� 0

)
(17)

in the Dirac description, where Q is the phonon wave vector, �
is its angle with respect to the x̂ axis, and ξQ = (h̄/2MωQ)1/2

is the oscillator length (M the total oscillator mass per unit
area).

In order to calculate the resistivity, a systematic derivation
of the Boltzmann transport equation for electron-phonon
coupling in graphene has already been presented in a previous
work.19 The longitudinal resistivity is expressed as

ρ = m

ne2τkF

, (18)

where n = k2
F/π is the electronic density and

1

τk
= −2π

h̄

∑
Q

2ωQ

∂nQ

∂ωQ
(1 − cos θ )

× |〈k + Q|wQ|k〉|2δ(εk+Q − εk) (19)

is the scattering rate at the Fermi level in the quasielastic ap-
proximation, due to both phonon absorption and emission pro-
cesses. Here, θ is the scattering angle between the electronic
wave vectors k and k + Q and nQ = 1/[exp(h̄ωQ/kBT ) − 1]
is the equilibrium Bose distribution. The derivative of the
Bose distribution implies that the relevant phonons to be
considered have energies up to h̄ωQ ∼ kBT and their wave
numbers are restricted to Q � qT , with h̄ωqT

= kBT . In
this regime, −ωQ∂nQ/∂ωQ � kBT/h̄ωQ. Implementing the
on-shell condition due to the quasielastic approximation, we
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obtain

|〈k + Q|wQ|k〉|2 = g2
3Q

2ξ 2
Q sin2(3�) ,

1 − cos θ = 2 cos2 �

as well as

δ(εk+Q − εk) = 2m

h̄2kQ | sin �0|
δ(� − �0), (20)

where �0 is one of the two angles fulfilling the condition
cos �0 = −Q/2k. As a result, rescaling Q by 2kF, we obtain

1

τkF

= 16 m ng2
3

h̄3ρ0

kBT I(kF,T ),

(21)

I(kF,T ) �
∫ min[

q
T

2kF
,1]

0
dx

x4(1 − 4x2)2
√

1 − x2

ω2
2kFx

.

Different regimes appear as a function of temperature and of
tension. The low-temperature regime qT /2kF � 1 corresponds
to T � TBG, with TBG = h̄ω2kF

/kB the Bloch-Grüneisen tem-
perature, and is dominated by small angle scattering, which
gives little contribution to the resistivity due to the term
1 − cos θ . In addition, for weak tension, flexural phonons in
bilayer graphene are characterized by TBG � 0.4 ñ K, with ñ

the density expressed in units of 1012 cm−2. As a consequence,
for typical parameters of relevance to experiments, electron-
phonon scattering yields a significant contribution to the
resistivity only in the high-temperature regime, T � TBG,
where qT � 2kF. In this regime, for weak tension (q∗ � 2kF),
the resistivity takes the value

ρ
(T �TBG)
weak−tens � h

e2

m2g2
3 kBT

8π2h̄4κn2
� h

e2
10−4 T [K]

ñ2
� 2.6

T [K]

ñ2
�.

(22)

In the opposite regime (q∗ � 2kF) dominated by tension, we
obtain the sample specific result

ρ
(T �TBG)
tens � 2k2

F

q2∗
ρweak−tens � ρweak−tens . (23)

As in the case of monolayer graphene, external tension stiffens
the flexural phonons and reduces their density of states without
affecting their coupling, thereby suppressing the contribution
to the resistivity.

For completeness, in the low-temperature regime T � TBG,
we have the two results (for weak tension q∗ � qT and strong
tension q∗ � qT )

ρ
(T �TBG)
weak−tens � h

e2

8m2g2
3 (kBT )3/2

πρ0h̄
2[h̄α(2kF)2]5/2

, (24)

ρ
(T �TBG)
tens � h

e2

8m2g2
3 (kBT )4

3πρ0h̄
2[h̄αq∗(2kF)]5

. (25)

As far as flexural phonons are concerned, the contribution
to the resistivity we just considered has to be compared with
the corresponding one stemming from the usual quadratic
coupling [induced via the deformation potential D(S) as well
as the intralayer gauge fields F

(τ )
1 and F

(τ )
2 ]. In the absence of

tension and for T � TBG, this has been estimated31 to be

ρ
(T �TBG)
F � h

e2

g2
F (kBT )2

128 π2h̄2v2κ2n
(26)

with gF the screened deformation potential coupling constant.
As a consequence, the ratio of the two contributions is

ρ
(T �TBG)
weak−tens

ρ
(T �TBG)
F

� 2 × 106 g2
3

g2
F ñ T [K]

� 2 × 103

ñ T [K]
, (27)

where the last estimate is obtained with the approximations
g3 � −γ3/2 � 0.15 eV (corresponding to ηA1,B2 � 1) and
gF � 3.5 eV. As a result, in the absence of tension and
up to room temperature the linear coupling for flexural
phonons mediated by the interlayer gauge fields [i.e., the term
proportional to F

(+)
3 ] yields a dominant contribution to the

resistivity with respect to the quadratic one. In this case,
the temperature-dependent resistivity in suspended bilayer
samples is expected to be dominated by a linear-T dependence
even in the absence of tension, in contrast to the monolayer
case. Tension would then suppress the contribution due to
flexural phonons in favour of the in-plane ones. The latter
have been recently discussed in bilayer graphene.31–33 The
resulting contribution to the resistivity is

ρ
(T �TBG)
in � h

e2
× 10−6 T [K] � 2.6 × 10−2 T [K] �, (28)

showing a linear-T dependence as for ρ
(T �TBG)
weak−tens and ρ

(T �TBG)
tens .

The contribution due to in-plane phonons at room temperature
is thus supposed to be about 10 �, significantly less than flex-
ural modes with weak tension. The critical tension � needed
to suppress ρ

(T �TBG)
tens with respect to ρ

(T �TBG)
in corresponds to

an induced strain of order �/2μ � 3 × 10−3/ñ. Thus, as in
monolayers, only samples with a small intrinsic strain have a
chance to show signatures of flexural phonons. Besides their
magnitude, the in-plane and flexural contributions show the
same temperature dependence, but behave differently with
respect to density. Flexural modes would indeed yield a
contribution to the resistivity that depends on the density as
n−2 for weak tension and as n−1 in presence of strong tension.
In contrast, in-plane modes result in a resistivity independent
of n. If experiments show a linear dependence of the electron-
phonon resistivity on T , the corresponding density dependence
would discriminate which phononic branch is dominant, and if
tension is of special relevance. In realistic samples, the tension
� may itself be temperature dependent. The consequent
effects on the temperature dependent resistivity are then easily
analysed by including the explicit form of � in our analytical
formula [see Eq. (23)] above.

V. CONCLUSIONS

In this paper, we analyzed the consequences of generic
elastic deformations on the electronic properties of bilayer
graphene membranes. By considering intra- as well as
interlayer hopping terms up to γ4, we explicitly deduced
the fictitious gauge fields induced by arbitrary distortions,
including in-plane as well as out-of-plane deformations. We
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present the effective low-energy Dirac Hamiltonian describing
the two quasidegenerate electronic bands close to zero energy
and discuss the electromechanical properties of suspended
bilayer graphene membranes.

As a direct application of our analysis we considered
the derived gauge fields as an electron-phonon coupling
mechanism and discussed the consequent contribution to the
temperature-dependent resistivity. We pointed out the appear-
ance of a linear coupling between electrons and symmetric
flexural phonons due to the inequivalence of the two layers
for the skew interlayer hopping processes. In suspended
bilayer membranes with low tension, this results in a phononic
contribution to the resistivity larger than the one stemming
from the conventional quadratic coupling for flexural modes as
well as that due to in-plane phonons. Indeed, the temperature-
dependent resistivity of suspended devices is expected to show
a dominant linear temperature dependence due to flexural
modes for low tension and in-plane ones at relatively large
tension. The accompanying density-dependence reveals which
of these two types phonons is dominant as well as the typical
range of tension in the device.

The fictitious gauge field can qualitatively affect the
electronic band structure, as it has been recently discussed
for specific in-plane uniaxial deformations.17,18 In this special
case, our results indeed reproduce these findings, with ob-
servable consequences on the single-particle density of states,
as detailed in Appendix. Our investigation sets the basis for
future works on the electromechanical properties of suspended
bilayer graphene membranes, including applications in strain
engineering and in the creation of fictitious magnetic fields.
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APPENDIX: EFFECTS OF DEFORMATIONS ON THE
ELECTRONIC BAND-STRUCTURE

1. Band structure without deformations

In the absence of mechanical deformations the effective
Hamiltonian (15) reduces to

H
(+)
eff =

(
�/2 v3p

v3p
† −�/2

)

+ 1

γ

(
2v1v4 |p|2 (v2

4 + v1v2)p†2

(v2
4 + v1v2)p2 2v2v4 |p|2

)
. (A1)

Different cases can be analysed, according to the importance of
the various interlayer hopping terms and to the asymmetry in
the intralayer velocities v1 and v2. Before discussing the most
general case, we briefly review the features stemming from
the successive introduction of the hopping terms, in order of
descending magnitude.

(i) Most results on bilayer graphene at energies not too close
to the Dirac point can be analysed by considering only the

dominant A2-B1 interlayer hopping term γ , with equal
intralayer velocities v1 = v2 = v � 8 × 105 ms−1, thus ne-
glecting v3 as well as v4 in Eq. (A1). In the absence of interlayer
electric fields (� = 0), this yields a parabolic spectrum
with two energy bands ε± = ±v2|p|2/γ ≡ ±|p|2/2m char-
acterised by an effective mass m = γ /2v2 � 0.05 me (me the
free electron mass).12,13 The two bands touch at one Dirac point
at |p| = 0. Using the complex representation of the momentum
p = |p| exp(iφ) the effective Hamiltonian can be written as

H
(+)
eff � |p|2

2m
σ · (cos 2φ, sin 2φ,0) , (A2)

with σ = (σx,σy,σz) the pseudospin vector of Pauli
matrices in the sublattice space. Comparing this to
the electronic energy, we obtain the chirality condition
σ · (cos 2φ, sin 2φ,0) = ±1, with the upper/lower sign
corresponding to the conduction/valence band. Thus electrons
behave as pseudospin-1/2 massive chiral particles, their
pseudospin winding by 4π anticlockwise when φ goes
from 0 to 2π . This corresponds to a Berry phase of
� = s � = 2π ,42,43 where s = 1/2 is the particle pseudospin
and � = 4π the solid angle enclosed by the pseudospin vector,
while the electronic state is transported anticlockwise in a
closed loop in the 2D momentum space around the Dirac point.

In the presence of a perpendicular magnetic field, this
spectrum is characterised by a doubly-degenerate Landau-
level at zero energy (per spin and per valley).1,12 Finally, an
interlayer electric field (� �= 0) yields an energy gap � in the
spectrum.12,13

(ii) The next step in the hierarchy of approximations is to
include the terms proportional to v3 � 105 ms−1 in Eq. (A1),
while still neglecting v4 and keeping v1 = v2 = v. In this case,
and for � = 0, one obtains two energy bands with dispersion

ε± = ±
∣∣∣∣v3p

† + p2

2m

∣∣∣∣ . (A3)

The two bands touch at zero energy at four Dirac points,
obtained by imposing ε± = 0. The four points are given by
|p| = 0 as well as |p| = 2mv3 and φ = π (2n + 1)/3, with
n = 0,1,2, highlighting the latent symmetry of the honeycomb
lattice. Around each Dirac point the dispersion is massless. It is
isotropic around the central point at |p| = 0 and anisotropic for
the three satellite cones, as illustrated in Figs. 3(a) and 3(b).12,13

The linearization of the Hamiltonian near the new Dirac
points will be presented at the next level of approximation,
where v4 is also included. The four cones meet at energy
ε∗ = γ v2

3/4v2 = mv2
3/2 � 1.6 meV so that at higher energies

the spectrum is essentially parabolic.
As a function of the electron density (i.e., of the Fermi

energy εF), the Fermi sea (FS) changes its shape and topology.
In each valley, we can compactly denote the typology of
a FS characterised by Ne electron pockets and Nh hole
pockets by the notation [Ne,Nh]. For |εF| > ε∗, correspond-
ing to a concentration of electrons (or holes) larger than
(2/π2)(mv3/h̄)2 � 2 × 1010 cm−2, the FS in each valley is
connected and topologically equivalent to a circle (i.e., of type
[1,0] or [0,1]). At |εF| = ε∗ a Lifshitz transition (LT) occurs
and the FS shows knots that develop into four disconnected
electron (hole) pockets for 0 < |εF| < ε∗ (i.e., type [4,0] or
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FIG. 3. (Color online) Electronic band structure of bilayer
graphene without deformations. All energy scales ε are in meV.
(a) The low-energy spectrum neglecting terms in v4. Four massless
cones touch at zero energy. (b) Equipotential lines for (a). Dashed
lines correspond to ε < ε∗, yielding four disconnected electron
pockets. The thick line corresponds to ε = ε∗ where the LT occurs.
All other continuous lines are at ε > ε∗, yielding a single connected
electron pocket. Dark areas correspond to states close to zero energy,
while light ones are for higher energies. (c) Band structure including
v4. The central Dirac cones touch at zero energy, while the other
three touch at ε̃. The boxes [Ne,Nh] in different energy windows
indicate that the FS is made out of Ne electron pockets and Nh hole
pockets. (d) Same as (c), but with asymmetric intralayer velocities,
corresponding to t2 = t1/4 = 1 eV. This large asymmetry is used
to stress the formation of the minigaps �̃. (e) Magnification of the
low energy spectrum in (c), but with a small interlayer gap � < ε̃.
(f) Same as in (e), but with a larger interlayer gap � > ε̃.

[0,4]). The single-particle electronic density of states (DOS)
vanishes linearly while approaching zero doping and exhibits
a peak at the LT, that should lead to observable features, e.g.,
in compressibility measurements or the transport properties as
a function of the carrier density. The topology of the Fermi
surface close to the Lifshitz transition is presented in Fig. 3(b).

In the presence of a perpendicular magnetic field, each
massless Dirac cone yields one Landau level at zero energy, as
in monolayer graphene, leading to a fourfold degeneracy per
valley and spin. This scenario should result in quantum Hall
plateaux in the transverse conductivity at ±8 e2/h for small
enough magnetic fields and close to zero carrier density.12

It has to be pointed out that ε∗ is a rather small energy
scale. The physics of the LT can thus be observed only in
extremely clean samples at low density, so that the smearing
due to disorder does not obscure the pertinent features. An

alternative possibility to overcome this difficulty would be
to tune the LT to higher energies. This could be achieved
in bilayer samples by inducing significant strain (see Sec.
B). Alternatively, ABC-stacked trilayer graphene shows a LT
around 10 meV.44 The larger energy associated with this LT
allows for its experimental observation in samples with high
mobility, as reported recently.45 However, as the LT in trilayers
originates from the vertical hopping between the first and the
third layer, it should be only weakly sensitive to deformations
and it could not be easily tuned as in bilayers.

(iii) If we still assume v1 = v2 = v, but we do not neglect
the A1-A2 and B1-B2 interlayer hoppings, taking into account
v4 � 1.4 × 104 ms−1 in Eq. (A1), we still obtain four massless
Dirac cones at low energy, but the two bands do not touch at
the same energy.46 Indeed, for � = 0, they are given by

ε± = 2v4

v

|p|2
2m

±
∣∣∣∣v3p

† + p2

2m

(
1 + v2

4

v2

)∣∣∣∣ . (A4)

The four Dirac points are found at |p| = 0, where the
bands touch at zero energy, as well as |p| = 2mv3/(1 +
v2

4/v
2) with φ = π (2n + 1)/3, where the bands touch at

energy ε̃ = 2γ vv2
3v4/(v2 + v2

4)2 = 4mv2
3v4/[v(1 + v2

4/v
2)2].

Since v4/v � 1, we have ε̃ � 8ε∗ v4/v � 0.2 meV. This
dispersion is illustrated in Fig. 3(c).

We can explicitly expand the Hamiltonian around the
different Dirac points (described by the complex momenta pD)
by considering p = pD + δp. Around pD = 0 the linearized
Hamiltonian is given by

H
(+)
eff �

(
0 v3δp

v3δp
† 0

)
= v3 |δp| σ · (cos φ,− sin φ,0)

(A5)

and describes massless chiral fermions with Berry phase −π ,
due to the clockwise winding of the spinor for an anticlockwise
loop of δp. In a similar way, the expansion around one of the
other Dirac points, e.g., pD = −2mv3/(1 + v2

4/v
2), yields

H
(+)
eff � ε̃1 − v3

(
0 δpx − 3iδpy

δpx + 3iδpy 0

)
= ε̃1 − v3 |δp| σ · (cos φ,3 sin φ,0) ,

describing massless Dirac fermions with Berry phase π and
elliptical equipotential lines [see Fig. 3(b)].

As a function of the carrier density, the FS develops
interesting structures. Due to the fact that the massless Dirac
cones touch at different energies, the DOS never vanishes.
For 0 < εF < ε̃ the FS is of type [1,3]. On the other hand,
the spectrum at energies larger than ε̃ and the LT remain
essentially unaffected [see Fig. 3(c)]. The critical energy for the
occurrence of the LT is slightly renormalised to ε∗

+ � ε∗(1 +
2v4/v) for electron doping and to ε∗

− � −ε∗(1 − 2v4/v) for
hole doping.

In the presence of an external magnetic field, Landau levels
corresponding to massless Dirac fermions are generated in the
low-energy sector. However, due to the energy offset ε̃, there is
only one Landau level at zero energy (per valley and per spin)
stemming from the central Dirac cone. This mechanism would
result in plateaux of the Hall conductivity at ±e2/h close to
zero doping at low magnetic fields in extremely high-mobility
samples. However, due to the smallness of the energy scale ε̃,
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the shift of the three satellite Dirac cones with respect to the
central one is not observable with the present quality of bilayer
samples.

It is interesting to notice that a finite value of interlayer
electric field corresponding to 0 < � � ε̃ does not induce a
global gap in the spectrum, but rather opens a gap in each
individual Dirac cone. A global gap opens up only for � > ε̃.
Thus, in the presence of � �= 0, one can identify seven regions
where the structure of the FS is as follows:

(1) [1,0] for εF > ε̃/4 + √
(�/2)2 + (ε∗+)2,

(2) [4,0] for ε ∈ [ε̃ + �/2,ε̃/4 + √
(�/2)2 + (ε∗+)2],

(3) [1,0] for ε ∈ [max[ε̃ − �/2,�/2],ε̃ + �/2],
(4) [1,3] for ε ∈ [ min[ε̃ − �/2,�/2], max[ε̃ − �/2,

�/2]] if � < ε̃, and [0,0] if � > ε̃,
(5) [0,3] for ε ∈ [ − �/2, min[ε̃ − �/2,�/2]],
(6) [0,4] for ε ∈ [ε̃/4 − √

(�/2)2 + (ε∗+)2,−�/2] and
(7) [0,1] for εF < ε̃/4 − √

(�/2)2 + (ε∗+)2.
These regions are highlighted in Figs. 3(c), 3(e), and 3(f).
(iv) Finally, we can analyze the general case in which v3

and v4 are present in Eq. (A1), with v1 �= v2. This can be of
relevance for bilayer samples on a substrate, as the latter may
induce an asymmetry in the two intralayer hopping energies
t1 and t2. In this case, for � = 0, the low-energy spectrum is
given by

ε± = v4(v1 + v2)

γ
|p|2

±
√[

v4(v1 − v2)

γ

]2

|p|4 +
∣∣∣∣v3p

† + v1v2 + v2
4

γ
p2

∣∣∣∣
2

,

(A6)

as illustrated in Fig. 3(d). The two bands touch only at
p = 0, where a single massless Dirac point survives while the
other three disappear. In the experimentally relevant regime
v1 − v2 � √

v1v2 � v, the spectrum shows the opening of a
minigap �̃ � ε̃ |v1 − v2|/v at each of the three satellite Dirac
points. Notice that no interlayer term � is required in order
to open these minigaps. As a consequence, a new regime
appears for ε̃ − �̃/2 < εF < ε̃ + �̃/2, characterised by a FS
of type [1,0] similar to the regime 3 in the above case (iii).

2. Band structure with deformations

In the presence of generic elastic deformations of the
lattice, the induced fictitious gauge fields modify the electronic
low-energy Hamiltonian as in Eq. (15). While our formalism
allows us to treat arbitrary distortions, we can consider specific
static lattice deformations, which lead to uniform fictitious
gauge fields, in analogy with those recently considered in
the literature.17,18 These gauge fields induce a shift in the
electronic momenta that results in significant modifications
to the band structure. The massless Dirac cones at low
energy drift with the deformations until they annihilate at a
critical value of strain. Increasing the strain further leaves
a low-energy spectrum made of two massless Dirac cones
only. The modification to the band structure changes the
nature of the LT as well as its energy. Thus controllable
strain could be used to induce the LT at the Fermi level,
with observable consequences in the electronic DOS and other
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FIG. 4. (Color online) Electronic band structure in the wave-
vector space and equipotential lines for different values of strain
β along θ = 0, see text. Energy (ε) is expressed in milli electron
volt and the plots are taken for t1 = t2 = 2.47 eV and ηA1,B2 =
ηA1,A2 = ηB1,B2 = 1. For these parameters, we get βc1 � 2.3 ×
10−3 and βc2 � 2 × 10−2. (a1) Band structure for β = 1.5 × 10−3.
(b1) Equipotential lines for (a1), showing two LT at εL1 and εL2 (thick
lines). For ε > εL1 the FS is of type [1, 0] for this and all other panels.
Dashed lines show the [3, 0] FS at an energy between the two LT, while
the thin lines exemplify a [4, 0] FS at ε < εL2. (a2) Band structure with
critical strain βc1. (b2) Equipotential lines for (a2). One LT occurs
at εL1, below which the Fermi surface is of type [3, 0]. (a3) Band
structure for β = 4 × 10−3. The corresponding equipotential lines
are shown in (b3). The dashed line shows the [3, 0] Fermi surface
at εm < ε < εL1, while thin lines show the [2, 0] FS at 0 < ε < εm.
(a4) Band structure for β = 3 × 10−2. The local minimum disappears.
The corresponding equipotential lines are shown in panel (b4). One
LT occurs at εL1. The dashed line shows a [2, 0] FS for 0 < ε < εL1.

physical characteristics. The deformations leading to uniform
gauge fields are uniaxial strain along an arbitrary direction,
a rigid shift of one layer with respect to the other as well as
a pure shear deformation. The first two types of distortions
have been considered recently,17,18 although the qualitative
consequences in the spectrum are essentially the same for
generic configurations leading to uniform gauge fields.

A uniaxial in-plane strain along the direction θ̂ =
(cos θ, sin θ ) is described by the vector u(A) = h(S) = h(A) = 0
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FIG. 5. The electronic DOS and Fermi surface for different values
of strain β along θ = 0. Here, we choose ηA1,B2 = 1 and γ4 = 0.
(a) Electronic DOS as a function of energy for β = 0 (thick line), β =
10−3 (dashed line), β = 2 × 10−3 (dotted line), and β = 5 × 10−3

(dot-dashed line). The peaks in the DOS at the various LT are clearly
visible, as well as the linear dependence on energy in the low-energy
regime due to the massless Dirac cones. The dot-dashed line shows
a steplike feature at εm associated to the local parabolic minimum in
the dispersion [see Fig. 4(a3)]. (b) Fermi surface at electron doping
corresponding to εF = 0.8 meV < ε∗. The thin line is for β = 0,
yielding a [4, 0] FS. The thick line shows the FS at the LT (εF = εL2)
for β � 1.2 × 10−3, while the dashed line shows the [3, 0] FS at
β � 3 × 10−3. (c) Fermi surface at electron doping corresponding to
εF = 2.2 meV > ε∗. The thin, thick, and dashed lines correspond to
β = 0, β � 1.6 × 10−3, and β � 3 × 10−3, respectively. The LT here
occurs at εF = εL1.

and u(S)(r) = β‖r‖θ̂ + β⊥r⊥θ̂⊥, with r‖ = r · θ̂ , r⊥ = r · θ̂⊥
and θ̂⊥ = ẑ × θ̂ . Here, β‖ and β⊥ represent the values
of the strain along the two principal directions. This dis-
tortion results in a uniform deformation potential D(S)

which is reabsorbed in a global shift of the zero en-
ergy, while D(A) = 0. The corresponding gauge fields are
given by F

(+)
l=1,2 = 3a/4(∂tl/∂a)(β‖ − β⊥) exp(−i2θ ), Fγ =

0, F
(+)
3 = 3a2/4c̃(∂γ3/∂c̃)(β‖ − β⊥) exp(−i2θ ), and F

(+)
4 =

3a2/4c̃(∂γ4/∂c̃)(β‖ − β⊥) exp(−i2θ ).
Similarly, a pure in-plane shear of amplitude ζ

can be described by the deformation vector u(A) =
h(S) = h(A) = 0 and u(S)(r) = ζ r‖θ̂⊥, resulting in the

gauge fields F
(+)
l=1,2 = 3a/4(∂tl/∂a)(−iζ ) exp(−i2θ ), Fγ =

0, F
(+)
3 = 3a2/4c̃(∂γ3/∂c̃)(−iζ ) exp(−i2θ ), and F

(+)
4 =

3a2/4c̃(∂γ4/∂c̃)(−iζ ) exp(−i2θ ).
Finally, a shift of the second layer with respect

to the first one by the amount ξa along θ̂ is

described by the deformation vector u(S) = u(A) = ξaθ̂ , h(S) =
h(A) = 0, resulting in the gauge fields F

(+)
l=1,2 = 0, Fγ =

−2(∂γ /∂c)(ξa)2/c, F
(+)
3 = 3a2/c̃(∂γ3/∂c̃)(iξ ) exp(iθ ), and

F
(+)
4 = 3a2/c̃(∂γ4/∂c̃)(−iξ ) exp(iθ ).

Quite generally, these different deformations translate into
complex gauge fields in the Hamiltonian, which then affect
the electronic band structure. The evolution of the elec-
tronic band structure under progressive strain is illustrated in
Fig. 4. Here, we show the effect of a uniaxial strain of
amplitude β = β‖ − β⊥ along θ = 0, equivalent to a uniform
shear of amplitude ζ = β along θ = π/4. In Fig. 4, we choose
t1 = t2 and ηA1,B2 = ηA1,A2 = ηB1,B2 = 1 for illustration pur-
poses. The electronic band structure in the wave-vector space
(kx,ky) is shown in panels (a1) to (a4) at different values of
β. While increasing β two cones with chirality π and −π

approach each other until they annihilate at a critical strain βc1.
Increasing β further induces the two fused cones to produce
a local minimum at finite energy, until a second critical strain
βc2 is reached. For β > βc2, the local minimum disappears,
leaving two massless Dirac cones at low energy. Figure 4(a1)
illustrates the band structure in the regime 0 < β < βc1 and
Fig. 4(b1) the corresponding equipotential lines for electronic
states at positive energy. Two LT are visible at two different
energies εL1 > ε∗ and εL2 < ε∗. The LT at εL1 separates a
FS of type [1, 0] for ε > εL1 from a FS of type [3, 0] for
εL2 < ε < εL1. Similarly, for 0 < ε < εL2 the FS is of type
[4, 0]. Analogous results are obtained for hole doping at
negative energies. Figures 4(a2) and 4(b2) present the scenario
for β = βc1. Two Dirac cones fuse at zero energy and only one
LT is left at εL1. Notice that the value of εL1 grows while
increasing the amount of strain. The LT separates two FS of
type [3, 0] and [1, 0] for 0 < ε < εL1 and ε > εL1, respectively.

Figures 4(a3) and 4(b3) illustrate the regime βc1 < β <

βc2 where a local minimum at finite energy εm survives. The
LT separates two FS of type [3, 0] and [1, 0] for εm < ε <

εL1 and ε > εL1, respectively. A new regime with FS of type
[2, 0] appears for 0 < ε < εm.

Finally, for β > βc2, a single LT occurs separating FS of
types [2, 0] and [1, 0] for ε < εL1 and ε > εL1, respectively.
This is illustrated in Figs. 4(a4) and 4(b4). It has to be noticed
that in this regime of strain, the value of εL1 is significantly
larger than ε∗. The ability to tune the energy of the LT allows
one to explore it at different levels of doping and also to
partially overcome the problems in resolution due to disorder.

The qualitative picture above is reproduced, essentially
unaffected, once the strain is applied at different angles θ .18

The precise values of the critical strains βc1 and βc2 depend
on θ and on the values of the parameters ∂tsl,s ′l′/∂	sl,s ′l′ �
−ηsl,s ′l′ tsl,s ′l′/	sl,s ′l′ . Since only the intralayer derivatives are
known (ηA1,B1 = ηA2,B2 = 3), it is not possible to give a
quantitative estimate of the critical strains. However, as shown
in Fig. 4, for ηA1,B2 = ηA1,A2 = ηB1,B2 = 1 the typical order
of magnitude for them is around 0.2 %–2 %. This is easily
achieved in realistic suspended graphene samples.

These parameters seem to suggest that the low energy
spectrum in conventional suspended bilayer samples with high
mobility is probably characterised by two massless cones per
valley, instead of four. As a consequence, in the presence of
an external magnetic field, the degeneracy of the LL at zero
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energy is expected to be eight, due to two massless cones and
two spins in each valley.18 This picture is compatible with
the recently observed integer quantum Hall effect at filling
factors ν = ±4 in bilayer graphene at low-magnetic fields.47,48

A detailed analysis of uniaxially strained bilayer graphene in
the presence of magnetic fields has been recently discussed in
Ref. 18.

As highlighted in Figs. 4(b1)–4(b4), the structure of the
Fermi surface at a given density is thus affected by strain,
due to the fusion of the Dirac cones. As a consequence, the
nature of the Lifshitz transitions is sensitive to mechanical
deformations. A controllable increase of the amount of strain
in the bilayer graphene membrane could drive the Lifshitz
transition at the Fermi level with observable consequences

on the electronic DOS, as illustrated in Fig. 5. This effect
could be directly detected in compressibility measurements as
a function of density while keeping the strain constant or at
a fixed density while tuning the strain. The modulation of the
DOS at the Fermi level could also produce signatures in the
linear conductivity in the absence of a magnetic field as long
as the relevant diffusion coefficient is smooth across the LT.

Similar consequences to the strain-induced scenario de-
scribed above have been found in terms of an interaction-
induced spontaneous symmetry breaking leading to a nematic
phase characterised by two massless Dirac cones at low
energy.49,50 The latter scenario has been discussed in a very
recent measurement on suspended bilayer graphene with
extremely high mobility.51
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