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Abstract. Recent experiments on single-molecule transistors made of cobalt
complexes exhibited anomalously weak gate voltage dependence of the Kondo
temperature accompanied by a strong asymmetry in the Coulomb blockade
peaks. We show that these observations can both be explained by strong
electron–vibron interactions when including anharmonicities of the molecular
potential surfaces. The strong electron–vibron interactions may originate from a
tendency of the cobalt complexes toward Jahn–Teller distortion.
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1. Introduction

The occurrence of the Kondo effect in transport through artificial nanostructures such as
quantum dots was predicted long ago [1, 2]. Its experimental observation [3] has generated
considerable interest in recent years, leading to numerous experimental and theoretical
works [4]–[8] (for a review, see [9]). An important question addressed by these works is the
fate of the Kondo effect out of equilibrium due to the presence of a bias voltage [10]–[12].
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In quantum dots a quantitative description of the build-up of Kondo correlations is possible
in terms of the single-impurity Anderson model,

H0 =

∑
αkσ

εαkc†
αkσ cαkσ + εd(n↑ + n↓) + Un↑n↓ +

∑
αkσ

[
tαkc†

αkσ dσ + t∗

αkd†
σ cαkσ

]
, (1)

where d†
σ (c†

αkσ ) creates an electron with energy εd (with energy εαk and momentum k in lead α)
and spin σ on the dot (in the reservoir), U is the local Coulomb repulsion of the electrons and
nσ = d†

σ dσ . For single occupation of the localized level, the exchange between the spin of the
localized electron and the spin of the conduction electrons is obtained from a Schrieffer–Wolff
transformation and yields

J = 2t2

(
1

εd
−

1

εd + U

)
, (2)

for εαk � εd, U and tαk ≈ t . In single-electron transistors the onsite energy εd can effectively be
shifted by applying an additional gate voltage Vg. Employing poor man’s scaling, one can derive
an expression for the dependence of the Kondo temperature TK ∼ e−1/ν J on gate voltage,

TK =

√
0U

2
eπεd(U+εd)/0U , (3)

which provides an excellent description of experimental observations in quantum dots [5].
(Here, 0 denotes the coupling to the leads and ν denotes the local density of states in the leads.)

Surprisingly, recent experiments by Yu et al [13] have revealed that equation (3) does
not work in certain single-molecule junctions, composed of the transition metal complex
[di-(di-pyridyl-pyrrolato)cobalt]. Instead the gate dependence of the Kondo temperature is
found to be much weaker. Interestingly, this observation is coupled to a strongly asymmetric
Coulomb blockade: measurements of the differential conductance as a function of bias and gate
voltage show Coulomb diamonds with significantly different peak intensities at the two opposite
sides of the charge degeneracy point [13]–[16]. The persistence of these unusual features in
different single-molecule devices suggests that their explanation can be ascribed to molecule-
specific degrees of freedom such as molecular vibrations. Indeed, it is natural to expect that
the octahedral cobalt complexes exhibit a tendency toward Jahn–Teller distortions, which may
induce a strong electron–vibron interaction.

In two recent works, Balseiro et al [17] suggested that strong electron–vibron interactions
could explain the weak dependence TK(Vg). The principal idea is that for strong electron–vibron
coupling the dominant contribution to the kinetic exchange stems from virtual charge
fluctuations involving higher-excited vibrational states. In this case, the energy denominators
in equation (2) are modified to include the vibrational excitation energy of the intermediate
states for which the Franck–Condon overlap with the vibrational ground state is maximal.
As a result the dependence of J , and hence TK, on the gate voltage is suppressed as compared
to the situation of weak or no electron–vibron coupling. These authors also show numerical
results, based on the numerical renormalization group technique, which are consistent with the
asymmetric Coulomb blockade.

The purpose of the present paper is to point out that strong electron–vibron coupling
may also naturally account for the observation of a pronounced asymmetry of the Coulomb
blockade diamonds in an alternative manner. Indeed, strong electron–vibron coupling implies
that tunneling of electrons onto or off the molecule is accompanied by significant molecular
deformations. This suggests that one should go beyond the common assumption of harmonic
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vibrations by including anharmonicities of the molecular potential surfaces. Our central result
is that these anharmonicities can lead to strongly asymmetric Coulomb blockade diamonds.

We discuss our model and methods in section 2. Our principal results are contained in
section 3. We summarize and conclude in section 4.

2. Model and methods

Our results are based on a model which considers a molecule weakly coupled to two metallic
leads. We assume transport to be dominated by a single molecular level with onsite energy εd

and local Coulomb repulsion U . In addition to H0, the full Hamiltonian contains a vibrational
contribution,

H = H0 +
P2

2µ
+ Vn(X), (4)

describing the kinetic and potential energies for the collective vibrational mode X . P and µ

denote the momentum and the reduced mass of the nuclear motion. Due to the electron–vibron
coupling, the potential energy Vn(X) depends on the molecular charge state n.

This dependence is included through a global shift of the potential surface, Vn(X) =∑
n v(X −

√
2nλl)|n〉〈n|, where |n〉 denotes the electronic state with charge n, λ the

dimensionless electron–vibron coupling strength and l = (h̄/µω0)
1/2 the oscillator length. The

anharmonic shape v(X) of the potential surface is modeled by a Morse potential [18],

v(X) = D
[
e−2β X

− 2e−β X
]
. (5)

The curvature of v(X) at the minimum is given by ω0 = β2
√

2D/µ. The energies of bound
states of the Morse oscillator are given by Eq = h̄ω0(q + 1/2) − χ h̄ω0(q + 1/2)2, cf [18]. The
parameter χ determines the asymmetry of the Morse potential in comparison with the harmonic
potential and the number of bound states which is given by j = b(1/χ − 1)/2c. Here, half-
brackets are used to denote the integer part.

The occupation probabilities Pn
q of the molecular eigenstates |n, q〉 with electronic

occupancy n and vibrational quantum number q are obtained by solving rate equations,
dPn

q /dt =
∑

n′q ′(Pn′

q ′ W n′
→n

q ′→q − Pn
q W n→n′

q→q ′ ) −
1
τ
(Pn

q − Peq
∑

q ′ Pn
q ′) [19]–[21]. Here W n′

→n
q→q ′ is the

rate for a transition from state |n, q〉 to |n′, q ′
〉. The last term describes the fact that the vibrations

relax toward the equilibrium distribution Peq
q = e−h̄ω0/kT [1 − e−h̄ω0/kT ] on the phenomenological

timescale τ . Here, we always assume fast vibrational relaxation, i.e. τ ≈ 02.
Second-order perturbation theory in the tunneling Hamiltonian yields a golden-rule

expression for the transition rates,

W n→n′

q→q ′,α=2π t2ν

∣∣∣Mn→n′

q→q ′

∣∣∣2{
f (−1c

nn′ + (q ′
− q)h̄ω0 − µα) + [1 − f (1c

nn′ + (q − q ′)h̄ω0 − µα)]
}
,

(6)

where f denotes the Dirac–Fermi function, ν the local density of states in the leads,
µα the chemical potential of lead α, 1c

nn′ ≡ εd(n′
− n) + Un′(n′

− 1)/2 − Un(n − 1)/2 and
Mn→n′

q→q ′ =
∫

∞

−∞
dx φ∗

n,q(x)φn′,q ′(x) the Franck–Condon matrix element of two eigenfunctions of

2 Effects of nonequilibrium for anharmonic molecular vibrations have been considered in [22].
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Figure 1. Franck–Condon matrix elements, M0→1
q→q ′ , of the Morse oscillator for

(a) λ = 0.1, (b) λ = 1.0, (c) λ = 2.0 and (d) λ = 4.0.

the Morse oscillator [18],

φn,q(ξ) =

√
βq!2( j − q)

0(2 j − q + 1)
e−ξ/2ξ j−q L2( j−q)

q (ξ +
√

2nλl). (7)

Here, ξ = (2 j + 1) exp(−β X) is the Morse coordinate, L the generalized Laguerre polynomial
and 0 denotes the Gamma function. The total tunneling rate is W n→n′

q→q ′ =
∑

α W n→n′

q→q ′,α. In the
sequential tunneling regime, the steady-state current is given by Iα = e

∑
nqq ′ Pn

q [W n→n−1
q→q ′,α −

W n→n+1
q→q ′,α], where the bias voltage is V = (µL − µR)/e.

3. Results

We will analyze the consequences of the model for both the Kondo temperature and the
Coulomb blockade. In both cases, the important ingredients are the Franck–Condon matrix
elements of the Morse potential. Corresponding numerical results are plotted in figure 1,
which reveal two striking features: (i) the diagonal matrix elements decrease exponentially
with increasing λ, whereas off-diagonal elements increase simultaneously, giving rise to the
Franck–Condon blockade [20]; (ii) the Franck–Condon matrix is no longer symmetric under
parity transformations. The direction of the relative shift of the potential surfaces of neutral and
charged states, as determined by the sign of λ, is relevant for the overlap of two vibrational
wavefunctions, and hence Mq→q ′

n→n′ 6= Mq ′
→q

n→n′ [18]. For a given sign of λ, the Franck–Condon
elements Mq→q ′

n→n′ with q ′ < q are strongly suppressed in comparison with those with q ′ > q.
We first address the gate voltage dependence of the Kondo temperature within our model.

Performing a Schrieffer–Wolff transformation [23] in the presence of anharmonic potential
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Figure 2. Kondo temperature as a function of gate voltage for (a) anharmonic
and (b) harmonic vibrations. Here, we assume U = 6 ω0, 0 ≡ 2πνt2

= πω0 and
zero temperature.

surfaces, we obtain

J = 2t2
∞∑

m=0

[
|M0→1

0→m|
2

εd − h̄ω0[m − χ(m + 1/2)2 + χ/4]
−

|M2→1
0→m|

2

εd + U + h̄ω0[m − χ(m + 1/2)2 + χ/4]

]
(8)

for the exchange coupling. Implications for the Kondo temperature as a function of gate voltage
(setting Vg = εd for simplicity) are shown in figure 2(a) for different values of λ. Similar to the
case of harmonic vibrations [17], which is presented in figure 2(b) for comparison, the gate-
voltage dependence becomes weaker with increasing electron–vibron interaction λ. The origin
of this suppression is that due to the Franck–Condon matrix elements Mn→n′

0→m , the dominant
contribution to the exchange coupling in equation (8) for large λ stems from virtual charge
fluctuations involving highly excited vibrational states with m ≈ λ2. Indeed, these states have
maximal overlap Mn→n′

0→m with the vibronic ground state. As a result, the energy denominators in
equation (8) are dominated by the vibrational energy of the intermediate state, suppressing the
dependence of the exchange coupling and consequently TK on the gate voltage Vg.

The anharmonicity of the molecular potential surfaces results in an asymmetric dependence
TK(Vg), which is most pronounced in the regime of strong electron–vibron coupling. For the
symmetric case, the function ln TK(Vg) is approximately a parabola, which can essentially
be described by only taking into account the term with q = λ2 in the expression for the
exchange coupling in equation (8), i.e. ln TK ∝ (εd − h̄ω0λ

2)(εd + U + h̄ω0λ
2)/(U + 2λ2h̄ω0).

For strong electron–vibron coupling, this parabola is flattened by increasing λ. In contrast, for
the asymmetric case, the gate voltage dependence is approximately given by

ln TK ∝
(εd − h̄ω0λ

2)(εd + U + h̄ω0λ
2)

U + αλ2h̄ω0 + γ εd
, (9)

in the regime of weak electron–vibron coupling, where α ≡ (M0→λ2

0→1 + M0→λ2

2→1 )/M0→λ2

0→1 and
γ ≡ (M0→λ2

0→1 − M0→λ2

2→1 )/M0→λ2

0→1 , For stronger electron–vibron coupling, only one of the two
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Figure 3. Differential conductance dI/dV as a function of V and Vg for λ = 2.0,
and temperatures (a) T = 0.1 h̄ω0 and (b) T = 0.2 h̄ω0.

energy denominators of the term with q ≈ λ2 in equation (8) is large, whereas the other one
is negligible. Therefore, the parabolic gate voltage dependence ln TK(Vg) crosses over into a
linear dependence, as can be seen from figure 2.

Next, we address the asymmetry in the Coulomb blockade peaks about the charge
degeneracy point (marking the transition from the non-Kondo to the Kondo valley) which
accompanies the quenching of the gate dependence of TK in the experiment. To this end, we have
computed the Coulomb blockade behavior in the presence of anharmonic vibronic potentials
within the sequential tunneling approximation. (Of course, this approximation will not capture
the Kondo physics at small biases.) Corresponding two-dimensional plots of the differential
conductance as a function of bias voltage V and gate voltage Vg are shown in figure 3. We
observe fine structure in the vicinity of the Coulomb blockade peaks (cf figure 3(a)) which
results from excitations of bound states of the Morse oscillator, once the bias voltage exceeds
the limits of the Coulomb blockade.

Interestingly, the number of visible peaks and the peak heights change drastically about the
charge degeneracy point, where two molecular charge states become degenerate. While there
occur only very few, but strongly pronounced peaks on one side, there are several consecutive
weaker peaks on the other side.

The underlying physics behind this behavior is illustrated in figure 4. Due to the coupling
of the electrons and the vibrations, the oscillator potential surfaces of the charged and uncharged
states are shifted with respect to each other. As a consequence, the overlap of two wave functions
with occupancy differing by unity depends strongly on their vibrational quantum numbers.

If the neutral state is energetically below the singly charged one (as shown in figure 4(a)),
the spatial overlap of the state with n = 0, q = 0 and several states with charge n = 1 and higher
vibronic states are of the same order of magnitude. The wavefunctions assume large values in
the vicinity of the classical turning points. Since the position of the left turning point is similar
for a large number of vibronic states, the corresponding inelastic transition rates involving the
excitation of vibrons are comparatively large likewise.

On the other hand, if the neutral state is energetically above the singly charged state
(cf 4(b)), the situation looks qualitatively different. Only the spatial overlaps of the vibronic
ground state with n = 0, q = 0 and very few excited vibronic states with n = 1 are significant.
Since the position of the right turning point changes drastically as a function of the vibrational
quantum number, there are only very few Franck–Condon matrix elements which are of
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Figure 4. Level schemes showing the relevant vibrational excitations for a
ground state with occupancy (a) n = 0 and (b) n = 1.

the same order of magnitude, so that the number of peaks in dI/dV is small, whereas the
corresponding peak heights are large.

We note in passing that the saturation value of the current does not depend on the gate
voltage, so that the sum of all differential-conductance peak heights is equal for both sides of
the degeneracy point.

Our crucial observation with regard to the experimentally observed asymmetry of the
Coulomb blockade peaks involves the effect of thermal broadening at finite temperature. As
shown in figure 3(b), thermal broadening washes out the fine structure with the characteristic
temperature scale given by the vibrational frequency h̄ω0 (with a rather small numerical
prefactor). Due to the asymmetry in the number and strength of vibrational sidebands on both
sides of the charge degeneracy point, this induces a pronounced asymmetry of the Coulomb
blockade which is quite reminiscent of the experimental data. In fact, due to the thermal
broadening, the closely spaced peaks on one side of the charge degeneracy point effectively
merge into one peak, while the more widely spaced peaks on the other side are merely
suppressed. We want to emphasize that this feature is characteristic of the regime of the
strong (and intermediate) electron–vibron interaction, whereas it disappears entirely in the weak
coupling limit.

4. Summary and conclusions

In summary, we have analyzed the effects of anharmonic potential surfaces on Coulomb
blockade and Kondo physics in single-molecule transistors. Our study was motivated by recent
measurements for single-molecule devices which have reported the simultaneous occurrence of
two striking features: firstly, the observed gate-voltage dependence of the Kondo temperature
is much weaker in comparison with quantum dots. Secondly, the differential conductance
reveals peaks with drastically different intensities at the two opposite sides of the charge
degeneracy point. We argue that strong electron–vibron coupling which favors anharmonic
potential surfaces can explain both observations within a single generic model.
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Our explanation is an alternative to previous suggestions, also relying on strong
electron–vibron coupling, but relating the asymmetry in the Coulomb blockade to the influence
of Kondo correlations. Possible experimental signatures which can distinguish between the
two explanations include: (i) anharmonic potential surfaces should lead to a nonparabolic
dependence of the Kondo temperature on gate voltage; (ii) in our model, the suppressed
Coulomb blockade peaks can in principle occur on either side of the charge degeneracy point,
dependent on the specific molecule under consideration and independent of whether one is
concerned with a Kondo or non-Kondo valley. We hope that future experiments will investigate
these issues.
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