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Universal spectral statistics in Wigner-Dyson, chiral and Andreev star graphs II:

semiclassical approach
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A semiclassical approach to the universal ergodic spectral statistics in quantum star graphs is
presented for all known ten symmetry classes of quantum systems. The approach is based on periodic
orbit theory, the exact semiclassical trace formula for star graphs and on diagrammatic techniques.
The appropriate spectral form factors are calculated upto one order beyond the diagonal and self-
dual approximations. The results are in accordance with the corresponding random-matrix theories
which supports a properly generalized Bohigas-Giannoni-Schmit conjecture.

PACS numbers: 0.5.45.Mt,0.3.65.-w,74.50.+r

I. INTRODUCTION

Since Bohigas, Giannoni and Schmit conjectured in
their in a seminal paper [1] that the spectral fluctuations
in quantum systems with a chaotic classical counterpart
follow the predictions of the Gaussian random-matrix en-
sembles GUE, GOE, or GSE (depending on the behav-
ior of the system under time-reversal and spin rotations)
a lot of numerical data has been gathered that strongly
support this conjecture (see [2, 3] and references therein).
While an analytic proof of the conjecture and a precise
statement of its limits is still lacking there has been a
continuous advance in understanding the universality of
spectral statistics. The main tool in the semiclassical ap-
proach is Gutzwiller’s trace formula [4] which expresses
the fluctuating part of the density of states as a sum over
classical periodic orbits. The main object of interest is
the spectral form factor which is the Fourier transform of
the spectral two-point correlation function (below we will
call this the second-order form factor) which is expressed
semiclassically via the trace formula as a sum over pairs
of periodic orbits which share the same action. In the di-
agonal approximation introduced by Berry [5] only those
pairs for which both periodic orbits are either equal or the
time-reverse of the other are summed over. The assump-
tion of hyperbolic chaos is then sufficient to prove that
the leading linear order in a short-time expansion for a
quantum system follows the random-matrix predictions.
Recently Sieber and Richter [6] started new progress for
a semiclassical approach beyond the diagonal approxi-
mation with the observation that self-crossing trajecto-
ries in a billiard of constant negative curvature have a
partner orbit of the same action that avoids this self-
crossing. In the form factor these Sieber-Richter pairs
give the quadratic order in time as predicted by the GOE.
Their approach has been generalized to general hyper-
bolic billiards [7] and later in a phase space approach
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to hyperbolically chaotic Hamiltonian systems with two
[8, 9] and finally any number of degrees of freedom [10].
Finally, the cubic order in the short-time expansion has
been calculated [11].

The first non-vanishing order in τ is known as the di-
agonal approximation in the Wigner-Dyson classes which
is linear in τ . For the chiral and Andreev classes the
first non-vanishing order is τ0 and has been called the
self-dual approximation [12]. So far the fidelity to the
predictions of Gaussian random-matrix theory has been
derived for the classes C and CI – here, we will give
a complete account of for star graphs in all symmetry
classes. Though we restrict to graphs here, the follow-
ing calculation show what types of periodic orbits and
which of their properties are responsible for universality
in more general Hamiltonian system.

The next to leading order (the weak localization cor-
rections) will also be calculated for all ten ensembles of
star graphs. For fully connected Wigner-Dyson graphs in
class AI (GOE) these have recently been calculated to or-
der τ3 (based on much earlier work on τ2) by Berkolaiko
et al [13]. These authors generalized the Sieber-Richter
approach to graphs and introduced diagrammatic tech-
niques similar to those used in this paper. The relation
between the corresponding expansion for quantum sys-
tems in class AII (GSE) and the AI (GOE) expansion
has been considered receltly [14, 15].

The corresponding ensembles of star graphs have been
constructed in the first paper of this series [16]. Each
of these ensembles obeys the symmetry conditions of
one class in the ten-fold classification of quantum sys-
tems. There, we have also introduced the first-order and
second-order spectral form factors as the Fourier trans-
forms of the fluctuating part of the density of states and
the two-point correlation function and related them to
them to the scattering matrix if the star graphs via an ex-
act semiclassical trace formula. We have also shown nu-
merically that these spectral form factors follow the pre-
dictions of the corresponding Gaussian random-matrix
ensembles. The second-order form factor of graphs in
the Wigner-Dyson classes follow the predictions of the
well-known Wigner-Dyson ensembles GUE, GOE, GSE.
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For the remaining seven “novel” symmetry classes the
first-order form factor for star graphs coincides with the
corresponding Gaussian random-matrix prediction. For
the novel ensembles the fidelity to Gaussian random-
matrix prediction is the content of a properly generalized
Bohigas-Giannoni-Schmit conjecture [16].

The (generalized) Bohigas-Giannoni-Schmit conjec-
ture states that the spectral fluctuations of a single clas-
sically chaotic physical system follow the predictions of
Gaussian random-matrix theories. Here, we have explic-
itly introduced ensembles of star graphs. It has been
shown however [17] that ensemble averages over certain
phases in graphs are equivalent to a spectral average of
a single spectrum in a graph with incommensurate bond
lengths.

For the first-order form factor for chiral and Andreev
star graphs the generalized Bohigas-Giannoni-Schmit
conjecture is slightly weaker in as much as not a sin-
gle spectrum is conjectured to follow the random-matrix
predictions but a one-parameter average over different
values of an effective ~ (an average over different values
of the Fermi level or different quantizations of the same
system). We leave it open here to what extend the en-
semble averages for the graphs in the novel symmetry
classes are equivalent to such a one-parameter average.

In section II we introduce the diagrammatic represen-
tation of the form factors: the section starts with a gen-
eral description in II A, there we give the vertex (“d-
vertex”) and bond (“line”) contributions to a diagram
for each of the ten symmetry classes in II B and also give
the diagrammatic expansion of the ensemble averaged
form factors in II C. In section III we calculate the diag-
onal and self-dual approximations and one order beyond
for the form factors of the ten ensembles: this section
first introduces a systematic diagrammatic short-time ex-
pansion of the form factors in III A and then explicitly
gives all diagrams of the leading and next-to-leading or-
der which are calculated explicitly in III B.

II. THE DIAGRAMMATIC REPRESENTATION

OF FORM FACTORS FOR STAR GRAPHS

Star graphs are simple quantum systems with an ex-
act semiclassical trace formula for the density of states
[18]. They consist of V vertices connected by B bonds
of length Li. A particle propagates freely on the bond
and is scattered at the vertices according to prescribed
unitary vertex scattering matrices.

In a star graph B bonds emanate from one central ver-
tex and connect it to B peripheral vertices [16, 18, 19].
We have generalized previous star graph models by al-
lowing for a wave function with µ components. In our
model all bonds have the same length and the free prop-
agation along the bonds and the scattering at the central
vertex do not mix the components (but have to obey
some symmetry conditions). The central vertex scat-
tering is thus a unitary µB × µB matrix of the form

SC,αj,α′,j′ = δαα′S(α)
C,jj′ [16]. Here, j, j′ = 1, . . . , B is an

index for the bonds and α, α′ = 1, . . . , µ counts the wave
function components. In addition, propagation along the
bonds and the central scattering are time-reversal invari-
ant. The proper choice of the scattering process at the
peripheral vertices fixes the symmetry class (and breaks
time-reversal if necessary). All peripheral scattering pro-
cesses can be described by a single unitary µB×µB ma-

trix of the form SP,αj,α′,j′ = δjj′σ
(j)
αα′ [16]. For graphs in

the novel symmetry classes this process involves an equiv-
alent of Andreev scattering (electron-hole conversion).

A. Diagrammatic representation of the form

factors

Prescribing the central and peripheral scattering ver-
tex matrices SC and SP leads to a quantization of the
graph. Their product is the reduced bond scattering ma-
trix SB ≡ SPSC . The density of states is represented
exactly by the semiclassical trace formula

d(κ) = 1 +
2

µB
Re

∞
∑

n=1

ei2πκ gn
µB sn. (1)

Here, κ is the wave number in units of the (macroscopic)
mean level spacing and

sn = tr S̃n
B =

∑

ji,αi

σ(j1)
α1αn

S(αn)
C,j1jn

. . . σ(j2)
α2α1

S(α1)
C,j2j1

(2)

is the trace of the n-th power of the reduced bond scatter-
ing matrix. The latter may be represented by diagrams
[13]

sn = j1j2j3jn�1 jn �1�2
�n�1 �n . (3)

In order to distinguish between a bond or vertex in a
star graph and in a diagram we will use the terms lines
and d-vertices for the diagrams and reserve bonds and
vertices for star graphs. The d-vertices in the above di-
agram correspond to the peripheral vertices in the star
graph which are visited one after another. Each d-vertex
contributes a factorj�0� = σ

(j)
αα′ ≡ SP, jα,j′α′ (4)

to the diagram. This describes the scattering of a par-
ticle that moves outwards on bond j in the state α′ to
a particle moving inwards on the same bond in state α.
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The lines in the diagram carry a factorjj0� = S(α)
C,jj′ ≡ SC, jα,j′α. (5)

A diagram is calculated by summing over all indices all
indices jk = 1, . . . , B and αk = 1, . . . , µ – obviously for
(3) one arrives back at (2). We have defined the first-
order form factor [16] as the Fourier transform of the (en-
semble averaged) fluctuating part of the density of states.
The first-order form factor in discrete time τ = gn

µB (g = 2

in classes AII, DIII, and CII which have Kramers’ degen-
eracy, else g = 1) is upto a constant given by the ensemble
average

K1,n =
2

g
〈sn〉 . (6)

After an additional time average (over a small interval
∆n ≪ B) which is needed for comparison with random-
matrix theory the first-order form factor (in continuous

time) is K1(τ = gn
µB ) = 1

∆n

∑n+∆n−1
n′=n K1,n. Equivalently

there is a discrete and continuous time second-order form
factors. In the Wigner-Dyson case they are given by

K2,n = 1
B 〈sns∗n〉

= 1
B

〈

j1j2jn�1 jn k1k2kn�1 kn 〉 (7)

and K2(τ = gn
µB ) = 1

∆n

∑n+∆n−1
n′=n K2,n. In the dia-

gram for s∗n we have indicated the complex conjugation
by dashed lines. Most contributions to sn and |sn|2 do
not survive the ensemble average. The remaining contri-
butions can be written as a sum over various diagrams
involving the same lines and d-vertices but have less sum-
mation indices. This expansion will be explained in sec-
tion II C.

B. The line and d-vertex factors for the ten

symmetry classes

In the previous section we have not specified the central
and peripheral scattering matrices for the different sym-
metry classes. Let us now give the explicit d-vertex fac-
tors and line factors for each of the ten symmetry classes
that are equivalent to the construction in [16]. The lines
in the diagram correspond to the central scattering pro-
cess. In our model each components of the wave function
is either scattered in the center by the B × B discrete

Fourier transform matrix SDFT,kl = 1√
B

ei2π kl
B or by its

complex conjugate for which we will use the linesjj0 =
1√
B

e2πi jj′

B and

kk0 =
1√
B

e−2πi kk′

B . (8)

For some classes the line carries an additional index for
the component of the wave function – the line factor how-
ever does not depend on it.

In the Wigner-Dyson classes only full lines exist in the
representation of sn while there are only dashed lines in
s∗n. The wave-function has only one component in class
AI. It has two components in class A which we will call
“spin up” with the symbol ↑ and “spin down” with the
symbol ↓ for convevenience. Finally, it has a four compo-
nents in class AII – in addition to the spin labels ↑, ↓ we
use the symbols ⇑,⇓ and call the latter “iso-spin” up and
down for convenience. The three star graph ensembles in
the Wigner-Dyson classes are defined by the d-vertex fac-
tors to be given now. We only give the d-vertex factors
for in- and outgoing full lines. The corresponding fac-
tors for d-vertices connected to dashed lines is just the
complex conjugate. In class AI each d-vertex carries a
random phase factor

AI: j = eiβj . (9)

In class AI we have four different scattering processes
corresponding to incoming and outgoing spin directions

A:

j"" = ei(βj+γj)
√

2
j#" = ei(βj+δj)

√
2j"# = ei(βj−δj)

√
2

j## = ei(βj−γj)
√

2
.

(10)

Thus spin either flips with probability 1
2 . In class AII

iso-spin always flips at a d-vertex while spin flips with
probability 1

2 . Thus there are altogether eight different
processes

AII:

j"+"* = j#*#+ = ei(βj+γj)
√

2j#+"* = (−1)× j#*"+ = ei(βj+δj)
√

2j#+#* = j"*"+ = ei(βj−γj)
√

2

(−1)× j"+#* = j"*#+ = ei(βj−δj)
√

2
.

(11)
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For the novel symmetry classes the wave function has
either two (classes C and CI) or four components (D,
DIII, AIII, BDI, and CII). In either case the components
are divided in “electron” and “hole” components. Elec-
trons are represented by full lines and holes by dashed
lines. Additionally for the four-component wave func-
tions, electrons (holes) have a “spin” up and down com-
ponent. For each ensemble of star graphs the periph-
eral scattering involves complete electron-hole conversion
(Andreev scattering). Thus, each d-vertex is connected
to one dashed and one full line. For the graphs in the
classes C and CI they are two different scattering pro-
cesses at a d-vertex one for an incoming electron the other
for an incoming hole. The corresponding d-vector factors
are given by

C, CI: j = −e−iβj j = eiβj (12)

where 0 ≤ βj < 2π is a random phase in class C and
βj = 0 or βj = π with equal probability in class CI. In
the remaining classes spin flips with probability 1

2 at each
d-vertex. There are altogether eight scattering processes
and their d-vertex factors are given by

D DIII AIII BDI CIIj"" e−iβj√
2

e−iβj√
2

τj√
2

σj√
2

−σj√
2j"# −eiγj√

2

−iσj√
2

e−iγj√
2

eiβj√
2

−e−iβj√
2j#" e−iγj√

2

−iσj√
2

eiγj√
2

e−iβj√
2

−eiβj√
2j## eiβj√

2
eiβj√

2

−τj√
2

−σj√
2

σj√
2j"" eiβj√

2
eiβj√

2

σj√
2

σj√
2

σj√
2j"# −e−iγj√

2

iσj√
2

e−iβj√
2

e−iβj√
2

e−iβj√
2j#" eiγj√

2

iσj√
2

eiβj√
2

eiβj√
2

eiβj√
2j## e−iβj√

2
e−iβj√

2

−σj√
2

−σj√
2

−σj√
2

,

(13)
where 0 ≤ γj , βj < 2π are random phases and σj , τj = ±1
with equal probability.

C. Diagrammatic expansion of the ensemble

averaged form factors

For the Wigner-Dyson classes we are only interested in
the second-order form factor as the first-order form fac-
tor vanishes exactly under the ensemble average. For the
graphs in the novel classes the ensemble average is non-
trivial for the first-order form factor. The second-order
form factor in the novel classes would contain additional
contributions proportional to 〈s2

n〉 and its complex con-
jugate which vanish in the Wigner-Dyson case. We will
not consider the second-order form factor for other classes
than the Wigner-Dyson here.

Though the second-order form factor is a sum over
pairs of periodic orbits and the first-order form-factor
contains a single orbit the diagrammatic expansion is
based on similar observations. We will start with the
Wigner-Dyson case. Most pairs of periodic orbits do not
survive the ensemble average. A contribution can only
survive if all d-vertices have a partner d-vertex such that
the product of their factors does not depend on the ran-
dom phases or random signs. In the This condition can
only be fulfilled if the two orbits visit the same periph-
eral vertices with the same multiplicities. The order may
however be different and one may introduce diagrams to
denote the various appearing permutations. Let us start
with the diagrams for class AI and later introduce the
spin degrees of freedom. An example of such a diagram
for n = 6 is given by

D= k1k2k3k4 k5 k6
=ξ

B
∑

k1,...,k6=1

e

2πi
B

6
∑

m=1
(kπ̃(m)kπ̃(m+1)−kmkm+1)

B6 = ξ

B2 .

(14)

In this diagram d-vertices have been joined to pairs in a
grey area to indicate that they carry the same index km.
We will call these grey areas scattering regions and, in the
sequel, we will drop the indices km (as well as line indices
for multi-component wave functions). The multiplicity
factor ξ will be explained later in this section.

Any diagram that contributes to K2,n has 2n d-vertices
connected by 2n (directed) lines that define two periodic
orbits of length n. One of the orbits has only full lines
the other only dashed lines. Each d-vertex and each line
contributes with the corresponding factor to the diagram
– since by construction the phase factors eiβj each have
a partner e−iβj the phases all cancel. The number w
of scattering regions may range in w = n, n − 1, . . . , 1.
Each of the w scattering regions carries a single index
km (m = 1, 2, . . . , w) for all d-vertices which it contains.
The number of d-vertices in a scattering region is always
even – half of the d-vertices are part of each of the two
periodic orbits. If w < n we will call the diagram a sub-
diagram – in sub-diagrams some g-vertices contain more
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than two d-vertices.
In the classes A and AII each line gets an additional

index αj (j = 1, 2, . . . , 2n) for the different (spin and iso-
spin) components of the wave function. The sum over αj

collapses to a sum over allowed component configurations
when under the averages over δj and γj . An allowed com-
ponent configuration is a set of line indices αj for which
all phases δj and γj along the diagram cancel exactly.
Then the product of all phase factors is ±1. The sum
over the w indices km for the different encounter regions
and the sum over allowed component configurations fac-
torizes such that the value of a diagram Dν falls into
three parts

Dν = ξνCνPν . (15)

Here, ξnu is the multiplicity factor that, Cν is the quasi-
spin factor, and Pν the principal part. The latter contains
only the line factors 1√

B
e±i 2π

B
kmkm′ and is summed over

the w scattering region indices km. The quasi-spin factor
Cν contains all the d-vertex factors which are summed
over all allowed quasi-spin (component) configurations –
in class AI one has Cν = 1 in the classes A and AII it is
given by ± 1

2n for each allowed configuration. In class A

the sign is always positive, so Cν is 1
2n times the number

of allowed configurations. In class AII quasi-spin config-
urations a negative sign appears if an allowed configu-
ration contains an odd number of d-vertices where the
incoming spins and iso-spins are anti-parallel and both
flip (see (11)).

Finally, the multiplicity factor ξν = ξ̃
n is the number ξ̃

of times the diagram appears as a sub-sum in the original
form factor (7) before the average was performed divided
by the length of the orbit n. In general the sum over the
indices km is a sum over pairs of points on two different
periodic orbits. However, any pair of two points along
the same orbits will give exactly the same contribution.
Thus, in general the sum over km appears ξ̃ = n2 times
in the original one – in the diagram (14) one has indeed

ξ̃ = n2 = 36 times. There are exceptions whenever one
orbit is a repetition of a shorter orbit or if the diagram is
invariant with respect to some cyclic permutation of the
indices km. For example the diagrams

D
(0)
1 = and D

(0)
2 = (16)

only appear n times in the original sum such that ξ̃ = n

and ξ
(0)
1 = ξ

(0)
2 = 1. These are the two diagrams of

the diagonal approximation to be discussed in the next
section.

Obviously every pair of periodic orbits visiting the
same scattering regions defines a diagram. However, if
one sums over all the scattering region indices km without
restriction the same pair of periodic orbits may appear
in different diagrams and we have to face the problem of

double (or multiple) counting of periodic orbits. One way
to get rid of the double counting problem is to restrict
the sum over km such that ki 6= kj for i 6= j and add all
sub-diagrams where the number w of scattering regions
is smaller than n (with the same restriction in the sum
over indices). The form factor K2,n can then be written
as a sum over all diagrams with w = n, n− 1, . . . , 1 scat-
tering regions and every pair of periodic orbits is counted
exactly once.

It will be more convenient for us to keep an unre-
stricted sum over the scattering regions and subtract the
multiply counted counted orbits. Any diagram D con-
tains many sub-diagrams which can be obtained from
D by combining some scattering regions to a single one.
This is equivalent to restricting the sum in the diagram
to ki = kj . Multiple counting occurs when either two (or
more) diagrams D1 and D2 have the same sub-diagram
or when one sub-diagram appears more than once in the
same diagram D. If the wave function has one component
we just have to subtract the overcounted sub-diagrams.
In the presence more than one component only the over-
counted quasi-spin configurations have to subtracted. It
may happen that a sub-diagram allows new quasi-spin
configurations that have not been counted in the original
diagram – then the corresponding configurations have to
be added. Luckily we will not encounter such difficulties
in the sequel.

Finally, we may write the second-order form factor as
a sum over diagrams

K2,n =
1

gµB
〈|sn|2〉 =

n

gµB

(

∑

ν

Dν −
∑

ν′

Dsub
ν′

)

.

(17)
The sum over diagrams Dν only contains diagrams with
w = n scattering regions. The sum over sub-diagrams
Dsub

ν′ accounts for the corrections due to multiple count-
ing – it contains diagrams with w = n − 1, n − 2, . . . , 1
scattering regions and we include the number of times
it has been overcounted in the multiplicity factor. Note,
the factor n outside the parentheses – this factor appears
due to the definition of the multiplicity factor ξ.

The diagrammatic representation of the first-order
form factor in the novel symmetry classes is analogous.
The main difference is that there is only a single peri-
odic orbit connecting n d-vertices any diagram that con-
tributes to K1,n. Due to complete Andreev scattering at
the peripheral vertices. As a consequence the d-vertices
in the diagrams always connect a full line with a dashed
line. Diagrams can thus only be drawn if the length n of
the orbit is even and

sn = 0 if n is odd. (18)

Similar as before for the second-order form factor most
contributions to the trace sn do not survive the aver-
age over the phases γj , βj (and signs σj , τj). The non-
vanishing contributions can again be grouped in diagrams
where at most n

2 d-vertex indices remain independent. In
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a non-vanishing diagram each d-vertex has again a part-
ner such that the product of their d-vertex factors does
not depend on the random phase factors or signs. We
again introduce Scattering regions that are defined as in
the diagrams to the second-order form factor. Each scat-
tering region has a single index which is the same for all
d-vertices it contains. A scattering region always con-
tains an even number of d-vertices.

A general diagram will be drawn without indices and

has a value D̂ν = ξ̂νĈν P̂ν where the definitions of the
principal part P̂ν and the quasi-spin factor Ĉν are as
before. The hat serves as a symbol to distinguish between
the contributions to the first-order form factor (with hat)
form those to the second-order form factor (no hat). The
principal part is independent of the symmetry group and
given by the line contributions summed over the indices
of the scattering regions.

The quasi-spin factor Ĉν is the sum of the d-vertex fac-
tors over allowed spin and electron-hole configurations.
The quasi-spin factor may also vanish. If there is no spin
it will be ±2 where the factor 2 is due to interchanging
all electron and hole lines.

The multiplicity factor ξ̂ is here defined as the number
of times an equivalent sum appears in the original sum
sn – note, that here we have not divided this number by
n as in the case of the diagrams for the second-order form
factor. As an example the two diagrams

D̂
(0)
1 = and D̂

(0)
2 = (19)

have multiplicity factors ξ̂
(0)
1 = 1 and ξ̂

(0)
2 = n

2 . The
difference is due to the different symmetry in the two di-
agrams. For the second diagram the rotational symme-
try is broken by the turning point of the periodic orbit.
These two diagrams correspond to the self-dual approxi-
mation to be discussed in the next section.

Multiple countings have to be accounted for in the
same manner as for the second-order form factor which
results in

K1,n =
2

g
〈sn〉 =

2

g

(

∑

ν

Dν −
∑

ν′

Dsub
ν′

)

(20)

by including the corresponding sub-diagrams. For finite
n the sum over diagrams is finite for both types of form
factors and the expansion converges absolutely. As every
periodic orbit (pair of period orbits) defines some dia-
gram no contribution is neglected and the expansion is
formally exact.

III. THE DIAGONAL AND SELF-DUAL

APPROXIMATIONS AND BEYOND

While the calculation of the principal part, quasi-spin
factor and multiplicity factor for any given diagram is

quite simple, the sum over all diagrams defined in the
previous section is quite non-trivial. We will now give
a systematic short-time expansion of this sum in the er-
godic limit B → ∞. In the leading order only two dia-
grams have to be accounted for in each symmetry class.
More diagrams have to be taken into account for the next
to leading order where multiple-counting of periodic or-
bits lead to additional complexity.

A. The diagrammatic short-time expansion of the

form factors

We will be interested in the short-time behavior of
large graphs such that we may assume 1 ≪ n ≪ µB

g . The

first inequality 1 ≪ n assures that we are in the universal
regime – the ultra-short-time behavior where n = O(1) is
known to be dominated by the system-dependent short-
est orbits. The second inequality can be rewritten as
τ ≡ gn

µB ≪ 1 which shows that we are interested in times

much shorter than Heisenberg time.
We want to calculate K1,n and K2,n in the limit n, B →

∞ where τ = gn
µB ≪ 1 is constant. For that aim we will

expand the form factors in orders of τ :

K1(τ =
gn

µB
) =

2

g
〈sn〉 =

2

g

∞
∑

m=0

K(m)
1 (21)

K2(τ =
gn

µB
) =

1

gµB
〈|sn|2〉 =

τ

g2

∞
∑

m=0

K(m)
2 (22)

where K(m)
1,2 are expansion coefficients proportional to τm

that we have to calculate – in this expansion we have
anticipated that the leading order will be a constant for
K1(τ) and will be linear in K2(τ).

Each of these coefficients is a time averaged sum over
some diagrams (and sub-diagrams). The time average is
performed over a short discrete time interval [n, n + ∆n]
and has to be performed before we take the limit n, B →
∞. The interval has to chosen such that ∆τ = g∆n

µB

vanishes in that limit.
Let us shortly summarize the procedure: i. find all

diagrams and sub-diagrams that contribute to a given

order K(m)
1,2 for finite B ≫ n ≫ 1, ii. for every sub-

diagram with w vertices count how often it appears as
a sub-diagram of other (sub)diagrams in the same order

K(m)
1,2 and in all smaller orders K(m−1)

1,2 , . . . , iii. calculate
the values of the diagrams and add them and subtract
the overcounted sub-diagrams, iv. take the time average
over n, vi finally take the limit n, B → ∞. Obviously the
procedure is recursive and one has to start with m = 0.

The rest of this section will be devoted to the descrip-
tion of the diagrams that contribute to a given order

K(m)
1,2 . Since τ = gn

µB this is equivalent to finding the

diagrams with values of order B−m. A single diagram
which is of order B−m in B may have a very different
order in n – such that the limit n, B → ∞ cannot always
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be performed for a single diagram. Our procedure will be
self-consistent if this limit exists after we have summed
over all (sub)diagrams.

As the multiplicity factor and the quasi-spin factor do
not depend on B we have to look at the principal part
which does not depend on the symmetry class. The re-
sulting expansion for the first-order form factor can used
for all graphs in the novel symmetry classes while the di-
agrams in the expansion of the second-order form factor
are the same for all three Wigner-Dyson graphs. The dif-
ference between the ensembles is mainly due to different
quasi-spin factors. Note, that these may vanish.

The principal par of a (sub)diagram Dν for K(m)
2 (D̂ν

for K(m)
1 ) with 2n (n) d-vertices and lines and w ≤ n

(w ≤ n
2 ) different scattering regions is bounded from

above

Pν ≤ 1

Bn−w
P̂ν ≤ 1

B
n
2 −w

. (23)

Indeed, the absolute value of the summand in the prin-
cipal part is 1

Bn ( 1

B
n
2

) stemming from the 2n (n) am-

plitudes of the line contributions when one sums over w
indices km = 1, 2, . . . , B. In (23) equality holds if all the
phases acquired along the lines cancel exactly. This is the
case in complete (sub)diagrams for which every full line
that connects two scattering regions is accompanied by a
dashed line connecting the same two scattering regions.
We will call such a pair of lines a complete diagonal (anti-
diagonal) pair of lines if they start and end at the same
(opposite) scattering region.

Every complete (sub)diagram with w = n − m (w =
n
2 − m) scattering regions contributes as a (sub)diagram

to K(m)
2 (K(m)

1 ). If w < n − m (w < n
2 − m) no sub-

diagrams exist that contribute.

It remains to find the non-complete (sub)diagrams.
For non-complete diagrams the sum is oscillating due to
the appearing phase factors. An oscillating sum over one
index is of the form

B
∑

k=1

e
2πi
B

k(k′−k′′) = Bδk′k′′ (24)

where δk′k′′ is the Kronecker symbol. The subsequent
sum over k′ does not give an additional factor B. Thus

non-complete (sub)diagrams can only contribute to K(m)
2

(K(m)
1 ) if they have a complete sub-diagram with w =

n − m scattering regions.

All (sub)diagrams for K(m)
2 (K(m)

1 ) are thus found by
first finding all complete (sub)diagrams with n−m (n

2 −
m) scattering regions and then finding all (non-complete)
diagrams with n− m + 1, . . . , n (n

2 −m + 1, . . . , n
2 ) scat-

tering regions which contain one of the complete sub-
diagrams.

B. The diagonal approximation and beyond for

star graphs in the Wigner-Dyson classes

We will now find all diagrams that contribute to the
diagonal approximation (m = 0) and one order beyond in
the second-order form factor of star graphs in the Wigner-

Dyson classes. The coefficients K(0)
2 and K(1)

2 will be cal-
culated. The resulting form factors will be in accordance
with the random-matrix predictions [16] (for τ ≪ 1)

K2(τ) =











τ GUE (A-GE)

2τ − 2τ2 + O(τ3) GOE (AI-GE)
τ
2 + τ2

4 + O(τ3) GSE (AIi-GE).

(25)

1. The diagrams

For the diagonal approximation ( m = 0) – we just have
to find all complete diagrams with two periodic orbits of
length n and w = n scattering regions. There are two

such diagrams: D
(0)
1 and D

(0)
2 given by (16). In D

(0)
1 the

two periodic orbits are the same and in D
(0)
2 one orbit is

the time-reversed orbit of the other. We have

K(0)
2 = D

(0)
1 + D

(0)
2 (26)

which gives the diagonal approximation. The multiplic-

ities of the two diagrams are ξ
(0)
1 = ξ

(0)
1 = 1 and their

principal parts P
(0)
1 = P

(0)
2 = 1. Only the quasi-spin

contributions depend on the symmetry class such that

D
(0)
1 = C

(0)
1 and D

(0)
2 = C

(0)
2 (27)

We will see in section III B 2 that for broken time-reversal
the quasi-spin contribution of the diagram D

(0)
2 vanishes

in the limit n → ∞.
For the first order beyond the diagonal approximation

(m = 1) we have to find all complete sub-diagrams with
n−1 scattering regions and then all new non-complete di-
agrams with n scattering regions that contain one of the
complete sub-diagrams. The diagrams can be grouped
into three families. Each of the families contains com-
plete and non-complete diagrams. The complete dia-
grams of the first two families appear trivially as a sub-

diagram of the diagonal diagrams D
(0)
1 and D

(0)
2 by join-

ing two of their scattering regions

D
sub,(1)
1,l = l n� 2� l = C

sub,(1)
1,l

n

B
(28a)

D
sub,(1)
2,l = l n� 2� l = C

sub,(1)
2,l

n

B
(28b)
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where we have already included the principal part P = 1
B

and the multiplicity ξ = n. The integer l = 0, 1, . . . , n−2
gives the number of scattering regions in the left loop (the
central scattering region is not counted). The diagram
with l vertices in the left loop is equivalent to the one with
l vertices in the right loop. The non-complete diagrams
of the first two families each contain one of corresponding
complete sub-diagrams

D
(1)
1,l = l n� 2� l = C

(1)
1,l

n

B
(29a)

D
(1)
2,l = l n� 2� l = C

(1)
2,l

n

B
. (29b)

Again, l = 0, 1, . . . is the number of scattering re-
gions in the left loop (the two central scattering regions
are not counted). Let us now assume that the quasi-
spin factors within one family of diagrams is the same

C
(1)
1,l = C

sub,(1)
1,l ≡ C

(1)
1 and C

(1)
1,l = C

sub,(1)
2,l ≡ C

(1)
2 . In

the limit n, B → ∞ this can indeed be shown for each
of the symmetry classes. The contribution of these two
families then vanishes due to overcounting. Each of the
sub-diagrams has been counted once in the diagonal ap-
proximation and is also a sub-diagram of the new non-
complete diagrams.

The third family contains all non-trivial diagrams that
correspond to the Sieber-Richer pairs. They consist of
two loops as well, however in one loop the two orbits are
parallel while in the other they are time-reversed

D
sub,(1)
3,l = l n� 2� l = C

sub,(1)
3,l

n

B
. (30)

In these diagram it is irrelevant if we draw the crossing
on the left or on the right of the central scattering region.
If the left or the right loop has either zero or one vertex
it is indistinguishable from one of the corresponding pre-
vious diagrams (28a) or (28b). Thus l = 2, 3, . . . , n − 4
and there are n − 5 new diagrams of this form. Note,
that these diagrams are not sub-diagrams of the diago-

nal diagrams D
(0)
1 and D

(0)
2 .

The corresponding non-complete diagrams diagrams
are

D
(1)
3,l = l n� l = C

(1)
3,l

n

B
. (31)

The number of vertices in the left loop (left of the cross-
ing) runs from l = 4 to l = n − 4 – all other diagrams
are indistinguishable from corresponding diagrams in the

families (29a) or (45b). Thus there are n − 7 new dia-
grams in this family.

Each of the sub-diagrams D
sub,(1)
3,l is contained once in

the diagrams D
(1)
3,l and D

(1)
3,l+2 if 4 ≤ l ≤ n − 6 while

for l = 2, 3 (l = n − 4, n − 5) they are contained once

in one D
(1)
2,l and D

(1)
3,l+2 (D

(1)
1,l+2 and D

(1)
3,l ). Thus each

sub-diagrams D
sub,(1)
3,l has been overcounted once. Again

one can show that C
(1)
3,l = C

sub,(1)
3,l ≡ C

(1)
3 in the limit

n, B → ∞. The contributions does then not vanish if

C
(1)
3 6= 0 and one has

K
(1)
2 = −2C

(1)
3 . (32)

2. Wigner-Dyson class AI (GOE)

Since the graphs in symmetry class AI have a one-
component wave function (µ = g = 1) the quasi-spin
contribution to any (sub)diagram Dν is Cν = 1. In the
diagonal approximation each the two diagrams has the

value D
(0)
1 = D

(0)
2 = 1 and we have

K(0)
2 = 2. (33)

For the next order we have D
(1)
3,l = Dsub,(1) = τ which

gives

K(1)
2 = −2τ. (34)

Altogether the leading terms of the second-order form
factor give K2(τ) = 2τ − 2τ2 +O(τ3) in accordance with
the GOE prediction (25).

3. Wigner-Dyson class A (GUE)

In class A we have defined star graphs with a two-
component wave function (µ = 2, g = 1) and we have to
calculate the quasi-spin contributions for all diagrams.

Let us start with diagram D
(0)
1 where both periodic

orbits are the same (parallel). Only spin configurations
survive the average over the phases γk and δk for which
the spins on two parallel lines is the same. The spins
on lines that connect different scattering regions are in-
dependent. Thus there are 2n allowed spin configura-
tions and the quasi-spin contribution to the diagram is

C
(0)
1 = 1 which results in

D
(0)
1 = 1. (35)

In the diagram D
(0)
2 the two orbits are anti-parallel.

Here, the spins on different lines are not independent
for configurations that survive the phase average. If at
any pair of anti-parallel lines the two spins are σ1 for
the full line and σ2 for the dashed line the spins on the
neighboring lines are σ1 for the dashed line and σ2 for
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the full line. If n is even σ1 and sigma2 are independent
while for odd n they are equal. So there are only four
(two) allowed spin configurations for even (odd) n which
gives

D
(0)
2 =

3 + (−1)n

2n
. (36)

This value is exponentially suppressed in the limit n →
∞ – a consequence of breaking the time-reversal invari-
ance in this symmetry class.

In the first order beyond the diagonal approximation
the contribution of the first family vanishes because the
quasi-spin factor is the same throughout the family (see
section III B 1). The contribution of the second family
vanishes because their quasi-spin factor all vanish in the
limit n, B → ∞. For the third family the quasi-spin
factors are not equal for each diagram in the group. Its
value is small if it contains a big anti-parallel loop. There
are however diagrams with a short anti-parallel loop. It
is however not difficult to calculate the quasi-spin factor
of each diagram which gives

D
(1)
3,l = 3−(−1)n−l

2n−l−1
n
B

D
sub,(1)
3,l = 3−(−1)n−l

2n−l−1
n
B

(37)

The sum over all these contributions (including the cor-
rect accounting for multiple counting) is

n−4
∑

D
(1)
3,l

l=4

−
n−4

∑

D
sub,(1)
3,l

l=2

=−D
sub,(1)
3,2 −D

sub,(1)
3,3 =− 9+(−1)n

2n−3
n
B

(38)

which also vanishes in the limit n → ∞. Thus Sieber-
Richter pairs do not contribute for broken time-reversal
symmetry.

Only the diagrams of the diagonal approximation con-
tribute to the form factor which has the value K2(τ) = τ
as predicted by the GUE (25) for τ < 1.

4. Wigner-Dyson class AII (GSE)

In class AII we have a four-component wave function
on the star graphs (µ = 4, g = 2). At each d-vertex
iso-spin flips while spin may either flip or not. As an
immediate consequence the length of every periodic orbit
is even and sn = 0 if n is odd.

For the diagonal approximation we have to recalculate

the quasi-spin factors of the two diagrams D
(0)
1 and D

(0)
2

with the additional spin and iso-spin freedoms. Let us
start with the first diagram where both orbits traverse
the scattering regions in the same order. The iso-spins
on parallel lines are either always parallel or always anti-
parallel. If iso-spins on parallel lines are parallel only the
spin configurations which are everywhere parallel as well
survive the average. As the spins on lines connecting dif-
ferent scattering regions are independent there are 2n+1

such configurations with parallel iso-spins (n factors 2
from the spins and one factor from the iso-spin).

If the iso-spins are all anti-parallel there are allowed
configurations with either all spins parallel or all anti-
parallel between two scattering regions. If the spins are
all anti-parallel they never flip and if they are parallel
they both flip at every scattering region. Altogether
there are only 8 configurations with anti-parallel iso-spins
which implies that these contributions are negligible in
the limit n, B → ∞. Note, that anti-parallel iso-spins
implies that the two orbits are different and not related
by time-reversal. At each d-vertex with an incoming spin
that is antiparallel to the incoming iso-spin a factor −1
is gathered if the spin flips. All factors −1 within one
scattering region cancel because the two d-vertices have
the same configuration.

Due to time-reversal invariance the two diagrams in
the diagonal approximation have the same value

D
(0)
1 = D

(0)
2 = 2 + 2−n+3. (39)

Note, that time-reversal implies changing the directions
of arrows flipping the spins while iso-spins do not flip. In

the time-reversed diagram D
(0)
2 the factors −1 cancel in

a slightly different way. As on neighboring lines spins are
always anti-parallel and iso-spins always parallel one gets
a factor −1 at every scattering region where both spins
flip. Since n is even so is the number of spin flips along
each orbit.

For the calculations of the diagrams that contribute be-
yond the diagonal approximation we will neglect all con-
tributions that are exponentially suppressed. The first
two families have a vanishing contribution as their quasi-
spin factors are the same within each family in the limit
n, B → ∞. Again, we only have to consider the Sieber-

Richter family with the diagrams D
(1)
3,l and D

sub,(1)
3,l . In

both families only even l can give contributions that are
not exponentially suppressed as iso spins have to remain
parallel in the left and right loops. There are n

2 − 3 con-

tributing diagrams in the family D
(1)
3,l and n

2 − 2 in the

family D
sub,(1)
3,l (each of them has been overcounted once).

They all have the same value

D
(1)
3,l = D

sub,(1)
3,l = − n

B
. (40)

For any quasi-spin configuration an odd number of fac-
tors −1 is gathered along the orbits – also the spins on
the lines that connect the left and right loops are not
independent.

Altogether we get

K2,n =
n

8B

{

0 if n odd,

4 + n
B + O( n2

B2 ) if n is even.
(41)

As τ = n
2B the time average yields K2(τ) = τ

2 + τ2

4 +

O(τ2) in accordance with the short-time expansion of
the universal result (25) from the GSE .
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C. The self-dual approximation and beyond for

chiral and Andreev graphs

Now we will consider the self-dual approximation (m =
0) and one order beyond (m = 1) for the first-order form
factors in the novel symmetry classes. We will give all
diagrams and show that they add up to the corresponding
random-matrix predictions [16] for τ ≪ 1

K1(τ) =















































−1 C-GE

−1 + τ
2 + O(τ2) CI-GE

1 D-GE
1
2 − τ

8 + O(τ2) DIII-GE

− τ
2 + O(τ2) chGUE(AIII-GE)

1 − 3τ
2 + O(τ2) chGOE(BDI-GE)

− 1
2 − 3τ

8 + O(τ2) chGSE(CII-GE).

(42)

1. The diagrams

The self-dual approximation takes into account all
complete diagrams for K1,n (where n is even) with n/2
scattering regions. The approximation has been called
self-dual because the diagrams contain those orbits which
are invariant under either a chiral symmetry or charge
conjugation (in combination with time-reversal).

There are two self-dual diagrams which have been
given in (19) where their multiplicity factors have been

given. Their principal part is P̂
(0)
1,2 = 1. In the first di-

agram the same scattering regions are visited twice in
the same order but with electrons replaced by holes in
the second traversal. It vanishes exactly if n

2 is even (no
complete diagram can then be drawn) while

D̂
(0)
1 = Ĉ

(0)
1 , (43)

for odd n
2 . In the second diagram the same orbits are tra-

versed in opposite (time-reversed) direction. It contains
one scattering region where the direction is changed. Its
value is

D̂
(0)
2 =

n

2
Ĉ

(0)
2 . (44)

If n/2 is odd the turning point region has one incoming
electron and one incoming hole as drawn in (19). The di-
agram has to be changed slightly for even n/2 – then the
turning point region has either two incoming electrons or
two incoming holes.

To calculate the linear order of the form factor we need
all families of diagrams that contribute to K(1)

1 . Most

of these diagrams will have a multiplicity factor ξ̂ = n
2

because there is no symmetry. The exceptions have ξ̂ = n
4

due to some two-fold symmetry. When we explicitly give
the value of a family of diagrams they always refer to the
generic case where no two-fold symmetry is present. The
cumbersome accounting for all these cases will only be

done for those families of diagrams that do not vanish
for different reasons.

The diagrams have either n/2 scattering regions, are
not complete or they have n/2−1 scattering regions, are

complete. In all cases the principal value is P̂
(1)
ν = 1

B .
One may group the diagrams into seven different families.

The first two families have complete diagrams that are
sub-diagrams of the self-dual approximation. Joining two
scattering regions in the two diagrams (19) gives

D̂
sub,(1)
1,l =

n2 � 2� l l = Ĉ
sub,(1)
1,l

n

2B
(45a)

D̂
sub,(1)
2,l,k =

n2 � 2� l l = Ĉ
sub,(1)
2,l,k

n

2B
. (45b)

where l is the number of scattering regions in the right
loop. The first type of diagrams only exists if n

2 is odd.
For the second type of diagrams k is an index for the
different positions of the turning point.

There are two types of non-complete diagrams in each
of the two families. For the first family they are given by

D̂
(1)
1a,l =

n2 � 2� l l = n
2B Ĉ

(1)
1a,l

D̂
(1)
1b,l =

n2 � 2� l l = n
2B Ĉ

(1)
1b,l.

(46)

The difference between the two diagrams is that two cen-
tral scattering regions have two incoming lines of the
same type for the first diagram and two different incom-
ing lines in the second. Both diagrams only exist for odd
n
2 .

For the second family one has

D̂
(1)
2a,l,k =

n2 � 2� l l = n
2B Ĉ

(1)
2a,l,k

D̂
(1)
2b,l,k =

n2 � 2� l l = n
2B Ĉ

(1)
2b,l,k

(47)

which differ in the direction of the lower line. Both dia-
grams have been drawn for an even number n

2 − l − 2 of
scattering regions in the left loop. Then the two central
scattering regions have one incoming dashed and one in-
coming full line each. For an odd number of scattering
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regions in the left loop the central scattering regions have
two incoming lines of the same type.

Each of the sub-diagrams D
sub,(1)
1,l or D

sub,(1)
2,l,k has been

counted three times. Once ion the self-dual approxima-

tion and twice in the diagrams D
(1)
1a/1b,l,k and D

(1)
2a/2b,l,k. If

the quasi-spin factors do not differ in the limit n, B → ∞
the diagrams cancel due to overcounting. This is indeed
the case for all seven ensembles of star graphs in the novel
symmetry classes.

The third family contains diagrams with two parallel
complete loops. The complete diagrams in this family

D̂
sub,(1)
3,l =

n2 � 2� l l . =
n

2B
Ĉ

sub,(1)
3,l (48)

cannot be obtained as sub-diagrams of the self-dual di-
agrams. In the second traversal of each loop the roles
of electrons and holes are interchanged. A complete di-
agram can only be achieved if both l = 0, 2, . . . and
n
2 − l − 2 = 0, 2, . . . are even. Thus n

2 is even. The
non-complete diagrams in this family are given by

D̂
(1)
3a,l =

n2 � l l = n
2B Ĉ

(1)
3a,l

D̂
(1)
3b,l =

n2 � 2� l l = n
2B Ĉ

(1)
3b,l.

(49)

In both cases n
2 is even while and l is odd in the first

type and even in the second type. If all quasi-spin factors
within this family are equal the contribution of this fam-
ily vanishes due to overcounting. Indeed for fixed even

l the complete sub-diagrams D
sub,(1)
3,l has been counted

three times. It appears once in D
(1)
3b,l and twice in the

diagram D
(1)
3a,l+1 because there are two ways of joining

diagonally opposite scattering regions. As the values of
all diagrams are equal and the complete sub-diagram has
been overcounted twice for each fixed even l the contri-
butions cancel.

By introducing turning points in both loops or just in
the right loop of the third family one arrives at the fourth
and fifth family of diagrams. The complete diagrams in
the fourth family are given by

D̂
sub,(1)
4,l,kl,kr

=
n2 � 2� l l =

n

2B
Ĉ

sub,(1)
4,l,kl,kr

(50)

and the corresponding non-complete diagrams are

D̂
(1)
4a,l,kl,kr

=
n2 � l l = n

2B Ĉ
(1)
4a,l,kl,kr

D̂
(1)
4b,l,kl,kr

=
n2 � 2� l l = n

2B Ĉ
(1)
4b,l,kl,kr

.

(51)
Here we need two indices kl,r to account for the positions
of the two turning points which makes counting quite
cumbersome. Luckily for fixed values of kl,r and l one
can show that the contribution of this family vanishes
due to multiple counting if all quasi-spin factors are the
same. The argument is analogous to the third family.

The same argument also cancels the contribution of
the fifth family with the complete sub-diagrams

D̂
sub,(1)
5,l,k =

n2 � 2� l l =
n

2B
Ĉ

sub,(1)
5,l,k . (52)

In this diagram n
2 − l − 2 must be odd and the diagrams

with 1 < l < n
2 − 3 to give a new diagram. The corre-

sponding non-complete diagrams are

D̂
(1)
5a,l,k =

n2 � l l = n
2B Ĉ

(1)
5a,l

D̂
(1)
5b,l,k =

n2 � 2� l l = n
2B Ĉ

(1)
5b,l,k.

(53)

All non-trivial contributions to the first-order form fac-
tor come from the two remaining families of diagrams.
They contain no turning point but do contain loops of
antiparallel lines. The complete diagrams of the sixth
family

D̂
sub,(1)
6,l =

n2 � 2� l l =
n

2B
Ĉ

sub,(1)
6,l (54)

contain one parallel and one anti-parallel loop while the
complete diagrams

D̂
sub,(1)
7,l =

n2 � 2� l l =
n

2B
Ĉ

sub,(1)
7,l (55)

of the seventh family contain two anti-parallel loops. In
both types of complete diagrams l is odd. In the sixth
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family n
2 − 2 − l is even while it is odd in the seventh

family. Thus the sixth family only exists for odd n
2 and

the seventh only for even n
2 . If l = 1 the diagrams D

sub,(1)
6,1

and D
sub,(1)
7,1 are the same as D

sub,(1)
2,1,k (with k such that

the turning point is on the scattering region in the right

loop). For l = n
2 − 2 the diagram D

sub,(1)
6, n

2 −2 is the same

as D
sub,(1)
1, n

2 −2 . Thus for the sixth family l = 3, 5, . . . , n
2 − 4

which gives 1
2 (n

2 − 5) different diagrams. In the seventh

family the diagrams D
sub,(1)
7,l are the same as D

sub,(1)
7, n

2 −2−l

such that l = 3, 5, . . . , n
4 −2 (or l = 3, 5, . . . , n

4 −1) if n
4 is

odd (even) which gives 1
2 (n

4 − 3) (or 1
2 (n

4 − 1)) different
diagrams. If n

4 is even and l = n
4 − 1 the multiplicity

factor should be n
4 instead of n

2 as given in the formula
above. In both cases the sum of the multiplicity factors
over all different diagrams is n

4 (n
4 − 3) for the seventh

family.
The non-complete diagrams of the sixth and seventh

families are given by

D̂
(1)
6a,l =

n2 � l l = n
2B Ĉ

(1)
6a,l

D̂
(1)
6b,l =

n2 � 2� l l = n
2B Ĉ

(1)
6b,l

(56)

and

D̂
(1)
7a,l =

n2 � l l = n
2B Ĉ

(1)
7a,l

D̂
(1)
7b,l =

n2 � 2� l l = n
2B Ĉ

(1)
7b,l.

(57)

In both families l is odd while n
2 is odd (even) in the sixth

(seventh) family. The diagrams D
(1)
6a,1, D

(1)
6a,3, D

(1)
6a, n

2 −2,

D
(1)
6b,1, D

(1)
6b, n

2 −2, D
(1)
7a,1, D

(1)
7a,3 and D

(1)
7b,1 are not new (they

can be found among D
(1)
1a/1b,l and D

(1)
2a/2b,l,k). Thus l =

5, 7, . . . , n
2 − 4 (or l = 3, 7, . . . , n

2 − 4) for D
(1)
6a,l (D

(1)
6b,l)

which gives 1
2 (n

2 − 7) (or 1
2 (n

2 − 5)) new diagrams in the
sixth family.

For odd (even) n
4 the multiplicity factor of the diagram

D
(1)
7a, n

4
(D

(1)
7b, n

4 −1) for is reduced to n
4 due to the symmetry

of these diagrams. If n
4 is odd (even) l = 5, 7, . . . , n

4 − 2

(or l = 3, 5, . . . , n
4 −3) for the diagrams D

(1)
7a,l (D

(1)
7b,l) and

the sum over the multiplicities is n
4 (n

4 −4) (or n
4 (n

4 −2)).
Assuming that within each family the quasi-spin fac-

tors have all the same value C
(1)
6,7 almost all diagrams

in the sixth and seventh families are canceled by sub-
diagrams in the corresponding families. The mechanism
is similar to the third, fourth, and fifth family. The main
difference is that some of the sub-diagrams in the sixth
and seventh family also appear as sub-diagrams in the
first and second families of diagrams which leads to ad-
ditional overcounting. Each of the sub-diagrams actually

appears three times as a sub-diagram – e.g. D
sub,(1)
6,l for

n
2 − 6 ≥ l ≥ 5 is sub-diagram of D

(1)
6a,l, D

(1)
6a,l−2 and D

(1)
6b,l

thus each has been overcounted twice. The sum over
all diagrams with corresponding corrections due to over-
counting gives
∑

l

D
(1)
6a,l +

∑

l

D
(1)
6b,l − 2

∑

l

D
sub,(1)
6,l = − n

2B
C

(1)
6 (58a)

∑

l

D
(1)
7a,l +

∑

l

D
(1)
7b,l − 2

∑

l

D
sub,(1)
7,l = − n

4B
C

(1)
7 , (58b)

where the contribution of the sixth family only exists
for odd n

2 and the contributions of the seventh family
only for even n

2 . These will be responsible for the lead-
ing order beyond the self-dual approximation in all seven
ensembles.

2. The Andreev class C

In class C there are no additional spin-components of
the wave function. The ensemble average leads to the
condition that every scattering region has as many in-
coming electron lines as hole lines and C = ±2 for all
quasi-spin factors. The sign is positive for even n

2 and
negative for odd n

2 (two d-vertices within a scattering re-
gion carry a factor −1) while the factor two corresponds
to interchanging electron and hole lines. In the self-dual

approximation only the diagram D
(0)
1 = −2 fulfills the

stated condition which leads to

K1,n =











0 n = 2s + 1

0 + O( 1
B ) n = 4s

−4 + O( 1
B ) n = 2(2s + 1)

(59)

where s is some integer. Time-averaging gives the correct
leading order K1(τ) = 1 + O(τ). In the next order all
diagrams in the first five families are canceled due to
overcounting since the quasi-spin factors are equal while
in the sixth and seventh family (and also some among
the other five) each diagram contains at least one loop
with antiparallel lines. Along these any scattering region
has two incoming lines of the same type. thus they do
not survive the ensemble average and we have K1(τ) =
1 + O(τ2) as predicted by random-matrix theory (42).

3. The Andreev class CI

In class CI the quasi-spin factors are the same as for
class C as no spin is present. The ensemble average leads
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to the weaker condition that every scattering region con-
tains an even number of d-vertices. In the self-dual ap-
proximation thus both diagrams contribute. In the next
to leading order only the contribution from the sixth and
seventh family contribute. Altogether this gives

K1,n =











0 n = 2s + 1

2n − n
B + O( 1

B2 ) n = 4s

−4 − 2n + 2n
B + O( 1

B2 ) n = 2(2s + 1).

(60)

Since τ = n
2B time averaging yields K1(τ) = −1 + τ

2 +

O(τ2) in accordance with the random-matrix theory re-
sult (42)..

4. The Andreev class D

In class D we have to take the spin components into
account. The ensemble average lead to a set of condi-
tions on the scattering regions. It will suffice to consider
one large complete open loop to identify all allowed con-
figurations. The complete open loops can be obtained
from the two self-dual diagrams by cutting two (anti-
)parallel lines. We will neglected contributions which are
exponentially suppressed in the limit n, B → ∞. First
consider an anti-parallel loop and put either two paral-
lel or two anti-parallel spins on two anti-parallel lines.
For anti-parallel lines with parallel spins both spins are
always flipped from one side of the scattering region to
the other. Anti-parallel spins on anti-parallel lines are
never flipped. In both cases we can only choose the spins
on one pair of parallel lines and the spins on all lines in
the loop are fixed. Since ever scattering region carries
a factor ± 1

2 any configuration with anti-parallel lines is
suppressed exponentially with a factor 2−m for a loop of
length m.

In a loop of parallel lines the situation is different. Only
configurations of parallel spins on parallel lines survive
the ensemble average. However the spins may either flip
or not when parallel lines hit a scattering region. Since
there are 2m such configurations on a loop with m scat-
tering regions and 2m lines, the factor 2−m of the scat-
tering regions is canceled (in this configuration the factor
from each scattering region is positive). For a loop we
thus have the same conditions on a scattering region as in

class C. Only the diagrams D
(0)
1 , D

(1)
1b,l, D

(1)
3a,l and D

(1)
3b,l

fulfill this condition. However, the contributions of the
first and third families have been shown to vanish under
the given conditions such that contributions to the order
τ remain. Altogether

K1,n = 2〈sn〉 =











0 n = 2s + 1

0 + O( 1
B2 ) n = 4s

4 + O( 1
B2 ) n = 2(2s − 1)

(61)

and time averaging yields the corresponding result from
random-matrix theory K1(τ) = 1+O(τ2) upto the order
we have calculated (42).

5. The Andreev class DIII

After the ensemble average in class DIII the the spins
have to be parallel in a parallel loop where the scattering
regions carry a positive factor 1

2 . In consequence, the first

self-dual diagram has the value D
(0)
1 = 2 as the quasi-

spin factor is C(0) = 2 2
n
2 2−

n
2 = 2. For an anti-parallel

loop only configurations with anti-parallel spin need to be
counted (the sum over some remaining contributions is
exponentially suppressed). At any scattering region the
spins may then either flip or not – every time they both
flip the scattering region carries a negative sign (else the
factor is positive). A turning point inside a loop has anti-
parallel spins on two connected lines and always carries a
positive sign whatever allowed spin configuration on both
sides. As a consequence, for any quasi-spin configuration

that contributes to D
(0)
2 there is another configuration

with opposite sign which has a different spin on one pair
of lines connected to the turning point region. We thus

have D
(0)
2 = 0. The same is true for any diagram which

contains a turning point.

The argument for the cancellation of almost all di-
agrams but the contributions given in equations (58a)
and (58b) in the preceeding section assumed the same
quasi-spin factor for all diagrams. It can be generalized
to class DIII (and also all other classes) if one properly
only subtracts those quasi-spin configurations in the sub-
diagrams that actually have been overcounted (the sub-
diagrams may contain allowed configurations that have
been counted properly). The overcounted configurations

that appear in the quasi-spin factors C
(1)
6,7 are the corre-

sponding quasi-spin factors of the diagrams D
(1)
6a,l and

D
(1)
7a,l. For configurations that contribute to C

(1)
6 the

number of spin flips in the left loop is necessarily pos-
itive which gives a positive sign to each contribution. Al-

together one gets C
(1)
6 = 1. Indeed, all the scattering

regions give a factor 2−
n
2 , the electron-hole interchange

gives a factor 2 and the spins 2
n
2 −1 (the spins on the four

lines connecting the two loops are determined by a single

spin index). The other quasi-spin factor is C
(1)
7 = −1.

The different sign is due to an odd number of spin flips
along both anti-parallel loops here. The complete result
for the form factor K1,n = 〈sn〉 is

K1,n =











0 n = 2s + 1

− n
2B + O( 1

B2 ) n = 4s

2 + n
4BO( 1

B2 ) n = 2(2s + 1)

. (62)

As τ = n
2B time averaging yields K1(τ) = 1

2 − τ
8 +O(τ2)

which is again the corresponding random-matrix theory
result (42).
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6. The chiral class AIII

Parallel loops do not survive the ensemble average in
the chiral class AIII. Thus the first self-dual diagram van-

ishes D
(0)
1 = 0. Long loops with anti-parallel lines only

have weight if the spins are always parallel. At each scat-
tering region they may either flip or not – in both cases
the scattering region carries a positive factor. Turning
points inside a loop carry a negative sign if the two in-
coming lines have opposite spin, else the sign is positive.
By flipping spins on one side of a turning point one can
thus change the overall sign of a configuration. Even-
tually all diagrams with a turning point vanish. There
is no contribution at all to the self-dual approximation.
Among all diagrams that contribute to the linear order
only the seventh family has to be considered – all other
diagrams either contain a turning point or a long loop
of parallel lines or they cancel due to overcounting. In

equation (58b) the factor C
(1)
7 is the quasi-spin factor of

the diagrams D
(1)
7,l which is C

(1)
7 = 1. Altogether we have

K1,n =











0 n = 2s + 1

0 + O( 1
B2 ) n = 4s

− n
2B + O( 1

B2 ) n = 2(2s + 1).

(63)

Here τ = n
4B such that time averaging gives the form

factor K1(τ) = − τ
2 + O(τ2) as predicted by random-

matrix theory (42).

7. The chiral class BDI

In the next chiral class, BDI long loops of parallel
lines survive the ensemble average in addition to the anti-
parallel loops of class AIII. For loops of parallel lines all
scattering regions carry a positive sign. For anti-parallel
loops and turning points the discussion of class AIII can
be taken over completely. The only additional contri-
butions to the form factor are due to the first self-dual
diagram D

(0)
1 = 2 and due to the contribution (58a) of

the sixth family of diagrams for the linear order. Here,

C
(1)
6 = 1 and we arrive at

K1,n =











0 n = 2s + 1

0 − n
2B + O( 1

B2 ) n = 4s

4 − n
B + O( 1

B2 ) n = 2(2s + 1)

. (64)

Again, with τ = n
4B and time averaging we get the

random-matrix result (42) K1(τ) = 1 − 3τ
2 + O(τ2).

8. The chiral class CII

Finally, in class CII the discussion is almost equiv-
alent to the preceeding. Loops of parallel lines have

anti-parallel spins and in such a loop a scattering region
carries a negative sign if both spins flip. In conclusion

D
(0)
1 = −2 since an odd number of spin flips occurs. For

anti-parallel lines the spins are always parallel and the
scattering regions carry a positive sign. Turning points

inside such a loop can have either sign. For C
(1)
6 the num-

ber of spin flips along the parallel loop is always even,

thus C
(1)
6 = C

(1)
7 = 1 and we have

K1,n =











0 n = 2s + 1

0 − n
4B + O( 1

B2 ) n = 4s

−2 − n
2B + O( 1

B2 ) n = 2(2s + 1).

(65)

Here, τ = n
2B and the time average yields K1(τ) = − 1

2 −
3τ
8 +O(τ2). Needles to say this is in accordance with the

random-matrix theory prediction (42).

IV. CONCLUSION

We have given a systematic diagrammatic short-time
expansion of the first-order and second-order form fac-
tors for ensembles of star graphs in the ten symmetry
classes. The leading orders (diagonal and self-dual ap-
proximations) have been calculated explicitly along with
the first order beyond. The fidelity to the predictions of
Gaussian random-matrix ensemble has been established
to this order. These results support the proper gener-
alization of the Bohigas-Giannoni-Schmit conjecture to
the novel symmetry classes. The contributing diagrams
for the ensembles of star graphs can be expected to carry
over to Hamiltonian flows. For magnetic Andreev bil-
liards in class C this is indeed the case [12]. For more
general flows in all novel classes a description of the self-
dual approximation will be given in a future work [20]. A
theory for flows beyond the self-dual approximation for
the novel ensembles will follow the paths of the Sieber-
Richter theory for time-reversal invariant Wigner-Dyson
systems. The results given here for quantum graphs are
however more systematic as the existing work on Wigner-
Dyson flows as we could show that no other contributions
exist that contribute to the calculated order of the form
factors.
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