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In quantum dots or molecules with vibrational degrees of freedom the electron-vibron coupling renormalizes
the electronic charging energy. For sufficiently strong coupling, the renormalized charging energy can become
negative. Here, we discuss an instability toward adding or removing an arbitrary number of electrons when the
magnitude of the renormalized charging energy exceeds the single-particle level spacing. We show that the
instability is regularized by the anharmonic contribution to the vibron energy. The resulting effective charging
energy as a function of the electron number has a double-well structure causing a variety of novel features in
the Coulomb-blockade properties.
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I. INTRODUCTION

The interplay of mechanical motion and electronic prop-
erties has been studied widely in molecular physics and, re-
cently, in molecular electronics and nanomechanical struc-
tures. Present-day experimental methods enable the
fabrication of nanostructures such as single-molecule junc-
tions or quantum dots where a small number of electrons
couple to one or more vibrational modes. Electronic trans-
port in these systems exhibits vibrational sidebands at high
bias voltages,1–4 the shuttle instability,5–8 and the Franck-
Condon suppression of the low-bias electric conductance.9–11

The shuttle phenomenon arises from modifications in the
spatial conformation driven by the charging events, whereas
the Franck-Condon effects emerge from the transition rates
between discrete vibronic states. An additional important
consequence of vibrational degrees of freedom is the polaron
shift which renormalizes the Coulomb repulsion of confined
electrons and modifies the Coulomb-blockade physics of the
system. At sufficiently strong couplings the sign of the effec-
tive charging energy U can become negative implying an
effectively attractive interaction between electrons.12–17 The
regime of a negative effective charging energy is known to
be realized in certain molecules �an effect known in chemis-
try as potential inversion�.18 It may also be accessible in
vibrating quantum dots when the electron-vibron coupling is
sufficiently strong.19

It has been shown recently that the negative-U regime
opens the possibility for novel features such as an efficient
electron pair tunneling through single molecules16 and a
charge-Kondo effect.17 An underlying assumption of these
works is that the negative charging energy does not induce
an instability of the system. This is indeed the case when the
energy gain due to the effectively attractive charging energy
is smaller than the cost in single-particle energy due to the
finite level spacing, when adding �removing� electrons to
�from� the dot. This paper is devoted to study the opposite
regime where the magnitude of the negative �renormalized�
charging energy exceeds the single-particle level spacing.
The studied system is modeled as a single-electron transistor
�SET� whose center island is coupled to a mechanical
vibration.9,20–24 It is shown that the system becomes unstable
toward addition or extraction of electrons. Assuming that the

vibron Hamiltonian contains an anharmonic contribution we
show that the instability is regularized and that the system
possesses a well-defined ground state. The effective charging
energy as a function of the electron number in the dot has a
double-well structure which, moreover, depends on tempera-
ture. This is in striking contrast to the usual parabolic charg-
ing energy and leads to a variety of novel effects. At zero
gate charge and low temperatures, there is a symmetry be-
tween particlelike and holelike excitations causing the exis-
tence of degenerate minima of the effective charging energy
which for weak anharmonicity are separated by a large num-
ber of electrons. The average population and the electron
number fluctuations are highly sensitive to the gate voltage
which breaks the symmetry between the minima. We also
show that the transport properties of the system exhibit a
number of distinctive features attributed to the unusual form
of the effective charging energy.

This paper is organized as follows. In Sec. II we introduce
the model, demonstrate the origin of the negative-U instabil-
ity, and state the precise conditions under which it takes
place. In Sec. III we explore the equilibrium properties of the
instability, including the effects of the vibron nonlinearity.
Nonequilibrium �transport� properties in the presence of a
bias voltage are discussed in Sec. IV. We conclude in Sec. V.

II. MODEL AND NEGATIVE-U INSTABILITY

We are considering a quantum dot or a single-molecule
junction coupled to a single vibrational degree of freedom.
The dot is modeled as a SET where the number of electrons
on the island couples to a vibron mode, see Fig. 1. The
system could be realized, for example, by a suspended center
element between large metallic leads enabling tunneling be-
tween the dot and the leads. The electronic part of the Hamil-
tonian for a SET is

He = �
L,R,C

� jcj
†cj + HT + U�N� , �1�

where the first term represents the single-particle energies of
the leads and the center part, the second term describes tun-
neling between the leads and the center, and the last term is
the relevant charging energy of the system. The tunneling
Hamiltonian and the charging energy take the standard forms
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HT = �
i�C,j�L/R

�tijci
†cj + tij

� cj
†ci� �2�

and

U�N� =
�Ne − Qg�2

2C
, �3�

respectively. Here, N=�Ccj
†cj −N0 is the number of extra

electrons on the island, C=C1+C2+Cg, and Qg=V1C1
+V2C2+VgCg is the total induced gate charge. The number
N0 corresponds to the positively charged lattice ions on the
central island. The full Hamiltonian of the system H=He
+Hph also includes the vibrational contribution

Hph =
P2

2M
+

1

2
M�2x2 + ��2M�2�2x4 + ���N

x

losc
, �4�

where we have included the electron-vibron coupling
���Nx / losc with losc=�� /2M� into the phonon Hamil-
tonian. Hamiltonian �4� also includes an anharmonic x4 term
whose strength is controlled by the parameter � �with dimen-
sions of inverse energy�. The quartic term arises naturally
from the theory of elasticity as the first correction to the
harmonic approximation �the terms proportional to higher
even powers of the vibron coordinate are also possible but
become relevant at amplitudes beyond the studied quartic-
dominated regime�. The anharmonic term becomes compa-
rable to harmonic effects when the phonon displacement is
on the order of �����−2 times the oscillator length losc. The
inclusion of this term, even in the weakly nonlinear case
����1, is crucial for the stability of the system for large
couplings �.25 To demonstrate this let us first assume �=0
and examine the phonon-induced modification of the charg-
ing energy. Since the electron number couples linearly to the
phonon position, it is possible to introduce a shifted phonon
coordinate by completing the square in the phonon Hamil-
tonian. �There may also exist a correction �Nx2 to the linear
electron-vibron coupling but this does not remove the insta-
bility under consideration.� As a result one eliminates the
coupling term and generates an extra term 	U�N� quadratic

in N which can be thought of as a modification of the charg-
ing energy

Ueff�N� = U�N� + 	U�N� =
�Ne − Qg�2

2C
− N2�2�� . �5�

It is important to recognize that the well-known polaron shift
	U�N� gives rise to a negative contribution. The overall
prefactor of the N2 term will be negative if


 =
e2

2C
− �2�� � 0, �6�

meaning that the effective potential favors large absolute val-
ues of N. Defining the quantity EC=e2 /2C, the negative
charging energy condition �6� takes the form

� �� EC

��
. �7�

Consequently, in metallic quantum dots with a vanishingly
small single-particle level separation, the energy can always
be lowered by adding or removing an arbitrary number of
particles when condition �7� holds. Thus the system does not
possess a ground state and is unstable. In dots whose orbital
energies due to confinement are not negligible compared to
the charging and vibron energies, the single-particle energy
cost should also be taken into account. To analyze this, we
introduce equidistant single-electron orbitals

En = �vF
n

Ld
= 	n , �8�

where vF is the Fermi velocity of the dot, Ld is the effective
size of the electronic confinement, and 	=�vF /Ld is the
level separation. Expression �8� is appropriate in the vicinity
of the Fermi energy and holds exactly for a one-dimensional
Dirac spectrum. The energy cost of adding or removing N
electrons to or from the lowest available orbitals �ignoring
the spin degeneracy� is

�
n=1

N

En = 	
N�N + 1�

2
. �9�

Adding the single-particle contribution to the effective po-
tential �Eq. �5�� we get

Ueff�N� = 	
N�N + 1�

2
+ EC�N − Qg/e�2 − N2�2��

= �	

2
+ EC��N − Qg/e�2 − N2�2�� + const,

�10�

where the second line follows by shifting the gate charge
Qg→Qg+ 	

2EC
� e

2 +Qg�. The constant in Eq. �10� is indepen-
dent of N and can be dropped. Thus the functional form of
the effective potential remains invariant and the finite level
separation just renormalizes charging energy and gate
charge. The system is still fundamentally unstable provided
that

FIG. 1. �Color online� Equivalent circuit of the quantum dot.
Capacitances C1 and C2 model high resistance tunnel junctions
which allow the island to exchange electrons with the reservoirs, Cg

represents a gate capacitance. The central part is coupled to a vi-
brational mode.
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� ��EC + 	/2
��

. �11�

In the spin-degenerate case 	 should be replaced by 	 /2.
Alternatively, we can write this condition as EC−�2���
−	 /2, i.e., we find an instability when the magnitude of the
renormalized charging energy becomes larger than the level
spacing.

Result �11� shows that a constant �or decreasing� level
spacing is not adequate to stabilize the system at sufficiently
large couplings. The instability tends to change the electron
number by increasing the displacement of the phonon mode.
Therefore it is natural to assume that at some point when the
displacement becomes large the harmonic approximation for
the vibron mode breaks down and anharmonic effects be-
come significant. It turns out that a generalization of the
above analysis to include a nonzero anharmonic term ��
�0� in Eq. �4� always produces a well-defined ground state.
The effective potential for electrons becomes temperature
dependent and exhibits a variety of novel features.

Our discussion has a close relation to familiar stability
conditions in Fermi-liquid theory.26 In fact, it is well known
that the Fermi liquid remains stable even when the Landau
interaction parameter F0 becomes negative as long as F0�
−1. Since F0 measures the interaction strength in units of the
density of states, this is a precise analog of the stability con-
dition �11� expressed as �EC−�2��� / �	 /2��−1.27

III. THERMAL EQUILIBRIUM PROPERTIES

A. Effective potential

In this section we study effects of the anharmonic phonon
term on the negative-U instability, focusing on thermal equi-
librium properties of the junction. Diagonalizing �Eq. �4��
one obtains phonon eigenvalues 	Ej�N�
 as a function of the
electron number N and the island partition function
becomes28

Z = �
N,j

exp	− ��U�N� + Ej�N��


= �
N

exp	− �U�N�
�
j

exp	− �Ej�N�
 . �12�

In Eq. �12� we have assumed that the electron tunneling is
weak and its contribution to the partition function is negli-
gible compared to the charging energy.29 Defining a phonon
partition function as Zph�N�=� jexp	−�Ej�N�
, the partition
function takes the form

Z = Zph�N = 0�

� �
N

exp�− ��U�N� −
1

�
ln�Zph�N�/Zph�N = 0���� .

�13�

From expression �13� one can identify the effective elec-
tronic potential

Ueff�N,T� = U�N� −
1

�
ln�Zph�N�/Zph�N = 0�� . �14�

In the absence of the electron-phonon interaction, Eq. �14�
reduces to the ordinary charging energy and in the absence of
the anharmonic term ��=0� it is temperature independent
and coincides with expression �5�. In the anharmonic case
the polaron shift depends on the phonon state and thus the
effective potential depends on the phonon temperature. In
general, an evaluation of Eq. �14� requires one to diagonalize
�Eq. �4�� numerically and to compute the phonon partition
function. The behavior of the system is then determined by
the relative strength of the energy scales EC, ��, �−1, and
the magnitude of dimensionless electron-phonon coupling �.

B. Analytical considerations

Analytical expressions for the effective potential can be
obtained for weakly unstable systems at zero temperature
when considering the vibronic degree of freedom as classi-
cal. As this already illustrates some of the essential physics,
we first consider this case before presenting more general
numerical results for the fully quantum-mechanical model.

Starting with Eq. �14�, we can write the effective potential
at zero temperature as

Ueff�N� = U�N� + E0�N� − E0�0� , �15�

where E0�N� denotes the ground-state energy of the phonon
Hamiltonian Hph for excess charge N. In the classical limit,
the ground-state energy is simply given by the minimum of
the potential energy. Noting that E0�0� vanishes, we obtain

Ueff�N� = U�N� − �2��N2

+ min
x
�1

2
M�2�x + 2�N�osc�2 + ��2M�2�2x4� .

�16�

For a weakly unstable system near zero gate charge, we ex-
pect that the effective potential has a minimum for small �but
nonzero� N. Thus, we can neglect the quartic term when
determining the position of the minimum in Eq. �16�,

x0  − 2��N . �17�

It is straightforward to include corrections to this expression
and find that this approximation is valid as long as �2�EC
−�2��� /���1, i.e., as long as the instability is only weakly
developed. With this expression for x0, we find for the effec-
tive potential

Ueff�N� = U�N� − �2��N2 + 16�����2N4. �18�

Focusing on the case of zero gate charge, we can now com-
pute the number of electrons N0 which are entering the quan-
tum dot as a consequence of the instability. Minimizing the
effective potential in Eq. �18�, we find

N0
2 =

�EC − �2���
32�����2 . �19�

Note that there are indeed degenerate minima at N= �N0 for
zero gate charge.
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Once the instability develops, we can define an effective
charging energy EC

eff which describes the curvature of the
effective potential in the vicinity of the minima. Expanding
Eq. �18� around the minima, we find

EC
eff = 2�EC − �2��� . �20�

This sign reversal of the effective charging energy induced
by the instability has important consequences. While a nega-
tive renormalized charging energy leads to pair tunneling in
the absence of the instability,9 the positive effective charging
energy EC

eff implies that transport will be dominated again by
single-electron sequential tunneling processes once the insta-
bility develops. It is also interesting to note that the Coulomb
blockade is significantly weakened near the instability where
many charge states have similar energies.

We close this section with a remark on the validity of the
classical approximation for the vibrons employed in this sec-
tion. As can be readily seen from Eq. �15�, the quantum-
mechanical zero-point energy of the vibron mode cancels out
from this expression as long as the vibron remains harmonic,
implying that the zero-point energy is independent of the
electron number N. Thus, quantum corrections to our classi-
cal discussion are proportional to the anharmonicity and our
classical expressions are an excellent approximation to the
results of a fully quantum-mechanical calculation as long as
the anharmonicity remains small �see Sec. III C for a com-
parison with numerical results�.

C. Numerical results

A solution of the full quantum problem for arbitrary pa-
rameter values requires a numerical approach. We now focus
on the results of such a calculation. Figure 2 illustrates the
dependence of the effective potential on the electron-phonon
coupling strength and the charging energy. As the coupling
strength is increased the system exhibits a crossover between
the 
�0 regime and the negative-U regime 
�0, signaled
by the formation of a double-well structure. Decreasing the
�bare Coulomb� charging energy results in qualitatively simi-
lar behavior as increasing the coupling strength.

Figure 3 shows the temperature dependence of a typical
effective charging curve Ueff�N ,T� in the negative-U regime

�0. At low temperatures the potential exhibits a double-

well structure whose details depend on the particular param-
eter values. The shape of the potential can also change quali-
tatively as the temperature is increased: the double-well
structure present in Fig. 3 is eventually deformed to a single-
well potential. The temperature dependence of the potential
is a consequence of the nonlinear phonon interaction. In the
asymmetric case �i.e., at nonzero gate charge Qg�0� there
exists a metastable energy minimum whose decay toward the
global minimum requires multiple electron tunneling
�roughly ten electrons for the parameter values�. Figure 4
�left� shows a comparison between the full quantum-
mechanical solution obtained numerically and the classical
result obtained in Sec. III B. As argued above, we find that
the classical approximation is quite accurate for small anhar-
monicity. The wells are closer at stronger anharmonicity and
higher temperature, as indicated by Fig. 4 �right�.

The average number of electrons as a function of the gate
charge is presented in Fig. 5. In the absence of the electron-
phonon coupling and at low temperatures, the average num-
ber �N� exhibits the usual Coulomb staircase behavior. As the
coupling is increased, this is gradually transformed into a
new dependence reflecting the double-well nature of the ef-
fective potential. The double-well structure leads to a rapid

FIG. 2. �Color online� Effective potential as a function of the
electron number. Left: the coupling dependence of the potential, T
=0.1��, �=0.01, EC=��, Qg=0 and from bottom to top �2

=3,2.5,2 ,1.5,1. Right: the effective potential corresponding to dif-
ferent charging energies, �=0.01����−1, �2=2, T=0.1��, Qg=0,
and from bottom to top EC=0.5,0.8,1 ,1.5,2���.

FIG. 3. �Color online� Effective potential as a function of the
electron number. Left: curves illustrate the temperature dependence
of the potential corresponding to parameters EC=��, �
=0.01����−1, �2=2, and Qg=0 at T=0.1,3 ,5 ,10��� �from bot-
tom to top�. Right: the same as the left figure but at finite gate
charge Qg=e /2.

FIG. 4. �Color online� Left: comparison of the classical and
quantum-mechanical effective potentials. Solid curves correspond
to the quantum-mechanical calculation with parameters EC=��,
�=0.01����−1, Qg=0, T=0, and �2=2.5 �bottom solid curve�, �2

=2.0 �middle solid curve�, and �2=1.5 �top solid curve�. The dotted
lines correspond to the classical approximation obtained by mini-
mizing the phonon potential energy. Right: electron number corre-
sponding to the minimum of the right potential well as a function of
the nonlinearity, EC=��, �2=2, Qg=0, and T=0.1�� �solid�, T
=3�� �dashed�, T=5�� �dotted�, and T=10�� �dashed dotted�.
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increase in the population at low gate charges. The reason for
this is that the gate acts as a symmetry-breaking field and the
values Qg /e�kBT /EC are sufficient for the system to prefer
one of the two nearly degenerate wells.

This physics is also clearly reflected in the average num-
ber �N� as a function of temperature, as shown for various
gate charges in Fig. 6. For finite positive gate charge the
zero-temperature average value corresponds to the minimum
of the right well. As the gate charge increases, the position of
the minimum shifts and electrons are added to the dot in
discrete jumps of one electron. At higher temperatures, the
system is no longer trapped in the right well so that the
average number of electrons decreases rapidly. However, the
average number saturates at a finite value at high tempera-
tures, reflecting the gate-induced asymmetry of the potential.

Charge fluctuations also exhibit interesting behavior. In
the absence of the electron-phonon interaction the electronic
potential is U�N�=Ec�N−Qg /e�2, so the mean-square num-
ber fluctuation

	N2 = �N2� − �N�2 �21�

is proportional to temperature, 	N2�T. The situation is very
different when the electrons couple to an anharmonic vibron
mode. First of all, the zero-temperature number fluctuations
do not vanish at zero gate charge, Qg=0, but saturate to a
finite value, see Fig. 7. This happens because there exists

symmetric minima on both sides of the origin. The curve
also exhibits a weak dip at finite temperatures since charge
fluctuates more frequently toward values smaller than the
charge at the minima. Eventually fluctuations grow due to
the population of higher energy states. At finite gate values
Qg�0 the fluctuations are drastically modified at low tem-
peratures. The symmetry between the minima is broken and
only states close to the preferred minimum are populated.
When there is a single global minimum, the fluctuations van-
ish at zero temperature. At finite gate charge the curves ap-
proach to the zero gate curve at finite temperatures. At small
gate charges, even a weak thermal excitation is sufficient to
restore an approximate symmetry between the minima, lead-
ing to a sharp increase in the fluctuations from zero to the
symmetric value at Qg=0.

IV. TRANSPORT PROPERTIES

So far we have explored consequences of the negative U
and the anharmonic phonon effects on equilibrium proper-
ties. In this section we focus on nonequilibrium characteris-
tics of the system in the negative-U regime. To simplify the
analysis we assume a continuous density of states of the dot
and that the energy scales separate ���EC so that only the
lowest vibrational state �E0�N�� is relevant at low tempera-
tures and bias voltages. As implied by considerations in Sec.
III and the estimate for the effective charging energy Eq.
�20�, close to the instability the curvature of the potential is
weak and one expects the sequential tunneling processes to
dominate the transport. In the lowest order of the tunneling
coupling transport properties are described by a rate equation
with golden-rule transition rates.30 Rates for the processes in
which the initial dot state contains N electrons and where the
electron number changes by one due to the tunneling through
the left/right junction are

�N�1,N
L/R = 
L/Rf�Ueff�N � 1� − Ueff�N� � �L/R� , �22�

where f�x�= x

e�x−1
, 
L/R=

��E0�N�1��E0�N���2

e2Rt
, and 1 /Rt

=
4e2�t�2�L/R�C

� . In the positive-U regime in the absence of the
anharmonic term the matrix element ��E0�N�1� �E0�N���2
leads to the usual Franck-Condon suppression of the conduc-
tance given by ��E0�N�1� �E0�N���2=e−�2

. The probability

FIG. 5. �Color online� Average dot population as a function of
the gate charge. The left figure corresponds to parameters T
=0.1��, �=0.01����−1, and EC=�� and from bottom to top �2

=0,0.2,0.8,1 ,1.2,1.5. At vanishing coupling ��=0� we recover the
usual Coulomb steps in the strong coupling we have a rapid in-
crease at low gate voltages. The right figure clarifies the small gate
charge region for couplings �2=0.8,1 ,1.2,1.5 �from bottom to top�.

FIG. 6. �Color online� Average dot population as a function of
temperature. The left figure corresponds to parameters �2=2, �
=0.01����−1, and EC=�� and from bottom to top Qg /e
=0.05,0.1,0.20.4,0.5. The right figure clarifies the low-temperature
region.

FIG. 7. �Color online� Root-mean-square fluctuation as a func-
tion of temperature. The left figure corresponds to parameters EC

=��, �=0.01����−1, and �2=2 and from bottom to top Qg /e
=0.5,0.1,0.01,0. At vanishing gate the low-temperature fluctua-
tions saturate at finite value, otherwise they will go to zero. The
right figure clarifies the low-temperature region.

ELECTROMECHANICAL INSTABILITY IN VIBRATING… PHYSICAL REVIEW B 80, 195103 �2009�

195103-5



P�N� of having N extra electrons on the dot follows from the
detailed balance condition �N−1,NP�N�=�N,N−1P�N−1�,
where the rates � are given by the sum of the corresponding
left and right lead rates. The stationary current through the
SET can then be calculated from the expression

I = − e�
N

��N+1,N
L − �N−1,N

L �P�N� . �23�

In Fig. 8 we have plotted the current as a function of the gate
charge at different temperatures and bias voltages. The cur-
rent is normalized to the Franck-Condon suppressed tunnel-
ing current I0=e−�2

�� /eRt. At temperatures T�EC /2 cur-
rent is a slowly varying function of the gate charge. Below
this temperature it gradually starts to show signatures of
Coulomb-type oscillations which become pronounced at low
temperatures. Although this is in qualitative agreement with
the standard Coulomb-blockade results in the absence of the
vibron interaction there are also some essential differences.
All the curves exhibit a slowly decreasing tendency and the
amplitude of current oscillations grow as a function of gate
charge. The strict periodicity of the usual Coulomb-blockade
conductance is broken by the nonlinear phonon interaction
which does not leave the effective charging spectrum invari-
ant as Qg is increased by multiples of the electron charge.
Figure 8 �right� shows also that, within a reasonable accu-
racy, the current is a linear function of the applied voltage at
low bias.

It is noteworthy that the current is not completely blocked
even at relatively low temperatures T�0.1EC where the
usual Coulomb-blockade current is completely suppressed
around integer gate charges. The reduction in the blockade
can be qualitatively understood by considering the estimate
�Eq. �20��, which indicates that in the vicinity of the insta-
bility the value of the effective charging is reduced. With
parameters corresponding to Figs. 8 and 9 the minima of the
double-well potential are flatter than the minima correspond-
ing to the bare electronic potential in the absence of vibra-
tions and, as illustrated in Fig. 9, there exists two �and at
weaker nonlinearity more� almost degenerate states in each
well. Transitions between these closeby states at the bottom
of the wells enable current to flow below temperatures where
the bare electronic energy cost would block it. The estimate
for the effective charging �Eq. �20�� is valid only in the vi-
cinity of the instability and by increasing �EC−���� one
eventually enters deep in the negative-U region where the
curvature at the potential minimum exceeds EC. In this re-
gion the blockade is stronger than the usual Coulomb block-
ade and one has to consider higher-order tunneling pro-
cesses.

In Fig. 10 we have plotted current vs gate charge with a
variable phonon nonlinearity. Small changes in the strength
of the nonlinearity change energy differences of the nearby
states at the potential minima leading to phase shifts in the
current oscillations. Since the current is an even function of
the gate charge it exhibits a cusp close to Qg=0 depending
on the phase of the current oscillations. The most pro-
nounced effect is achieved when the current oscillations
jump by half a period at the origin. At finite temperatures the
cusp is always smooth and becoming sharper when tempera-
ture decreases. The reason for the existence of the cusp is the
symmetry breaking between the two minima of the effective
potential at finite Qg. Even small gate values localize the
system in one minimum leading to observable effects in the
current through the structure.

V. CONCLUSIONS

In this paper, we studied effects of strong electron-phonon
interaction in quantum dots with a vibrational degree of free-

FIG. 9. �Color online� Left: probability distribution of the dot
population corresponding to parameters EC=0.2��, �
=0.05����−1, �2=0.5, and �L=−�R=0.1�� /e, Qg=0 at T
=0.1��. Right: the effective potential corresponding to the same
parameters.

FIG. 10. �Color online� Current as a function of the gate charge
at different phonon nonlinearity strengths. Left: the different curves
illustrate cases �=0.058����−1 �green�, �=0.05����−1 �red�, �
=0.045����−1 �blue�, and �=0.04����−1 �black�, other parameters
being EC=0.2��, �=0.5, T=0.05��, and �L=−�R=0.05�� /e.
Right: same quantities in the vicinity of Qg=0. The curves corre-
spond to �=0.056����−1 �black�, �=0.053����−1 �green�, �
=0.05����−1 �red�, and �=0.047����−1 �blue�, other parameters as
in the left plot.

FIG. 8. �Color online� Current as a function of the gate charge.
Left: different curves correspond to temperatures �from top to bot-
tom� T=0.2,0.15,0.1,0.07,0.05,0.03,0.02��� and other param-
eters being EC=0.2��, �=0.05����−1, �2=0.5, and �L=−�R

=0.1�� /e. Right: curves correspond to voltages �from top to bot-
tom� �L=−�R=0.1,0.08,0.06,0.04,0.02��� /e, other parameters
being EC=0.2��, �2=0.5, �=0.05, and T=0.05��.
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dom. At sufficiently strong couplings the vibron-induced po-
laron shift overcomes the charging energy cost and the effec-
tive potential for electrons favors large charging. The
instability toward an arbitrarily large electron population on
the dot is regularized by the anharmonic contribution to the
phonon energy. The effective potential differs qualitatively
from the usual Coulomb repulsion, leading to characteristic
modifications of the low-temperature Coulomb-blockade
properties. Signatures include a rapid change in the average
and the fluctuations of the electron number as a function of
the gate charge in the neighborhood of Qg=0 as well as the
temperature dependence of these quantities. Moreover, trans-
port properties also show a number of unique signatures that
can be used to characterize the negative-U instability and the
nonlinear phonon effects.

It is interesting to check whether in addition to molecules,
an effectively negative U could also be achieved in nanoelec-
tromechanical systems. As shown by Eq. �11�, this requires
an electron-vibron coupling �as measured by ���� which is
of the same order of magnitude as the charging and the
single-particle energies. It turns out that this condition rules
out currently existing suspended electron-beam lithography
samples. At the same time, the situation is more favorable
�though still marginal� for suspended carbon-nanotube de-
vices, for which strong electron-vibron coupling has been
observed in several recent experiments.31–33 The most likely
vibron mode to cause a negative U in this system is the radial
breathing mode with frequency ��c /L�. �Here, c denotes

the velocity of propagation of acoustic phonons in graphene
and L� is the circumference of the nanotube.� The charging
energy and the single-particle level spacing are of the same
order �assuming a “fine-structure constant” e2 /�vF�1 as ap-
propriate for graphene� so that in order to reach the
negative-U instability, the electron-vibron coupling � must
exceed ��vF /c��L� /L��1/2 for a nanotube of length L. Using
vF /c�102, L��1 nm, and L�1 �m, we find that the criti-
cal coupling strength is �c�0.1–1. Unfortunately, this cou-
pling constant is relatively poorly understood at present.
However, both experiment31 and theoretical estimates for one
possible coupling mechanism34 suggest that it is of the same
order as �c.

35 While these estimates do not allow us to claim
that the instability discussed in this paper could be observed
in carbon-nanotube devices, they do suggest that realizing a
negative U in nanoelectromechanical systems is certainly
conceivable.
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