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Nodal domains on quantum graphs
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Abstract. We consider the real eigenfunctions of the Schrödinger operator on graphs,

and count their nodal domains. The number of nodal domains fluctuates within an

interval whose size equals the number of bonds B. For well connected graphs, with

incommensurate bond lengths, the distribution of the number of nodal domains in the

interval mentioned above approaches a Gaussian distribution in the limit when the

number of vertices is large. The approach to this limit is not simple, and we discuss it

in detail. At the same time we define a random wave model for graphs, and compare

the predictions of this model with analytic and numerical computations.

1. Introduction- the Schrödinger operator on graphs

The structure of the nodal set of wave functions reflects the type of the underlying

classical flow. This was suspected and discussed a long time ago, [1, 2, 3, 4], and returned

to the focus of current research once it was shown that not only the morphology, but

the distribution of the number of nodal domains, is indicative of the nature of the

underlying dynamics [5]. This was followed by several other studies of nodal statistics

[6, 7, 8, 9, 10], and their relation to the random waves ensemble [11].
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Quantum graphs are excellent paradigms of quantum chaos [12], and in the present

work we try to check to what extent the statistics of nodal domains in graphs follow

the patterns observed in the study of wave functions of the Schrödinger operators in the

typical systems (eg, billiards) where quantum chaos is often discussed. Graphs are one

dimensional systems. Their complex features stem from two facts: i. their topology is

different from a one-dimensional interval (except for starlike graphs they are generally

not simply connected), ii. the corresponding “classical” dynamics is not deterministic.

Because of the different topology, Sturm’s oscillation theorem [13] does not apply for

graphs. We shall show however, that Courant’s generalization of the oscillation theorem

[14] to higher dimensions applies, but much more can be said about the problem. That

is, the number of nodal domains of the n’th eigenfunction is generically bounded between

n and nmin and an explicit expression for nmin will be given.

The rest of this section will be devoted to the introduction of metric graphs and

the corresponding Schrödinger operator. The nodal counting problem will be defined

in section 2 and some general results will be presented. The distribution of the number

of nodal domains will be discussed in section 3. This distribution will be calculated

for star graphs in section 3.1, and the results of these computations will be used to

derive the asymptotic distribution of the number of nodal domains in the limit of large

graphs. Some results on counting domains on a bond in starlike graphs will be presented

in section 3.1.2. Finally, in section 4 we shall introduce the random wave model for

graphs. The mean and variance of the distribution of the number of nodal domains will

be computed explicitly and compared with a few numerical results.

A graph G consist of V vertices connected by B bonds. The V × V connectivity

matrix is defined by:

Ci,j = number of bonds connecting the vertices i and j. (1)

A graph is simple when for all i, j : Ci,j ∈ [0, 1] (no parallel connections) and Ci,i = 0

(no loops). The valence of a vertex is vi =
∑V

j=1Ci,j and the number of bonds is

B = 1
2

∑V
i,j=1Ci,j. We denote the bond connecting the vertices i and j by b = [i, j].
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The notation [i, j] and the letter b will be used whenever we refer to a bond without

specifying a direction: b = [i, j] = [j, i]. To any vertex i we can assign the set S(i) of

bonds which emanate from it:

S(i) = {all bonds [i, k] : Ci,k = 1}; #[S(i)] = vi. (2)

We assign the natural metric to the bonds. The position x of a point on the graph

is determined by specifying on which bond b it is, and its distance xb from the vertex

with the smaller index. The length of a bond is denoted by Lb and, 0 ≤ xb ≤ Lb.

The Schrödinger operator on G consists of the one dimensional Laplacian on the

bonds, which must be augmented by boundary conditions on the vertices to guarantee

that the operator is self-adjoint. We derive the form of the boundary conditions here,

since this way we can introduce several of the concepts and definitions to be used later on.

Let x ∈ G and Ψ(x) a real valued and continuous function on G, so that Ψ(x) = ψb(xb)

for x ∈ b, and 0 ≤ xb ≤ Lb. The functions ψb(xb) are real valued, bounded with piecewise

continuous first derivatives. The set of functions Ψ(x) which fulfill these conditions will

be denoted by D and they are the domain of the (positive definite) quadratic form

Q[Ψ] =

∫

G

dx(∇Ψ(x))2 ≡
B
∑

b=1

∫ Lb

0

dxb

(

dψb

dxb

)2

. (3)

The unique self-adjoint extension for the Schrödinger operator, H , is determined by the

Euler - Lagrange extremum principle. The domain of H, DH consists of functions in D,

with twice differentiable ψb(xb), which satisfy the boundary conditions

∀i = 1, . . . , V :
∑

b∈S(i)

nb(i)
dψb

dxb

∣

∣

∣

∣

i

= 0 , (4)

where the derivatives are computed at the common vertex, and nb(i) takes the value 1

or −1 if the vertex i is approached by taking xb to 0 or Lb, respectively. These boundary

conditions are referred to as the Neumann boundary conditions. In the following we

shall denote by φi the value of Ψ at the vertex i.

The spectrum of the Schrödinger operator H is discrete, non negative and

unbounded. It is computed by solving

−
d2ψ

(n)
b (xb)

dx2
b

= k2
nψ

(n)
b (xb) , ∀b. (5)



Nodal domains on quantum graphs 4

subject to the boundary conditions (4). The resulting eigenvalues are denoted by by k2
n,

and they are ordered so that kn ≤ km if n ≤ m.

For later use we quote the following property. Let Dn denote the subspace of

functions in D which are orthogonal to the first n − 1 eigenfunctions of H . Then, for

any non zero Φ ∈ Dn

Q[Φ] ≥ k2
n

∫

G

dx(Φ2(x)) . (6)

Equality holds if and only if Φ is the n’th eigenfunction of H .

It is convenient to present the solutions of (5) on the bond b = [i, j] (i < j) as

ψb(xb) =
1

sin kLb
(φj sin kxb + φi sin k(Lb − xb)) . (7)

The spectrum is computed by substituting (7) in (4), which results in a set of linear and

homogeneous equations for the φi with k dependent coefficients hi,j(k). The spectrum

is obtained as the solutions of the equation ζ(k) ≡ det h(k) = 0. As will be explained

shortly, we shall assume that the lengths Lb are rationally independent, so that ζ(k)

is an almost periodic function of k. We shall also restrict our attention to simple and

connected graphs, and to avoid lengthy discussions of special cases, will assume that

the valences vi ≥ 3 at all the vertices (exceptions will be stated explicitly).

2. Nodal domains on graphs

Nodal domains are connected components of G where the wave-function has a constant

sign. One cannot exclude the possibility that eigenfunctions of the Schrödinger operator

vanish identically on one or several bonds. This is often the case if the bond lengths are

rationally dependent. As an example, consider three vertices which are connected by

bonds which form a triangle. If the lengths of each of the bonds are integer multiples of

Lt, then there exist eigenfunctions with eigenvalues kt,n = n2π
Lt

,for any integer n which

vanish on all the other bonds [15]. To exclude such cases, we shall discuss graphs with

lengths which are rationally independent (incommensurate).
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Rational independence is not sufficient to remove completely the possibility that

wave functions vanish along one or several bonds. To construct an example, take any

graph and choose a wave function which has a few nodal points on it. Connect the nodal

points by bonds and take their length such that the new graph has incommensurate

lengths. The Schrödinger operator for the newly constructed graph has the same

eigenvalue, and a wave function which vanishes identically on all the added bonds.

This construction is quite general, but at most, it can bring about a negligible number

of such wave functions. The reason for this is as follows. The n’th wave function on the

bond [i, j] vanishes if and only if both φ
(n)
i and φ

(n))
j vanish. The vectors φ(n) are the

null vector of the quasi-periodic matrix hi,j(kn), and as kn goes over the spectrum, they

cover the sphere ergodically. Thus, the probability that several components are exactly

0 is vanishingly small. In the sequel we shall ignore these non-generic cases, but bear in

mind, however, that their presence cannot be completely excluded.

The nodal domains on graphs are divided into two types:

i. interior domain - A domain which is restricted to a single bond , and whose length

is exactly π
k
.

ii. vertex domain - A domain which includes a vertex, and extends to the bonds which

emanate from it.

There are V vertex domains, and their length Λi can take any value in the range

vi
π
k
> Λi ≥ 0. Denoting the length of the graph by L =

∑B
b=1 Lb, we obtain the following

expression for the number of nodal domains,

νn = V +
kn

π

(

L −

V
∑

i=1

Λi

)

. (8)

Note that the second term above is an integer, and that this expression is correct for the

generic case where the wave-function does not vanish along entire bonds. νn is bounded

in the interval

knL

π
+ V ≥ νn ≥

knL

π
+ V − 2B . (9)

In the limit n → ∞, knL
nπ

→ 1. Hence, in this limit, νn

n
→ 1. This observation
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stands intermediately between Sturm’s oscillation theorem (νn

n
= 1), and Pleijel’s result

that lim νn

n
is strictly smaller than 1 for the eigenfunctions of the Dirichlet Laplacian for

domains in R
2 [16].

An alternative expression for the number of nodal domains provides a sharper

bound on the range of variation of νn. Denoting the number of nodal points on the

bond b = [i, j] by µ
(b)
n , we have

µ(b)
n = [[

knLb

π
]] +

1

2

(

1 − (−1)[[
knLb

π
]]sign[φi]sign[φj ]

)

(10)

where [[x]] stands for the largest integer which is smaller than x, and φi, φj are the values

of the eigenfunction at the vertices i, j respectively. Thus,

νn =

B
∑

b=1

µ(b)
n −B + V . (11)

The allowed range for νn is now
B
∑

b=1

[[
knLb

π
]] + V ≥ νn ≥

B
∑

b=1

[[
knLb

π
]] + V −B . (12)

The estimates from above can be sharpened by Courant’s law [14] adapted for the

present problem, which we shall now state and prove.

Theorem: Let G be a simple, connected graph. Let k2
n be the n’th eigenvalue of

the Schrödinger operator H defined above and let Ψn(x) be the corresponding real

eigenfunction. Then, the number of nodal domains νn of Ψn(x) is bounded from above

by n, and this bound is optimal.

The proof follows the method used in [16]. Assume that νn > n. Denote by γl,

the nodal domains on G, so that
⋃νn

l=1 γl = G. Construct n functions Ul(x) ∈ D in the

following way:

Um(x) =











Ψn(x) if x ∈ γm

0 otherwise
(13)

It is always possible to find n real constants am such that U(x) =
∑n

m=1 amUm(x)

is orthogonal to the first n − 1 eigenfunctions of H . Hence U(x) ∈ Dn. A simple

computation shows that

Q[U ] = k2
n

∫

G

U2(x) . (14)
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However, U(x) is not an eigenfunction, hence the above equality is in contradiction with

the strong inequality imposed by (6). Thus, the assumption that νn > n is false. �

In the next sections we shall try to determine how the νn are distributed within

their allowed range. We shall start by solving a simpler problem, which pertains to

the family of star graphs. A similar derivation for more complicated graphs is beyond

our present ability. However, assuming that in the limit of large graphs, the lengths

of vertex nodal domains are independent, we shall be able to deduce an approximate

expression for the distribution of νn in this limit.

3. Nodal domain statistics on graphs

In the previous section we observed that νn

n
→ 1 as n→ ∞. Hence, there is no point to

use the statistics proposed in [5] for graphs. Rather, we shall discuss the distribution of

the quantity

δνn = νn − n (15)

which can vary in the interval knπ
L

+V −2B−n ≤ δνn ≤ 0. Let λn = kn

π

∑V
i=1 Λi denote

the sum of the lengths of the vertex domains measured in units of half the wave length.

Following (8) we find

δνn =

[

knL

π
+

1

2
− n

]

+ V −
1

2
− λn = δN(kn) + V −

1

2
− λn . (16)

The expression in the square brackets above is the deviation δN(kn) of the mean spectral

counting function [12] from its actual value. Thus, the fluctuations in the number

of nodal domains stem from two sources: the spectral counting fluctuations, and the

fluctuations in the lengths of the vertex domains λn, whose distribution we shall denote

by

P (λ) = 〈δ(λ− λn)〉 , (17)

where 〈· · ·〉 indicates average over a spectral interval of size ∆k, with ∆kL
π

eigenvalues

on average. In general, and especially for graphs with small B, the two contributions

are probably correlated. For large graphs, however, such correlations are expected to be
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much weaker. This were the case if the spectral and the eigenvector distributions are

independent, like in the relevant random matrix ensemble (GOE). We are not able

to prove this statement, and we assume that in the limit of large graphs the two

contributions can be treated independently. The quantities of interest here are

〈δν〉 =

〈(

knπ

L
+

1

2
− n

)〉

+ V −
1

2
− 〈λn〉 (18)

and

〈∆δν2〉 ≈

〈

∆

(

knπ

L
+

1

2
− n

)2
〉

+ 〈∆λ2〉 . (19)

The contribution of the spectral fluctuations to the mean 〈δν〉, vanishes O
(

1
∆k

)

. λn is

bounded to 0 ≤ λn ≤ 2B. In the sequel, we shall provide evidence in support of the

natural expectation that the λ distribution is symmetric around the point B, thus

〈λ〉 = B . (20)

Hence,

〈νn − n〉 = −(B − V +
1

2
). (21)

This result is consistent with νn − n ≤ 0 since we assumed vi ≥ 2 at all the vertices.

Turning to the variances, the contribution from the spectral counting function for

general systems, and for graphs in particular, was studied previously by various authors.

We show in Appendix (A) that

〈δN(kn)〉 =
B

6

(

1 + O

(

logB

B

))

, (22)

The main term in (22) is a universal bound which is valid for all incommensurate

Neumann graphs. The error estimate is valid for well connected graphs, where the

spectral statistics is known to follow the random matrix predictions. The rest of this

and the following sections will deal with the distribution of the total size of the vertex

domains λn.

The distribution P (λ) for a finite small graph shows distinctive features as can be

seen in figure (1) where we plotted the numerically obtained distribution for a fully

connected graph with V = 4 vertices and B = 6 bonds (the tetrahedron) and compare
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�6 �4 �2 0 2 4 600.20.40.6

�� = �� h�i

V = 4; B = 6P (��)
�8 �6 �4 �2 0 2 4 6 800.20.40.6

�� = �� h�i

V = 5; B = 10P (��)

�10 �5 0 5 1000.050.10.15
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V = 8; B = 28P (��)
�15 �10 �5 0 5 10 1500.020.040.060.080.10.120.14

�� = �� h�i

V = 10; B = 45P (��)

Figure 1. Distribution of the deviation ∆λ of the total length of vertex domains

λ from its mean value 〈λ〉 = B for fully connected graphs with V = 4, 5, 8 and 10

vertices (in units of half the wave length). The first 107 eigenfunctions have been used

for the numerically obtained full line. The thin line is a Gaussian of variance B/6

where B = V (V −1)
2 .

it to larger graphs. A bell shaped function is obtained for P (λ) of larger graphs which

is quite well approximated by a Gaussian of variance B
6
.

Since λn is bounded in the interval (0, 2B) its variance cannot grow faster than B

〈∆λ2〉 = β(G)B , (23)

where β(G) < 1. We shall compute β(G) below for particular models, and show that in

general, for large graphs β(G) = 1
6
.

A quantity which might be of some interest in the present context is the length

(again in units of half the wave length) χ
(i,j)
n of the intersection of a vertex domain at

a given vertex i with the single bond b = [i, j]. Generally, χ
(i,j)
n 6= χ

(j,i)
n but they are
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related by

L[i,j] =
π

kn

(

[[
knL[i,j]

π
]] + χ(i,j)

n + χ(j,i)
n

−
1

2
−

(−1)[[
knL[i,j]

π
]]

2
sign[φi] sign[φj ]

)

.

(24)

The total length of all vertex domains is

λn =
∑

i<j

Ci,j

(

χ(i,j)
n + χ(j,i)

n

)

. (25)

The distribution

P (i,j)(χ) = 〈δ(χ− χ(i,j)
n )〉 (26)

is thus connected to nodal counting on a single bond. Due to (strong) correlations

between the χ
(i,j)
n for different i and j (26) is less useful than (17) or nodal counting on

a complete graph.

3.1. Nodal domain statistics on star graphs

In a star graph all bonds emanate starlike from one central vertex i = 0. Each bond

bi = [0, i] (i = 1, . . . , B) connects the central vertex to one peripheral vertex i (see figure

2). The bond bi has the length Li and all lengths are chosen incommensurate. The

variable xi measures the distance from the center on bond bi such that 0 ≤ xi ≤ Li and

xi = Li at the peripheral vertex i. Though the number of vertices is V = B + 1 only

the central vertex fulfills v0 ≥ 3 (if B ≥ 3). The peripheral vertices have valence vi = 1

and instead of Neumann boundary conditions we will use Dirichlet boundary conditions

φi = 0 (i = 1, . . . , B) there. The wave function on the bond bi follows from (7)

ψi(xi) =
φ0

sin kLi
sin k (Li − xi) (27)

where φ0 is the value of the wave function on the central vertex. Current conservation

at the center leads to the quantization condition

fB(kn) ≡
B
∑

i=1

cot knLi = 0 (28)

for the n’th eigenvalue kn of the star graph.
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0 14
23

5 6
Figure 2. A star graph with B = 6 bonds emanating from the central vertex 0.

Since the peripheral vertices are nodal points, equations (8) and (16) for the number

of nodal domains have to be modified to

νn = 1 +
B
∑

i=1

[[
Likn

π
]] = 1 +

kn

π
L − λn (29)

where λn = knL
π

−
∑B

i=1[[
Likn

π
]] is kn

π
times the length of the nodal domain that contains

the central vertex. Obviously 0 ≤ λn ≤ B and νn is bounded by

1 +
knL

π
≥ νn ≥ 1 −B +

knL

π
. (30)

3.1.1. The central nodal domains

As discussed above, nodal counting is partly determined by spectral fluctuations and

partly by the distribution (17) of the length λ of the central nodal domain. We shall

consider here only the distribution of the lengths of the central vertex domain,

P (λ) = 〈δ(λ− λn)〉

= lim
∆k→∞

π

∆kL

∫ ∆k

0

dk

∣

∣

∣

∣

dfB

dk
(k)

∣

∣

∣

∣

δ(fB(k))δ(λ− λ(k))
(31)

where λ(k) =
∑B

i=1

(

kLi

π
− [[kLi

π
]]
)

. From (28) we have

dfB

dk
(k) = −

B
∑

i=1

Li

sin2 kLi

≤ 0. (32)

Let

χi =
kLi

π
− [[

kLi

π
]] (33)

be the (rescaled) length of the intersection of the central nodal domain with the i’th

bond (λ(k) =
∑B

i=1 χi). Obviously, 0 ≤ χi ≤ 1 and since the length Li are assumed
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incommensurate, k creates an ergodic flow on the B-torus spanned by the χi [21]. Thus,

the spectral integral over k in (31) may be replaced by an integral over the B-torus

variables χi. This leads to

P (λ) = π

∫ 1

0

dBχ
1

sin2 πχ1

δ

(

B
∑

i=1

cotπχi

)

δ

(

λ−
B
∑

i=1

χi

)

. (34)

Replacing the two δ-functions by their Fourier representation, the distribution takes the

form

P (λ) =
1

4π

∫ ∞

−∞

dη

∫ ∞

−∞

dξ G(η, ξ)B−1G̃(η, ξ) eiξ(λ−B
2

) (35)

where

G(η, ξ) =
2

π

∫ π
2

0

dα cos

(

η tanα +
ξ

π
α

)

(36)

and

G̃(η, ξ) =

(

1 −
∂2

∂η2

)

G(η, ξ)

= 2 cos
ξ

2
δ(η) −

ξ

π
G(η, ξ) P

1

η
.

(37)

The last line shows, that G̃(η, ξ) is a distribution where P
1
η

denotes the Cauchy’s

principal value. The integral (36) can be solved explicitly (see [22], (3.718)) in terms of

Whittaker functions Wµ,ν(x)

G(η, ξ) = Θ(η)
W− ξ

2π
, 1
2
(2η)

Γ(1 − ξ
2π

)
+ Θ(−η)

W ξ

2π
, 1
2
(−2η)

Γ(1 + ξ
2π

)
. (38)

Here Θ(x) is Heaviside’s step function. The appearance of Whittaker functions can

also be seen from (37) – for η 6= 0 the right hand sides reduce to (1 − ∂2

∂η2 )G(η, ξ) =

− ξ
πη
G(η, ξ), a special case of Whittaker’s differential equation [22]. Using the last line of

equation (37) the distribution can be written as a sum of two terms P (λ) = Pδ(λ)+PP(λ)

where

Pδ(λ) =
1

2π

∫ ∞

−∞

dξ

∫ ∞

−∞

dη G(η, ξ)B−1 δ(η) cos
ξ

2
cos(ξ(λ−

B

2
))

=
2

π

∫ ∞

0

dz

(

sin z

z

)B−1

cos z cos(z(2λ−B))

=
B−1

2

∑

0≤l< B
2

(−1)l

l!(B−1−l)!

(

Θ (B
2
−l−|λ−B

2
|) (B

2
−l−|λ−B

2
|)B−2 +

Θ (B
2
−1−l−|λ−B

2
|) (B

2
−1−l−|λ−B

2
|)B−2

)

(39)
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and

PP(λ) = −
1

4π2

∫ ∞

−∞

dξ ξ cos(ξ(λ−
B

2
))

∫ ∞

−∞

dη P
1

η
G(η, ξ)B

=
2

π2

∫ ∞

0

dz z cos(z(2λ− B))×

∫ ∞

0

dy
1

y





(

W z
π

, 1
2
(y)

Γ(1 + z
π
)

)B

−

(

W− z
π

, 1
2
(y)

Γ(1 − z
π
)

)B


 .

(40)

P (λ) is symmetric in λ− B
2
. Hence 〈λ〉 = B

2
.

For large star graphs (B ≫ 1), P (λ) is dominated by Pδ(λ) (see figure 3). This

observation is supported by the fact that PP(λ) does not contribute to the integrated

probability distribution,
∫∞

−∞
dλPP(λ) = 0 while

∫∞

−∞
dλPδ(λ) = 1. The dominance

of Pδ(λ) can be further supported by computing the variance of the exact distribution

P (λ) and of Pδ(λ). The exact variance is evaluated by going back to (34):

〈∆λ2〉 =

∫

dλ

(

λ−
B

2

)2

P (λ)

= π

∫ 1

0

dBχ
1

sin2 πχ1

δ

(

B
∑

i=1

cotπχi

) (

B

2
−

B
∑

i=1

χi

)2

=
B + 2

12
−

4

π

∫ 1
2

0

dz z arctan
tan zπ

B − 1

=
B + 2

12
+ O(B−1−ρ) , (ρ > 0).

, (41)

Using (39) we reproduce the leading terms in the exact variance:
∫

dλ

(

λ−
B

2

)2

Pδ(λ) =
B + 2

12
. (42)

The fact that Pδ(λ) approaches P (λ) for large star graphs is very important in the

present context. First, it provides an analytic expression, which for large B tends to a

Gaussian with a variance given by (42). Second, when we consider general large graphs,

the size of the vertex domains become statistically independent, and their distribution

can be approximated by a Gaussian whose variance is

〈(∆λ)2〉 ≈
1

12

∑

vi =
B

6
, hence β(G) =

1

6
(43)

where here B stands for the number of bonds on the general graph. This result is

consistent with the numerical data shown in figure 1.
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Combining the two estimates for the variances of the spectral fluctuations (22) and

the nodal domain fluctuations (43), we obtain the leading term for the variance of the

number of nodal domains:

〈(∆ν)2〉 =
B

3
. (44)

This estimate holds in the limit of large graphs. In the next section we shall show that

the random wave model for the graph provides the same answer for the variance of the

nodal domain distribution.

3.1.2. Nodal domains on a single bond

In a star graph the number of nodal domains on the bond bi = [0, i] is

[[
knLi

π
]] =

knLi

π
− χi (45)

where χi is the length of the intersection of the central nodal domain with the bond bi

as in equation (33) above. Note, that there are no vertex domains on the peripheral

vertices and equation (24) has to be modified. Following the preceding section we define

P (i)(χ) = lim
∆k→∞

π

∆kL

∫ ∆k

0

dk

∣

∣

∣

∣

dfB

dk
(k)

∣

∣

∣

∣

δ(fB(k))δ(χ− χi(k))

= π

∫ 1

0

dBχ δ

(

B
∑

i=1

cotπχi

)

δ(χ− χi)
B
∑

j=1

Lj

L sin2 πχj

.

(46)

With similar techniques as in the previous section this integral can be solved explicitly

P (i)(χ) =
L − Li

L
+
Li

L

B − 1

(B − 1)2 sin2 χπ + cos2 χπ
. (47)

For large star graphs B ≫ 1 where each bond length is of similar size, one has Li

L
∼ 1

B
,

and the distribution becomes uniform (with two singular points at χ = 0 and χ = 1). If

one bond length Li exceeds the other bond lengths such that Li ≫ L−Li the distribution

becomes

P (i)(χ) ≈
B − 1

(B − 1)2 sin2 χπ + cos2 χπ
(48)

which for large B is peaked at χ = 0 and χ = π.
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Figure 3. Numerically obtained distributions of the length of the central nodal domain

in a star graph with B = 3, 4, 5, 50, 100 and 200 bonds (histograms – full lines) –

the first 2 · 106 eigenfunctions have been used for each graph. The dashed line gives

Pδ(λ) = P (λ) − PP(λ) and the thin line is a Gaussian with variance B

12 – for large B

the Gaussian is indistinguishable from the Pδ(λ) and the numerical distribution slowly

converges to the Gaussian.

4. Random waves on graphs

Since Berry’s seminal work [11] random waves have been a paradigm for chaotic wave

functions. Recently they have been used extensively in the investigation of the nodal

structure in chaotic wave functions [5, 6, 7, 8, 9, 10].

In this section we will introduce random waves on graphs. Any ensemble of random

waves should solve Schrödinger’s equation on the bonds and be continuous at the



Nodal domains on quantum graphs 16

vertices. Thus, any set of values {φj} (j = 1, . . . , V ) for the wave function on the

vertices determines a wave function on the graph which solves (7). However, these waves

do not fulfill the correct boundary conditions (current conservation) on the graph. The

ensemble of random waves on a graph is therefore defined in terms of the probability

distribution of the φj.

Before we define the appropriate ensemble for more general graphs it will be

instructive to discuss star graphs. If we want to compare random waves with the star

graph results of the previous chapter we have to keep the Dirichlet boundary conditions

at the peripheral vertices and only relax the the current conservation condition at the

center. Then ψi(xi) = φ0

sinkLi
sin k(Li−xi) is the random wave on the i’th bond and φ0 is

the only random parameter for fixed k. Obviously the position of nodal points does not

depend on φ0. Thus, we do not need the distribution P (φ0) for the discussion of nodal

domain statistics. Let us now rewrite equation (29) for the number of nodal domains

ν(k) = 1 +
B
∑

i=1

∫ Li

1/2

dxi

∞
∑

j=−∞

δ(xi − j)

= 1 +
kL

π
−
B

2
+

B
∑

i=1

∞
∑

j=1

sin 2πjLik

jπ
.

(49)

Averaging over a k-interval reveals that the mean is 〈ν〉 = 1 + kL
π
− B

2
– consistent with

the result for the eigenfunctions in the previous chapter. For the variance we get

〈∆ν2〉 =

∫ k0+∆k

k0

B
∑

i,i′=1

∞
∑

j,j′=1

cos 2πk(jLi−j′Li′)−cos 2πk(jLi+j′Li′ )

2∆k jj′ π2

=
B

2π2

∞
∑

j=1

1

j2
+ O(∆k−1) =

B

12
+ O(∆k−1)

(50)

which again coincides with the result for the eigenfunctions of star graphs for large

B. Note, that for incommensurate bond lengths there are no correlations between

the contributions from single bonds. Thus the number of nodal domains is a sum

of independent quantities of finite variance each. The central limit theorem leads to

Gaussian statistics for large B.

To define an appropriate ensemble for more general graphs we will be guided by

wave functions that do fulfill current conservation (we will again assume that each vertex
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has a valence vi ≥ 3). The quantization condition for a graph has the form dethij(k) = 0

where hij(k) is a real symmetric matrix of dimension V × V [12]. If the quantization

condition is fulfilled for k, the eigenvector for the zero eigenvalue is a set of vertex values

{φj} that determines the eigenfunction. For incommensurate lengths hij(k) is a quasi-

periodic function of k such that the matrices hij(k) are expected to be typical members

of the Gaussian orthogonal ensemble (GOE) in random-matrix theory. Since for that

ensemble eigenvectors have uncorrelated components, we will assume for the ensemble

of random waves on the graph that the φj are independent Gaussian variables of equal

variance. From equation (10) and (11) we see that the number of nodal domains only

depends on the signs of φj. Let σj = sign[φj], then σj = ±1 with equal probability. The

number of nodal domains can now be rewritten as

ν(k) =
kL

π
+ V −B +

∑

i,j:i<j

Ci,j

(

∞
∑

m=1

sin 2πmkLij

mπ
−

1

2
(−1)[[

kLij

π
]]σiσj

)

.(51)

Averaging over a k-interval of length ∆k centered at k0 and over σj gives the mean

number of nodal domains

〈ν〉 =
k0L

π
+ V −B + O(∆k−1) . (52)

The variance of the number of nodal domains is purely due to the sum over i, j in (51).

To leading order, the sum over sines and the sum over the signs σi give independent

contributions to the variance. We have already calculated the first part 〈ν2〉sin = B
12

above in our discussion of random waves on star graphs. The fluctuations due to the

signs are stronger, and they provide to the variance a term 〈ν2〉σ = B
4
. Hence the

random wave model predicts the variance

〈ν2〉 =
B

3
+ O(∆k−1) . (53)

This result reproduces the estimate (44), which was derived under very different

assumptions. Finally we would like to note that bonds do not contribute independently

to the number of nodal domains. However, these correlations are not expressed in the

variance. They do contribute to the higher moments.
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6. Appendix A

In this appendix we justify the bound (22) on the variance of the spectral counting

function for graphs.

The starting point is the expression of the spectral counting function N(k) as a

sum of its mean value (Weyl’s law) and an oscillatory part,

N(k) =
kL

π
+

1

2
+ δN(k), (54)

and the oscillatory part is given by [12]

δN(k) =
1

π
Im

∞
∑

m=1

tr (SB(k))m

m
. (55)

SB(kn) is the bond scattering matrix defined in [12]. tr (SB(k))m, is a sum of

contributions from all them−periodic orbits on the graph. Each contribution is endowed

with a phase proportional to klmp , where lmp is the length of the orbit, and p is the

summation index. Because of the rational independence of the bond lengths,

〈tr (SB(k))m tr (S∗
B(k))n〉 = 2BKmδm,n + O(∆k−1) (56)

Where Km is the spectral form factor associated with the graph. The mere fact that the

bond lengths of the graph are not commensurate, is enough to guarantee that Km ≤ 1.

〈(δN(k))2〉 ≈
1

2π2

∞
∑

m=1

〈|tr (SB(k))m |2〉

m2
≤
B

6
. (57)

A sharper estimate can be given for well connected graphs, where numerical and analytic

results [12, 18] show that the Km follow the predictions of random matrix theory for

the circular orthogonal ensemble (COE). We can use the known functional dependence

of Km on m and B [19] and show that

〈(δN(k))2〉 =
B

6
(1 + O

logB

B
). (58)



Nodal domains on quantum graphs 19

References

[1] R. M. Stratt, N. C. Handy and W. H. Miller, J. Chem. Phys. 71 3311-3322 (1979).

[2] F. Simmel and M. Eckert, Physica D 97 517 (1996).

[3] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Chapter 15. (Springer-Verlag, New

York, 1990).

[4] R. Aurich et al, Physica D 64 185 (1993); ibid 129 169 (1999).

[5] G. Blum, S. Gnutzmann and U. Smilansky, Phys. Rev. Lett. 88 114101 (2002).

[6] E. Bogomolny and C. Schmidt, Phys. Rev. Lett. 88 114102 (2002).

[7] M. V. Berry, J. Phys. A 35 3025 (2002).

[8] W. E. Bies and E. J. Heller, J. Phys. A 35 5673-5685 (2002).

[9] A. G. Monastra, U. Smilansky and S. Gnutzmann, J. Phys. A 36 1845 (2003).

[10] G. Foltin, J. Phys. A 36 1729 (2003); nlin.CD/0302049 (2003).

[11] M. V. Berry, J. Phys A 10 2083 (1977).

[12] T. Kottos and U. Smilansky, Annals of Physics 274 76 (1999).

[13] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol I p. 451 (Interscience, New

York, 1953).

[14] R. Courant, Nachr. Ges. Wiss. Göttingen, Math. Phys. K1(1923), July 13; R. Courant and

D. Hilbert, Methods of Mathematical Physics, Vol I pp 451-465 (Interscience, New York, 1953).

[15] H. Schanz and T. Kottos, Scars on quantum networks ignore the Lyapunov exponent preprint

(2003) nlin.CD/0302054.

[16] A. Pleijel, Comm. Pure and Applied Math. 9 543, (1956).

[17] M. Berry, Some quantum-to-classical asymptotics, in Les Houches Lecture Series LII (1989),

pp. 251-304, eds. M.-J. Giannoni, A. Voros, and J. Zinn-Justin, (North-Holland, Amsterdam,

1991).

[18] G. Berkolaiko, H. Schanz, and R. S. Whitney, Phys. Rev. Lett. 88 104101 (2002).

[19] F. Haake, Quantum Signatures of Chaos, 2nd ed., p. 90 (Springer, Berlin, 2001).

[20] G. Berkolaiko, E. B. Bogomolny, and J. P. Keating, J. Phys. A 34 335 (2001).

[21] F. Barra and P. Gaspard, J. Stat. Phys. 101 283 (2000).

[22] I. S. Gradsteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Academic

Press, New York, 1969).

http://de.arXiv.org/abs/nlin/0302049
http://de.arXiv.org/abs/nlin/0302054

	Introduction- the Schrödinger operator on graphs
	Nodal domains on graphs
	Nodal domain statistics on graphs
	Nodal domain statistics on star graphs
	The central nodal domains
	Nodal domains on a single bond 


	Random waves on graphs
	Acknowledgments
	Appendix A

