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We present a thermal transport phenomenon, a unidirectional selection-rule blockade, and show how it
produces unprecedented rectification of bosonic heat flow through molecular or mesoscopic quantum systems.
Rectification arises from the quantization of energy levels of the conduction element and selection rules of
reservoir coupling operators. The simplest system exhibiting the selection-rule blockade is an appropriately
coupled three-level system, providing a candidate for a high-performance heat diode. We present an analytical
treatment of the transport problem and discuss how the phenomenon generalizes to multilevel systems.
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Heat conduction in nanoscale structures has become an
active field of research enjoying constantly increasing atten-
tion. Electronic properties have been studied in great detail
in the last three decades and are better understood than ther-
mal properties. The main reason for this has been experimen-
tal challenges to measure and control thermal properties ac-
curately. Recently the field has seen breakthroughs such as
measurements of quantized heat transport1,2 and realization
of hybrid structures probing atomic-level heat transport
properties.3

Experimental developments have increased theoretical in-
terest to explore fundamental limits of thermal phenomena
and devices based on their applications. Thermal rectifica-
tion, i.e., asymmetry of heat current when the temperature
bias is inverted, has been actively studied in this context.
Rectification has been observed so far in two experiments4,5

and has a significant application potential. There exists vari-
ous theoretical proposals of how to realize rectification in
phononic,6,7 photonic8 and other hybrid structures.9 How-
ever, in most proposals rectification is modest and limits of
performance are unknown. The purpose of this Rapid Com-
munication is to present a heat transport phenomenon, an
asymmetric selection-rule blockade, enabling an unparalleled
rectification performance. The phenomenon provides an ex-
ample of an intricate interplay of quantum-mechanical and
thermal properties in nanoscale structures.

The simplest system exhibiting the selection-rule block-
ade is a three-level system with strongly uneven energy-level
separations. A crucial ingredient is that the two baths are
coupled to the system so that one can only induce transitions
between the close-lying states and the other can effectively
induce only the two larger transitions. The baths can ex-
change energy only when the bath coupling far-apart states
has sufficiently high temperature to create excitations. In
suitable temperature regime the forward biasing leads to se-
quential heat flow while the reverse bias current, due to
higher-order processes, is very strongly suppressed. This
one-directional suppression of heat flow is the defining prop-
erty of the selection-rule blockade.

The Rapid Communication is organized as follows. First
we introduce the three-level model and show analytically
how rectification arises from the selection rules. Then we
estimate the magnitude of the leakage current that sets the
limits of performance of rectification and discuss how the
transition rules can be realized without special symmetries.

We conclude by outlining how the selection-rule blockade
generalizes to multilevel systems and summarize our results.

In the following we consider thermal conduction in the
setup depicted in Fig. 1. The system consists of three parts,
two reservoirs and a three-level system that mediates heat.
We call a configuration forward biased if TR�TL and reverse
biased in the opposite case. Intuitively one expects that if
temperatures TL/R are much smaller than the allowed transi-
tion energies, heat flow is effectively blocked. This is con-
firmed below as we show how the intrinsic asymmetry in the
strength of the blockade gives rise to strong rectification. The
Hamiltonian of the system is

H = HL + HR + HC + HLC + HRC �1�

where HL/R characterize the reservoirs and the central Hamil-
tonian is

HC = �0�0��0� + �1�1��1� + �2�2��2� . �2�

The level separation of the central part E1=�1−�0,
E2=�2−�1 is assumed to be unequal E1 /E2�1. The reser-
voirs couple to the central system in a special manner

HLC = XL��0��1� + �1��0�� ,

HRC = XR��1��2� + �2��1� + �0��2� + �2��0�� , �3�

where XL/R are Hermitian operators in the reservoir Hilbert
spaces. The specific form of the couplings imply that the left
reservoir couples only the groundstate and the first excited
state in contrast to the right reservoir which couple all the
energy levels. Applying the Fermi Golden Rule one can cal-
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FIG. 1. �Color online� Studied model consists of two heat baths
at different temperatures coupled through a three-level system. The
short solid arrow represents transitions induced by the left reservoir
and the long solid arrows correspond to Golden-Rule transitions
induced by the right reservoir. The dashed arrow represents higher-
order transitions via the virtual state by the right reservoir.
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culate the transition rates between the energy levels

�1→0 = SXL
��1�/�2, �2→1 = SXR

��2�/�2,

�2→0 = SXR
��1 + �2�/�2, �4�

where SXL/R
���=�−	

	 dtei�t�XL/R�t�XL/R�0�� and �1/2=E1/2 /�.
The correlation functions are evaluated in the absence of the
couplings at the respective reservoir temperatures. Informa-
tion about HL and HR as well as information about the struc-
ture of the reservoirs are encoded in the noise SXL/R

��� so our
discussion is independent of the precise nature of the reser-
voirs so far. It should be noted that even though the right
reservoir can induce direct transitions between the ground
state and the first excited state it happens only in higher
orders. In the lowest order the allowed transitions are sepa-
rate in the different reservoirs. The corresponding inverse
transitions are obtained by inverting the sign of the fre-
quency argument, for example, �0→1=SXL

�−�1� /�2. Noise is
related to the retarded X-correlation function and the Bose-
Einstein distribution n��� through the fluctuation-dissipation
theorem

SXL/R
��� = AL/R����1 + nL/R���� , �5�

where AL/R���=−2 Im�XL/RXL/R�r��� are spectral
densities of the reservoirs defined through the Fourier
transform of the retarded function �XL/R�t�XL/R�0��r

=−i
�t���XL/R�t� ,XL/R�0���.10 Once the transition rates are
known, the steady-state occupation probabilities follow from
the detailed-balance equations

− P�i�	
j�i

�i→j + 	
j�i

P�j�� j→i = 0. �6�

Employing the rate-equation formulation,10 heat current can
be calculated, say, between the left reservoir and the central
system yielding

J = E1�P�1��1→0 − P�0��0→1� . �7�

The probabilities required to evaluate Eq. �7� can be solved
in terms of the transition rates as

P�0� = ��1→0�2→0 + �1→2�2→0 + �1→0�2→1�/C ,

P�1� = ��0→1�2→0 + �0→1�2→1 + �0→2�2→1�/C , �8�

with

C = �10�20 + �12�20 + �10�21 + �01��20 + �12 + �21�

+ �02��21 + �10 + �12� , �9�

where we have introduced notation �i→j =�ij. Inserting the
probabilities and the transition rates in Eq. �7� we obtain an
explicit expression for the current

J = E1
�01�02�21

C
�e�LE1 − e�RE1� . �10�

Result �10� indicates that the thermal window
�e�LE1 −e�RE1� determined by the reservoir temperatures and
the smaller energy separation E1 plays an important role in

the transport process. In the limit kBTR�E2 current �10�
takes a simple form

JTR�E2
= E1

AR��2�

1 +
AR��2�

AR��1 + �2�

e−�R�E1+E2��e�LE1 − e�RE1�
�1 + e�LE1�

.

�11�

Result �11� shows that heat current is exponentially sup-
pressed in the considered limit. This is an indication that the
system acts as a high-performance thermal rectifier when the
lower operation temperature is much smaller than E2 while
the higher temperature is comparable to it. To make rectifi-
cation more explicit, consider a situation where the hot res-
ervoir is at temperature kBTh
E2 and the cold one is at
kBTc
E1. Furthermore, to simplify expressions, let us as-
sume that the effective couplings are of the same order
AL��1��AR��2��AR��1+�2�=A0. Starting from expression
�10� one can estimate that the fraction of the bias-inverted
heat currents is

� JTR=Tc

JTR=Th

� = ce−E2/E1 
 ce−Th/Tc, �12�

where c is a numerical factor of the order of unity. Thus Eq.
�12� shows that in the studied temperature regime the frac-
tion of forward and reverse bias currents is exponentially
small in Th /Tc. Results �10�–�12� illustrate the essence of the
selection-rule blockade and confirm quantitatively the intui-
tive physical picture.15 More comprehensive picture of trans-
port properties can be obtained by plotting current �10� and
the rectification ratio at different forward and reverse bias
values �see Fig. 2�. Reverse bias current is rapidly sup-
pressed as the ratio E2 /E1 is increased and effectively van-
ishes in the temperature window kBTc�E1, kBTh�3E1 for
E2 /E1�3. Importantly, forward bias current is finite and in-
creasing in the region of optimal rectification.

In the derivation of Eq. �10� we only took into account the
Golden-Rule transitions. Deep in the blockaded regime
kBTR�E2 the lowest-order current vanishes exponentially as
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FIG. 2. �Color online� Rectification efficiency as a function of
the higher operation temperature. The different curves correspond
to values Tc=E1 and E2 /E1=5 �red�, E2 /E1=7 �blue�, E2 /E1=9,
�green�, and E2 /E1=11 �black�. Inset illustrates the corresponding
forward bias �solid lines� and reverse bias currents �dashed lines,
almost zero� in the units of J0=E1A0 /�2.
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shown in Eq. �11� and one is naturally lead to consider
higher-order transitions. The situation is similar to electronic
transport in the Coulomb blockade regime of single-electron
tunneling where charging effects suppress conductance �with
the difference that the selection-rule blockade is one direc-
tional�. At low temperatures and biases electric current
through a small island vanishes exponentially in the lowest
order in the perturbation theory. However, in the next order
one obtains cotunneling processes where electrons are trans-
ferred via virtual intermediate states partly lifting the
blockade.11 In our model the leading higher-order processes
contributing to the reverse leakage current in the blockaded
regime correspond to the right reservoir-induced transitions
via the highest-energy state as depicted in Fig. 1. These rates
can be calculated, for example, by the standard T-matrix ex-
pansion to the second order.10 Let us assume that the right
reservoir consists of noninteracting bosonic modes and that
the coupling operator is of the form XR=	 j�Rcj�bj +bj

†�
where bj, bj

† are canonical bosonic operators of the mode � j.
In the low-temperature limit TR→0 the relevant second-
order process contributing to reverse bias current is the decay
of the first excited state to the ground state by emitting two
bosons to the right reservoir. This process gives rise to an
additional rate

�1→0
�2� =

2


�2 

0

�1

d�AR���AR��1 − ��� 1

E2 − ��

+
1

E2 − E1 + ��
�2

�
8


�2E2
2


0

�1

d�AR���AR��1 − �� .

�13�

The rate is proportional to a typical second-order energy de-
nominator 
1 /E2

2 suppressing the transition. Assuming that
the spectral density has a power-law form AR�����d �d=1
for an Ohmic bath�, the leading contribution becomes

�1→0
�2� =

8


1 + d

���2→0�TR=0�2

E2
2 �E1

E2
�2d

�1. �14�

The second and the third factor are much smaller than unity
so Eq. �14� is small compared to the level separation �1.
However, the rate is only algebraically suppressed by
�E1 /E2�2d. At finite temperature TR
E1 the relevant power
law exhibits a crossover to �kBTR /E2�2d. Now we can esti-
mate the leakage current under the blockade by

Jr = − E1P�1��1→0
�2� = − E1

�1→0
�2�

1 + e�LE1 +
�1→0

�2�

�1→0

. �15�

Result �15� shows that the true rectification efficiency is al-
gebraically, not exponentially, suppressed. It is clear that the
leakage current remain finite as long as there is thermal cou-
pling between the two reservoirs and that a good rectifier is
characterized by its ability to suppress the parasitic reverse
bias processes. Nevertheless, current �15� can be made arbi-
trarily small by decreasing max�E1 /E2 ,kBTR /E2�.

Usually selection rules are associated with symmetries of
the Hamiltonian leading to vanishing matrix elements of the

perturbation operator between unperturbed states. In applica-
tions finding a candidate system with suitable symmetries
and couplings is a nontrivial task. However, since the transi-
tions of the different reservoirs are well separated in energy,
there exists an alternative route to obtain the required transi-
tion rules without invoking symmetries of the Hamiltonian.
Golden-Rule rates consist of matrix elements of perturbation
operators and a summation over a relevant phase space. Both
factors can effectively impose selection rules in the system.
Typically phase-space selection rules arise from the fact that
the reservoir spectral density is nonvanishing only in a re-
stricted frequency window outside which the reservoir can-
not induce transitions. In solid-state applications suitable res-
ervoirs can be realized by dissipative vibrational modes of
phononic or photonic nature which filter out frequencies far
from the resonance. Assuming that the center element
couples linearly to the modes, the reservoir parts of the cou-
plings �Eq. �3�� take the form XL/R=cL/R�bL/R

† +bL/R�, where
bL/R

† , bL/R are the creation and annihilation operators of the
reservoir modes. The retarded Green’s functions of the res-
ervoirs become GL/R

r ���= ��g0
r�L/R

−1 +�L/R
r ����−1, where

�g0
r�L/R

−1 = ��2−�L/R
2 � /2�0 and �L/R are the inverse free

Green’s functions and the frequencies of the reservoirs
modes and �L/R

r ��� are the associated self-energies due to
dissipation. In the case of linear dissipation the spectral den-
sities AL/R���=−2gL/R

2 Im GL/R
r ��� can be solved exactly12

yielding

AL/R��� =
cL/R

2 �2��L/R�2�L/R���
�4��2 − �L/R

2 �2 + ��L/R����L/R�2 , �16�

where �L/R���=−2 Im �L/R
r ���. As illustrated in Fig. 3 �left�,

if the left reservoir has a resonance frequency at �L=�1 and
the right reservoir at �R=�2+�1 /2 with respective widths16

that are much smaller than �2, the spectral densities have no
overlap. Thus the reservoirs can effectively induce transi-
tions only as indicated in Fig. 1. If the reservoirs are electro-
magnetic in nature the desired spectral densities �Eq. �16��
are achieved by coupling the center element to dissipative
LC circuits whose electromagnetic fluctuations are restricted
to a narrow band around the resonance.13 In phononic sys-
tems the same effect could be realized by coupling large
baths to the central element through small vibrating bridges.

The selection-rule blockade is a not restricted to the stud-
ied three-level system. Basic requirements are that level

HRC

E3

E2

E1
E0

ω1 ω2 ω1+ω2

AL AR HLC

}

FIG. 3. �Color online� Left: spectral density of the left �right�
reservoir is completely suppressed at frequencies ���1 ����2�,
effectively imposing the desired selections rules. Right: Low-lying
spectrum of the Jaynes-Cummings model and the allowed transi-
tions induced by the left �blue arrows� and the right �red arrows�
reservoir.
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separations of a system can be divided to small and large
intervals coupled to separate baths, and that combined effect
of two large transitions corresponds to a small one as in the
tree-level model. A prominent example fulfilling the require-
ments is a two-level system coupled to a harmonic oscillator
described by a resonant Jaynes-Cummings-type
Hamiltonian14

HJC = ���a†a +
1

2
� +

��

2
�z +

�g

2
�a† + a��x, �17�

where the interaction is assumed to be small g��. Excited
states of Hamiltonian �17� consists of doublets
�En�= �n ,↓�� �n−1,↑� where the energy separation of
centers of adjacent doublets is approximately E0=�� and
the separation within a doublet is En=�n�g �see Fig. 3
�right��. Since for the low-lying doublets energy splittings
are small En�E0, the selection-rule blockade can be estab-
lished if the left reservoir couples levels only within doublets
and the right reservoir couples states in different doublet.

This requirement is satisfied in the lowest order by
HRC=XR�a†+a� and HLC=XL�z,

17 yielding immediately
the desired selection rules. Analogous to the three-level
model, if the temperatures of the reservoirs are kBTL
�g,
kBTR
�� heat flow is efficient, while in the reverse biased
case kBTL
��, kBTR
�g excitations induced by the right
reservoir are forbidden and there exists only a weak leakage
current due to higher-order processes.

In conclusion, we presented a fundamental heat transport
phenomenon, the selection-rule blockade, based on the quan-
tum nature of the central system and selection rules of the
bath coupling operators. The phenomenon enables high rec-
tification efficiency in molecular and mesoscopic structures
making it promising for future device applications. The sim-
plest system exhibiting an asymmetric blockade is a three-
level model, which we analyzed in detail. We proposed a
scheme to impose required forbidden transitions also without
special symmetry properties of the Hamiltonian and dis-
cussed how the selection-rule blockade can be generalized to
multilevel systems.
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