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Quasilinear spin-voltage profiles in spin thermoelectrics

Tamara S. Nunner and Felix von Oppen
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany

(Received 14 June 2011; published 13 July 2011)

Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While
spin chemical potentials are often limited to a surface layer of the order of the spin-diffusion length, we show
that thermoelectrically induced spin chemical potentials can extend much further in itinerant ferromagnets with
paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give
rise to a linear spin-voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric
length scale which far exceeds the spin-diffusion length.
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Introduction. The field of spintronics1,2 is fueled by the
vision of more efficient microelectronic devices which exploit
the spin degree of freedom σ of electrons in addition to
their charge e. To date, attention focused largely on electric
phenomena. Recently, much consideration is also given to
spin-dependent thermoelectric effects, which are an important
aspect of the research field of spin caloritronics.3 Of particular
interest is the recent observation of the spin Seebeck effect
in ferromagnets,4–6 where a spin voltage develops in response
to an applied temperature gradient. This could be valuable
for spintronics applications as the operating principle of a
spin battery. Indeed, thermally driven spin injection has been
recently realized experimentally.7

Besides such practical implications, the spin Seebeck
effect also raises theoretical puzzles. Remarkably, the spin
chemical potential is observed to vary (quasi)linearly along
the sample.4–6 This is surprising since, unlike charge, the
electronic spin is generally not conserved due to spin-orbit
interactions or magnetic impurities. While charge conservation
implies that the chemical potential drops linearly, spin noncon-
servation would seem to imply that the spin chemical potential
should vary exponentially on the scale of the spin-diffusion
length.8

Proposed mechanisms for the linear spin-voltage profile are
based on spin pumping between ferromagnet and contacts,9–11

with previous theoretical works9–12 focusing on ferromagnetic
insulators or magnon drag. In this Rapid Communication, we
consider the contribution of the conduction electrons to the
spin Seebeck effect in a ferromagnetic metal. In particular, we
discuss the question under what circumstances a (quasi)linear
variation of the spin chemical potential can be obtained.
Although it is well known that elastic spin-flip scattering leads
to an exponential decay of the spin chemical potential near
the edges of the sample,8 we find that the situation changes
qualitatively when additional inelastic spin-flip scattering is
present as, e.g., arising from the exchange interaction with
magnetic impurities.

As a model system, we consider inelastic spin-flip scat-
tering effected by the exchange interaction with partially
spin-polarized (paramagnetic) impurities. In the absence of
elastic spin relaxation of the conduction electrons or without
additional relaxation mechanisms for the impurity spins, a
truly linear dependence of the spin voltage can be recovered
due to the interplay of a conservation law for a combination

of spin and heat currents with the spin asymmetry inherent
to inelastic spin-flip scattering. Remarkably, even in the more
general case with additional direct spin relaxation for both
conduction electrons and impurities, we find a quasilinear
variation of the spin voltage whose characteristic scale is much
larger than the spin-diffusion length.

Another question raised by the experiment is the origin of
the observed spin Seebeck effect.4 In the absence of response
functions which are off-diagonal in spin, linear response relates
the spin-resolved charge and heat currents Jσ and JQσ to
the gradients in the spin-resolved chemical potentials and
temperatures μσ and Tσ ,

Jσ = −σσ

e2
∇μσ − σσSσ

e
∇Tσ ,

JQσ = −1

e
TσσσSσ∇μσ − (

κσ + TσσσS2
σ

)∇Tσ . (1)

Here, σσ denotes the (spin-resolved) conductivity, Sσ the
thermopower, and κσ the heat conductivity. It is natural
to ask whether the observed spin Seebeck effect indeed
originates from the spin thermopower S− = S↑ − S↓. We find
that this occurs in special limits but is generically not the
case.

Model. We consider an itinerant ferromagnet where the
exchange interaction polarizes the electron spins through
the mean field h and the electron dispersion is spin split,
εpσ = εp − σh. Besides elastic potential scattering, we assume
that the electrons are subject to an inelastic spin-flip scattering
(with rate �sf

σ ) on partially polarized magnetic impurities.
The electron spin can also relax directly (�dir

σ ), e.g., via
spin-orbit interaction. Similarly, the impurities can relax their
spin directly (�dir

i ), e.g., via the combined action of spin-orbit
interaction and phonons in addition to spin-flip scattering with
the conduction electrons (�sf

i ).13

Our discussion of the spin thermoelectric properties of the
ferromagnet is based on the kinetic equation

{∂t + vpσ · ∇r + F · ∇p}npσ = Sel
pσ + S inel

pσ (2)

for the electronic distribution function npσ . Here, vpσ =
∇pεpσ , and F is an externally applied force. Elastic scattering
and inelastic spin-flip scattering (for possible inelastic spin-flip
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scattering processes, see Fig. 1) are described through the
collision integrals

Sel
pσ =

∑
p′σ ′

Wσσ ′
pp′ δ(εpσ − εp′σ ′)(np′σ ′ − npσ ),

S inel
pσ =

∑
p′

W sf
pp′δ(εpσ + σεi − εp′σ̄ )

× [(1 − npσ )np′σ̄ gσ+ − npσ (1 − np′σ̄ )gσ−], (3)

where for definiteness, we consider isotropic scattering due
to pointlike scatterers. Wσσ results from elastic impurity
scattering and can be spin dependent as, e.g., for spin-polarized
impurities, Wσσ̄ denotes the elastic direct spin relaxation, and
W sf denotes the strength of the inelastic spin-flip scattering
with paramagnetic impurities. Since paramagnetic impurities
in a ferromagnet will be at least partially spin polarized,
the impurity Sz levels split by an energy of εi . We treat
the impurity spin as classical, i.e., we describe deviations
from the maximal spin orientation with a bosonic distribution
function g, leading to the typical bosonic term gσ± = g + (1 ±
σ )/2 in the collision integral (3) corresponding to the creation
or absorption of local magnons. g is governed by

∂g

∂t
=

∑
p

S inel
p↑ + [

W dir
i+ (g + 1) − W dir

i− g
]
. (4)

W dir
i± denotes direct relaxation of the impurity spin.
Transport coefficients. The transport coefficients σσ , Sσ ,

and κσ in Eq. (1) can be determined as usual by evalu-
ating the spin-resolved charge and heat currents from the
Boltzmann equation (2). Multiplying Eq. (2) by velocity vpσ

and vpσ (εpσ − μ0) (where μ0 is the equilibrium chemical
potential) and summing over momenta, we find σσ = e2NσDσ

for the conductivity. Here, Nσ is the electronic density of states
and Dσ = v2

σ /d�a
σ is the diffusion coefficient in terms of vσ =

vpF ,σ and �a
σ = �tr

σ + �sf
σ + �dir

σ , where �tr
σ is the transport rate

for spin-conserving elastic scattering, �dir
σ = Nσ̄ (μ0)Wσσ̄ , and

�sf
σ = Nσ̄ (μ0 + σεi)(W sf/sinh εi

kBT
) the rates for elastic and

inelastic spin-flip scattering, respectively. The thermopower
and the thermal conductivity obey the Mott relation Sσ =
(π2k2

BT /3e)[∂ ln σσ (μ0)/∂μ0] and the Wiedemann-Franz law
κσ = (π2k2

BT /3e2)σσ .
Continuity equations. Information about the spatial depen-

dence of (spin) chemical potential and (spin) temperature is
contained in the continuity equations relating the spin-resolved
charge and heat currents JQnσ = ∑

p(εpσ − μ0)nvpσ δnpσ to
the spin-resolved charge and heat densities ρQnσ = ∑

p(εpσ −
μ0)nδnpσ . Note that n = 0 corresponds to the usual particle
current (density) and n = 1 to the heat current (density). The
continuity equations can be found in the usual manner by a mo-
mentum sum over the Boltzmann equation (2) as well as over
Eq. (2) multiplied by (εpσ − μ0). We evaluate the resulting
expressions by linearizing the collision integrals using npσ �
f 0

pσ + δnpσ and g � g0(εi) + δg, and expanding the scattering
rates about μ0, �pσ � �σ + �′

σ (εpσ − μ0). Eliminating the
impurity distribution function g using Eq. (4), we find, in the
static limit for the charge current J = J↑ + J↓, the spin current

Jspin = J↑ − J↓, the heat current JQ = JQ↑ + JQ↓, and the
spin heat current JQspin = JQ↑ − JQ↓, the continuity equations

∇ · J = 0,

∇ · Jspin = −2(�̃↑ρ↑ − �̃↓ρ↓ + �̃′
↑ρQ↑ − �̃′

↓ρQ↓), (5)

∇ · JQ = εiα(�sf
↑ ρ↑ − �sf

↓ ρ↓ + �sf′
↑ ρQ↑ − �sf′

↓ ρQ↓),

∇ · JQspin = −2(�̂↑ρQ↑ − �̂↓ρQ↓ + �̂′
↑ρQ2↑ − �̂′

↓ρQ2↓)

−εi(�
sf
↑ ρ↑ + �sf

↓ ρ↓ + �sf′
↑ ρQ↑ + �sf′

↓ ρQ↓)

+2αQ(�sf
↑ ρ↑ − �sf

↓ ρ↓ + �sf′
↑ ρQ↑ − �sf′

↓ ρQ↓).

Here we defined the combined scattering rates �̂σ = �sf
σ +

�dir
σ and �̃σ = α�sf

σ + �dir
σ as well as the coefficients α =

�dir
i /(�sf

i + �dir
i ) and αQ = �sf

iQ/(�sf
i + �dir

i ). The coefficient
α measures the rate of direct relaxation of the impu-
rity spins �dir

i = W dir
i− − W dir

i+ relative to spin-flip scatter-
ing with the conduction electrons �sf

iQn=∑
pp′δ(εp↑+εi −

εp′↓)(εp↑+ εi

2 −μ0)n(f 0
εp↑−f 0

εp′↓)W
sf , i.e., α varies between zero

when the impurity spin relaxes only via its interaction with
the conduction electrons and unity when direct relaxation
dominates.

The continuity equations (5) show that the charge current
is always conserved while the heat current is conserved
only in the absence of inelastic scattering (εi = 0) or of
direct relaxation of the impurity spins (α = 0). Both inelastic
spin-flip scattering and direct spin relaxation act as sources or
sinks for the spin currents.

It is instructive to consider first the spin chemical potential
in the absence of thermoelectric effects. Then we can focus
on the continuity equations for the charge and spin currents,
and neglect the energy derivatives �′

σ of the scattering rates.
Inserting Eq. (1) with Sσ = 0, expanding ρσ = Nσ (μσ − μ0),
and rewriting the equations in terms of the charge and
spin chemical potentials μ± = (1/2)[(μ↑ − μ0) ± (μ↓ − μ0)]
yields the coupled diffusion equations

−σ+
e2

∇2μ+ − σ−
e2

∇2μ− = 0,

(6)

−σ−
e2

∇2μ+ − σ+
e2

∇2μ− = −2α�sf
−μ+ − 2�̃+μ−.

Here we defined σ± = (σ↑ ± σ↓) and �α
± = N↑�α

↑ ±
N↓�α

↓ . Note that �sf
− is nonzero only for an energy-

dependent density of states due to the inelastic na-
ture of spin-flip scattering, as becomes evident by
the more explicit expression �sf

− = [N↑(μ0)N↓(μ0 + εi) −
N↓(μ0)N↑(μ0 − εi)](W sf/sinh εi

kBT
) (Ref. 14) (see also Fig.

1). For Eq. (6) one finds a linear and an exponential solution.
Determining the spin-voltage profile for a ferromagnet of
length L with a voltage �μ applied along the x direction
[corresponding to the boundary conditions μ+(x = ±L/2) =
±�μ/2 and μ−(x = ±L/2) = 0], one finds for a weak
ferromagnet εi,h � εF at small temperatures kBT � εF in
the bulk of the sample: μ− � −μ+α�sf

−/�̃sf
+ . This implies that

the linear spatial variation of the charge chemical potential
μ+ due to charge conservation is necessarily accompanied by
a linear variation of the spin chemical potential when �sf

− is
nonzero. Interestingly, the linear contribution to μ− is entirely
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FIG. 1. (Color online) Inelastic spin-flip processes for electrons
near the Fermi energy μ0. Arrows indicate electronic transitions while
± signs indicate the change of the local impurity spin Sz. Since ↑-spin
electrons gain energy εi whereas ↓-spin electrons lose energy εi ,
inelastic spin-flip scattering becomes asymmetric (finite �−) for an
energy-dependent density of states.

determined by the collision integral and thus insensitive to the
response coefficients such as the conductivity.

Spin thermoelectrics. This mechanism does not carry over
directly to spin thermoelectric effects since the latter are
generically investigated in the absence of charge currents.
Similarly, an ideal spin battery would also be operated without
charge currents. Although charge conservation becomes incon-
sequential under these circumstances, we find that a linear or
quasilinear spatial dependence of the spin chemical potential
due to inelastic spin-flip scattering persists under quite general
circumstances.

For reference, we first review what happens without
inelastic spin-flip scattering (�sf = 0), as considered in Ref. 8.
Then both the spin chemical potential and the spin temperature
T− = (T↑ − T↓)/2 exhibit a purely exponential dependence,
despite the presence of the conservation law ∇ · JQ = 0 in
addition to ∇ · J = 0. The reason is that in the equations for
the linear modes, μ− and T− decouple completely from μ+
and T+ = (1/2)[(T↑ − T0) + (T↓ − T0)]/2. Indeed, expanding
the remaining continuity equations (5) around μ0 and T0 yields

∇ · Jspin = −2(�dir
+ μ− + γ�dir′

+ T−),

∇ · JQspin = −2γ�dir
+ T−, (7)

where γ = (π2/3)k2
BT0, implying that the only sinks

and sources of the (heat) spin current are μ−
and T−.

As in the absence of thermoelectric effects, spin-flip
scattering will mix the equations for the charge and spin
components of chemical potential and temperature. This al-
lows for the thermoelectric generation of a linear spin-voltage
profile in several circumstances. Expanding the continuity
equations (5) around μ0 and T0 as before, we find, in addition to
∇ · J = 0,

∇ · Jspin = −2(�̃−μ+ + �̃+μ− + γ �̃′
−T+ + γ �̃′

+T−),
(8)

∇ · JQ = εiα(�sf
−μ+ + �sf

+μ− + γ�sf′
− T+ + γ�sf′

+ T−),

∇ · JQspin = −2γ (T0�̂
′
−μ+ + T0�̂

′
+μ− + �̂−T+ + �̂+T−)

−εi(�
sf
+μ+ + �sf

−μ− + γ�sf′
+ T+ + γ�sf′

− T−)

+2αQ(�sf
−μ+ + �sf

+μ− + γ�sf′
− T+ + γ�sf′

+ T−).

Importantly, μ+ and T+ now also act as sinks and sources for
the currents when �sf

− is nonzero. Consequently, the equations
for μ+ and T+ no longer decouple from those for μ− and T−
and the (quasi)linear modes involve also μ− and T−.

A strictly linear spin-voltage profile emerges when a second
current is conserved in addition to the charge current J. If
direct spin relaxation is negligible for both impurity spins
and conduction electrons, the mixing of charge and spin
components is accompanied by conservation of the heat and
spin currents ∇ · JQ = 0 as well as ∇ · Jspin = 0, leading to a
linear spin voltage in the bulk of the sample (see discussion
below). More surprisingly, a linear spin-voltage profile even
persists in the presence of direct spin relaxation of the impurity
spins. At first sight, this seems unlikely since both the heat
current JQ and the spin current Jspin are no longer conserved.
However, a linear combination of the two still satisfies a
conservation law, namely,

∇ · (εiJspin + 2JQ) = 0. (9)

Similarly, a linear spin-voltage profile is possible when there is
direct spin relaxation of the conduction electrons, but not of the
impurity spins. While the spin relaxation for the conduction
electrons spoils the conservation laws for the spin and the spin
heat currents, the heat current remains conserved.

In the full problem where direct spin relaxation is included
for both the impurity spins and the conduction electrons,
only the charge current is conserved, and strictly speaking,
thermoelectric generation of a linear spin-voltage profile
becomes impossible. Nevertheless, it is evident from the above
discussion that the various currents differ in the robustness of
their conservation laws, and consequently some of the length
scales for the exponential decays can significantly exceed the
spin-diffusion length. As a result, one may still find quasilinear
spin-voltage profiles in practice even when a linear profile is
no longer possible. Specifically, we find from a lengthy but
straightforward analysis that the three currents Jspin, JQ, and
JQspin involve the length scales

1/
2
1 � e2 �sf

+ + �dir
+

σ+
, 1/
2

2 � 1


2
1

α�sf
+ + �dir

+
�sf+ + �dir+

,

(10)

1/
2
3 � 1


2
1

α

2

εi�
dir
+ �sf

−
(�sf+ + �dir+ )(α�sf+ + �dir+ )

[
e

2γ
S+ − �sf′

−
�sf−

]
,

with S± = (S↑ ± S↓). Equation (10) holds for low tempera-
tures kBT � εF and weak ferromagnets h,εi � εf .

The length 
1 is the shortest of the three length scales and
corresponds to the usual spin-diffusion length. The length scale

2 is of the same order as the spin-diffusion length, except
when direct spin relaxation is weak compared to spin-flip
scattering on magnetic impurities. In the latter situation,

2 becomes much larger than the spin-diffusion length and
diverges in the absence of direct spin relaxation. Importantly,
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3 is generically much larger than the spin-diffusion length for
weak ferromagnets. According to Eq. (10), the ratio 
3/
1 is
of order (εf /εi)(�dir

+ /�sf
+)1/2 � 1 when direct spin relaxation

dominates and (εf /εi)(�sf
+/�dir

+ )1/2 � 1 in the opposite limit
when direct spin relaxation is weak. The length scale 
3

diverges when no spin relaxation is present for electrons or for
impurity spins, as well as in the absence of inelastic spin-flip
scattering.

Spin voltage. The largeness of 
3 allows for the ther-
moelectric generation of a quasilinear spin-voltage profile.
To illustrate this result and to assess the role of the spin
thermopower S−, we consider a ferromagnet of length L

with a constant temperature gradient applied along the x

direction, similar to the experimental setup in Ref. 4. We
then determine the spin-voltage profile from Eqs. (1) and (5)
together with the boundary conditions Jspin(x = ±L/2) = 0,
T+(x = ±L/2) = ±�T /2, and T−(x = ±L/2) = 0.

Without direct spin relaxation, 
2 diverges in addition to

3. For low temperatures kBT � εf and weak ferromagnets
h,εi � εf , we then find the spin chemical potential profile

μ− = −e (S−T+ + S+T−) (11)

in the bulk of the sample with T+ � �T (x/L) and T− �
T+[(eS+/2γ )εi�

sf
+ − 2�sf

− − εi�
sf′
+ ]/2�sf

+ . Note that both S−
and S+ contribute to the spin chemical potential profile, and it
will in general depend on the specifics of the system which of
the two terms dominates.

In the general case, with nonzero direct spin relaxation for
both the conduction electrons and the impurities, we can focus
on the quasilinear contribution decaying on the largest length
scale 
3 and obtain

μ− � α

e
2S+�sf

− − γ�sf′
−

α�sf+ + �dir+
T+ − γ

α�sf′
+ + �dir′

+
α�sf+ + �dir+

T−, (12)

with T+ � �T sinh(x/
3)/2 sinh(L/2
3) and T− �
T+[(eS+/2γ )εi�

sf
+ − 2�sf

− − εi�
sf′
+ ]/2(�sf

+ + �dir
+ ).

Interestingly, there is no longer a contribution which
involves S−. The reason for this is that the contribution of S−
is subdominant in the sense that its spatial profile is controlled

by 
2 rather than 
3. We therefore find that, generically, the
spin thermopower does not contribute significantly to the spin
Seebeck effect.

Conclusions. We have shown that a (quasi)linear spin-
voltage profile can be generated thermoelectrically in a
ferromagnet with paramagnetic impurities. In the absence
of direct spin relaxation of conduction electrons or impu-
rities, the spin chemical potential acquires a strictly linear
component due to conservation of a composite current made
up from the heat and spin currents. More generally, this
conservation law is only approximate and a quasilinear
behavior of the spin chemical potential emerges. While our
model results do not apply directly to the recent experi-
ments, they show that a quasilinear dependence of the spin
chemical potential may also arise from a purely electronic
mechanisms.

The underlying physics of the quasilinear dependence of
the spin chemical potential is the spin asymmetry of inelastic
spin-flip scattering caused by partially spin-polarized magnetic
impurities. Both the spin asymmetry and the inelasticity should
also be a feature of scattering of electrons on magnons in
itinerant ferromagnets. For this reason, our results suggest
that it would be interesting to extend the kinetic theory to
higher temperatures by including the effects of magnons
which, however, unlike impurities, have a finite dispersion
and propagate.

Our analysis also neglects electron-electron interactions.
On the one hand, these will modify the response functions
σσ , κσ , and Sσ , e.g., by introducing off-diagonal spin-drag
components. In addition, they provide another decay channel
for the spin heat current which decays on the shortest length
scale even in the absence of electron-electron scattering. We
therefore expect that electron-electron interactions, which will
become important at higher temperatures, modify our results
only in quantitative detail. We hope to return to these issues in
a future publication.
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