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Within the Dirac theory of the electronic properties of graphene, smoothly varying lattice strain affects the
Dirac carriers through a synthetic gauge field. For static lattice strain, the gauge field induces a synthetic
magnetic field which is known to suppress weak localization corrections by a dynamical breaking of time-
reversal symmetry. When the lattice strain is time dependent, as in connection with phononic excitations, the
gauge field becomes time dependent and the synthetic vector potential is also associated with an electric field.
In this paper, we show that this synthetic electric field has observable consequences. We find that the Joule
heating associated with the currents driven by the synthetic electric field dominates the intrinsic damping,
caused by the electron-phonon interaction, of many acoustic phonon modes of graphene and metallic carbon
nanotubes when including the effects of disorder and Coulomb interactions. Several important consequences
follow from the observation that by time-reversal symmetry, the synthetic electric field associated with the
vector potential has opposite signs for the two valleys. First, this implies that the synthetic electric field drives
charge-neutral valley currents and is therefore unaffected by screening. This frequently makes the effects of the
synthetic vector potential more relevant than a competing effect of the scalar deformation potential which has
a much larger bare coupling constant. Second, valley currents decay by electron-electron scattering �valley
Coulomb drag� which causes interesting temperature dependence of the damping rates. While our theory
pertains first and foremost to metallic systems such as doped graphene and metallic carbon nanotubes, the
underlying mechanisms should also be relevant for semiconducting carbon nanotubes when they are doped.
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I. INTRODUCTION

It is one of the remarkable aspects of the Dirac description
of the low-energy electronic properties of graphene1,2 that
both disorder and lattice strain give rise to synthetic gauge
fields.3–7 If the synthetic vector potential A�r� is due to static
disorder or static lattice distortions, its presence affects the
electronic dynamics through an effective magnetic field eB
=��A which, by time-reversal symmetry, points in oppo-
site directions at the two Dirac points of the electronic dis-
persion. Consequences of this effective magnetic field have
been widely studied in the literature.6,8–11 Additional physics
arises when the synthetic vector potential is caused by time-
dependent distortions such as phonons. In this case, A be-
comes time dependent and will generate not only a magnetic
but also an effective electric field eE=−�A /�t.

In this paper, we show that these synthetic electric fields
have observable consequences. Consider a low-energy pho-
non mode of graphene or carbon nanotubes �CNT�. The pho-
non is associated with a synthetic electric field which, when
the system is metallic, drives currents. The dissipation �Joule
heating� associated with these currents causes damping of the
phonon mode. We find that frequently, the synthetic electric
fields are directly responsible for the damping of phonon
modes in metallic carbon nanotubes and graphene. In the
clean limit, this damping mechanism is equivalent to dissi-
pation by electron-hole pair creation. In fact, we find that we
reproduce corresponding recent results for the radial breath-
ing mode of clean carbon nanotubes.12 Approaching the
problem from the point of view of the synthetic electric
fields allows us to calculate damping rates including the ef-
fects of disorder and electron-electron interactions which we

find to be significant. Moreover, we find appreciable damp-
ing rates even for those phonon modes of carbon nanotubes
for which damping by electron-hole pair creation is not ef-
fective due to the large discrepancy between the electron and
the phonon velocities. As a result, we expect damping by the
electron-phonon interaction to dominate over other mecha-
nisms such as phonon-phonon coupling13 over a wide range
of parameters.

Searching for observable consequences of the synthetic
electric field is complicated by the fact that lattice distortions
do not only induce a vector potential A but also a scalar
potential5 ��r , t� which leads to an additional electric field
−��. Within a tight-binding approach, the synthetic vector
potential is associated with changes in the hopping amplitude
caused by changes in the bond length. The scalar potential is
a deformation potential which arises from local dilation or
compression of the lattice. In fact, estimates5 suggest that the
bare coupling constant of the scalar potential is about an
order of magnitude larger than that of the vector potential.

Nevertheless, we find that the damping of most �but not
all� low-energy phonon modes of graphene and carbon nano-
tubes is dominated by the vector potential. This is a conse-
quence of two important qualitative differences between the
electric fields associated with the scalar and vector poten-
tials: �i� while the scalar field affects both valleys in the same
manner, the sign of the vector potential is opposite for the
two valleys. As a result, the currents driven by the electric
fields are charge currents for the scalar potential, but valley
currents for the vector potential. Therefore, the valley elec-
tric fields due to the vector potential will not be subject to
screening as they do not induce any charge densities. Since
in contrast, the electric fields arising from the scalar defor-
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mation potential are screened, this may significantly affect
the relative importance of the two electric fields when the
system is metallic. �ii� The scalar potential is necessarily
associated with a longitudinal electric field whose direction
is parallel to the wave vector. In contrast, the vector potential
generates a synthetic electric field which in general has both
longitudinal and transverse components. We find that over a
wide range of wave vectors, the transverse conductivity �and
hence the corresponding dissipation� is significantly larger
than the longitudinal conductivity.

The fact that the vector potential drives valley currents
has another important consequence. While by momentum
conservation, electron-electron interactions cannot induce a
decay of charge currents, they do lead to a decay of valley
currents by a process which is analogous to spin Coulomb
drag.14–16 We find that this valley Coulomb drag mechanism
leads to interesting temperature dependence of the phonon
damping which in many cases is decreasing as temperature
increases.

The damping mechanisms which we discuss apply most
directly to systems with metallic behavior, i.e., metallic car-
bon nanotubes and graphene. For this reason, we will not
explicitly discuss semiconducting CNT in this paper. It has
recently been suggested13 that the intrinsic vibrational damp-
ing in semiconducting CNT is dominated by nonlinear elastic
effects. However, it should be kept in mind that in practice,
many semiconducting CNT are doped and can hence exhibit
a finite conductivity. In this case, the damping mechanisms
discussed in this paper may well be relevant as well.

It is found experimentally that the vibrational relaxation
time of the radial breathing mode is remarkably long, of the
order of several nanoseconds.17 This follows from scanning-
tunneling-microscope-based transport measurements, in
which the tunneling current excites the radial breathing
mode, which enables vibron-absorption processes at tem-
peratures far below the phonon frequency. We find that our
results for the vibrational relaxation time of the radial breath-
ing mode are consistent with these experiments.

Identifying parameters for which long vibrational relax-
ation times can be realized in CNT is also of much interest
from the perspective of nanoelectromechanical systems
made of carbon nanotubes12,17–22 and graphene.23–25 For ex-
ample, if vibrational relaxation times are sufficiently long,
these systems provide access to a regime in which the trans-
port current drives the vibrational mode far out of thermal
equilibrium. For strong electron-vibron coupling, this non-
equilibrium regime can be characterized by self-similar ava-
lanche transport.26,27 One of the most promising systems to
observe this effect are suspended carbon nanotube quantum
dots for which strong electron-vibron coupling and the asso-
ciated Franck-Condon blockade have recently been con-
firmed experimentally.22

This paper is organized as follows. In Sec. II, we intro-
duce the strain-induced scalar and vector potentials �Sec.
II A� and derive a general expression for the relation between
the phonon damping rate and the conductivity �Sec. II B�.
We also illustrate the basic physical picture in the context of
the radial breathing modes of carbon nanotubes �Sec. II C�.
Our approach allows us to include the effects of disorder
�Sec. III� and of electron-electron interactions �Sec. IV� on

phonon damping. Finally we conclude in Sec. V. Some cal-
culational details are relegated to the Appendix.

II. BASIC FORMALISM

A. Strain-induced vector and scalar potentials

Elastic strains couple to electrons in graphene and carbon
nanotubes by inducing effective scalar and vector potentials
into the low-energy electronic Dirac Hamiltonian,3

H =� d2r�†�r��vF�i�i��i − Ai�� + ����r� , �1�

where ��r� is the spinor which defines the electron, �i is a
Pauli matrix, vF is the Fermi velocity, and we show the
Hamiltonian defined for one of the two, K and K�, valleys in
the Brillouin zone of graphene. Here we chose coordinates
such that the unit vectors of the graphene lattice can be writ-
ten as

a1 = a�3	�3

2
nx +

1

2
ny
 ,

a2 = a�3	�3

2
nx −

1

2
ny
 , �2�

where a�1.4 Å denotes the bond length. Both the vector
and the scalar potential can be expressed in terms of the
strain tensor uij. The scalar potential is determined by the
trace of the strain tensor, ��r , t�=gD�uxx+uyy�, where gD is
estimated to be of order 20–30 eV in Ref. 5. The form of the
vector potential is essentially fixed by symmetry to be7,10

A�r� =
��

2a
	 2uxy

uxx − uyy

 , �3�

where �=� log�t� /� log�a��2–3. Strictly speaking, this ex-
pression has a small uncertainty in the prefactor since the
theory of elasticity may not accurately describe the displace-
ments within the unit cell.

In nanotubes, the natural coordinate system, defined by
the nanotube axis, is rotated by an angle � with respect to the
coordinate axes of graphene defined above. Choosing the
CNT axis as the x axis and the direction around the tube as
the y axis, the angle � is given by cot �=�3 n−m

n+m for �n ,m�
carbon nanotubes. It takes the value �=0 ��=	 /2� for zigzag
�armchair� CNT. The vector potential takes the form

A�r� =
��

2a
D�3��	 2uxy

uxx − uyy

 , �4�

where D�3�� is a rotation matrix. Note that in this equation,
also the strain tensor is given in the rotated coordinate sys-
tem.

The acoustic phonon modes of carbon nanotubes and
graphene can be described within standard elasticity theory.
For graphene, the elastic Lagrangian density for the strain
tensor uij and the out-of-plane displacement h�r , t� takes the
form
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L = T − Vstretch − Vbend �5�

with

T =

0

2
�u̇2 + ḣ2� ,

Vstretch = �uij
2 +

1

2
�ukk

2 ,

Vbend =
1

2
��2h�2 �6�

in terms of the two-dimensional �2D� mass density 
0, the
Lamé coefficients � and � characterizing the in-plane rigid-
ity of the lattice, and the bending rigidity . The same La-
grangian also applies to carbon nanotubes of radius R, when
replacing the bending energy by

Vbend =
1

2
	�2h +

h

R2
2

. �7�

The strain tensor takes the form uij = �1 /2���iuj +� jui
+ ��ih��� jh�� for graphene and

uxx =
�ux

�x
,

uyy =
�uy

�y
+

h

R
,

uxy =
1

2
	 �uy

�x
+

�ux

�y

 , �8�

for carbon nanotubes. Here, u denotes the displacements
within the graphene sheet and h the displacement in the per-
pendicular �for CNT: radial� direction.

B. Phonon damping

As argued in the Introduction, there is a close relation
between phonon damping and the conductivity tensor. This
relation can be obtained formally by computing the shift ��
in the phonon frequency due the electron-phonon coupling.
The damping rate is then given by �=2 Im ��. Consider
first the case in which the phonon is associated with a vector
potential A�r , t�. We can express the vector potential in terms
of phonon creation and annihilation operators, bq and bq

†,
respectively,

A�r,t� =
1

2�
�
q

Aq exp�iqr�

��bq exp�− i�qt� + b−q
† exp�i�qt�� �9�

with

Aq =
��

2a
�2��


0�q
�D�3��Mqp̂� . �10�

Here, we defined the matrix

Mq = 	iqy iqx 0

iqx − iqy − 1/R 
 �11�

and a unit vector p̂ describing the mode polarization in ux,
uy, and h direction, which takes the form p̂
= �1,0 , i�qxR / �2�+��� for the longitudinal stretching mode,
p̂= �0,1 ,0� for the twist mode, and p̂= �0,0 ,1� for the radial
breathing mode �as obtained from the Euler-Lagrange equa-
tions for the elastic Lagrangian Eq. �5��. The surface area of
the nanotube is denoted by �= �2	R�L and the mode disper-
sion by �q. The corresponding results for the acoustic modes
of graphene follow by taking R→� and setting �=0. �The
flexural modes of graphene will be discussed separately be-
low.�

In second-order perturbation theory, we then find for the
damping rate of a phonon with wave-vector q,

�q =
	

2��2 �
���EF

�
���EF

��vF� · Aq exp�iqr���2

����� − �� − ��q� . �12�

Using the Kubo formula, we can express �q in terms of the
dissipative �real and symmetric� contribution �s�q ,�� to the
conductivity tensor,

�s;kl�q,�� =
	e2

��
Re �

���EF

�
���EF

��vk exp�iqr���

� ��vl exp�− iqr������� − �� − ��� .

�13�

Here, v=vF� denotes the velocity operator. Note that we
employ the two-dimensional conductivity unless explicitly
stated otherwise. Thus, we can express the damping rate as

�q =
�q

2e2��
�s;ij�q,��	Aq;i

� +
qi

�q
�q

�
	Aq;j +
qj

�q
�q
 .

�14�

Here, we have also included the effect of the scalar potential
� and defined31

�q =
gD

1 + v�q���q,��
�2��


0�q
Mq

� · p̃ �15�

in terms of the vector

Mq
� = �iqx,iqy,1/R� . �16�

Note that we have included the effects of screening in the
contribution originating from the scalar potential. �v�q� de-
notes the Coulomb interaction and ��q ,�� the polarization
operator�.

In the remainder of the paper, we discuss the dynamic
conductivity ��q ,�� within a quasiclassical approximation.
This is justified for doped graphene when kF max�� ,1 /q�
�1 where � denotes the elastic mean-free path.
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C. Basic physical picture: Damping of the radial breathing
mode in armchair CNT

Before we embark on a systematic investigation of pho-
non damping based on the expressions derived above, we
would like to illustrate the basic physics in the context of the
radial breathing mode of armchair carbon nanotubes. We will
do this in the context of a semiclassical approach which
clearly brings out the physics and complements the more
quantum-mechanical approach taken in the remainder of the
paper. This example also shows that our approach yields
damping rates which are of the order of those observed in
experiment.17

For the radial breathing mode �RBM� of carbon nano-
tubes, only the radial displacement h is nonzero �i.e., u=0� in
the long-wavelength limit. According to Eq. �8�, the corre-
sponding strain tensor takes the form uxx=uxy =0 while uyy
=h /R. Using that for armchair carbon nanotubes �=	 /2, the
synthetic vector potential takes the form

A�r,t� =
��

2a
	h�r,t�/R

0

 . �17�

Similarly, we find for the scalar deformation-potential
��r , t�=gDh�r , t� /R. In the long-wavelength limit q→0, the
electric field −�� associated with the scalar potential van-
ishes. At the same time, the valley electric field eE=
−�A /�t originating from the vector potential remains finite
because the RBM dispersion tends to a finite frequency �B
= ��2�+�� /
0R2�1/2 for q→0. Thus, the synthetic vector po-
tential gives the dominant contribution to the damping of the
radial breathing mode. Note also that the electric field is
pointing in the direction along the nanotube axis.

For clean armchair carbon nanotubes, the damping of the
radial breathing mode vanishes to leading order,12 since the
contribution of the synthetic vector potential to the Hamil-
tonian is proportional to �x and hence commutes with the
unperturbed Hamiltonian. However, since armchair carbon
nanotubes are metallic, there will be damping in the presence
of disorder. Describing the optical conductivity of carbon
nanotubes within a Drude model, we have

���� =
�dc

1 − i��
�18�

in terms of the mean-free time �. From the Einstein relation,
the �one-dimensional �1D�� dc conductivity takes the form
�dc= Ne2

	� �, where �=vF� denotes the electronic mean-free
path and N counts the spin and valley degeneracy. We can
now compute the damping rate of the radial breathing mode,
�, by equating the time derivative of the elastic energy E
with the Joule heating associated with Re ����.

The elastic energy of the radial breathing mode �per unit
length� can be readily obtained from the elastic Lagrangian
so that we find

dE
dt

=
d

dt
��2	R�
0�B

2 h��B�2� = − Re ���B�E��B�2 = ��B� .

�19�

Inserting eE���= ��
2a

�B

R h��� for the synthetic electric field,
we find a damping rate � of

� =
N��2

8	2�
0a2�R3

�

1 + ��B��2 . �20�

An interesting aspect of this expression is that the damping
rate falls off with the third power of the nanotube radius.
This may be useful guidance to enter into the regime of
current-driven nonequilibrium in nanoelectromechanical de-
vices.

Numerical estimates of Eq. �20� yield relaxation times on
the order of nanoseconds for an elastic mean-free path of
1 �m and a diameter of order 1 nm. This is of the same
magnitude as the relaxation times observed in experiment.17

III. DISORDER EFFECTS ON PHONON DAMPING

A. Carbon nanotubes

Due to the weakness of screening in one dimension, the
scalar potential remains relevant in carbon nanotubes. In-
deed, one readily estimates that in the absence of screening,
the ratio of the electric fields due to vector and scalar poten-
tial is of the order

EA

E�

�
�A

q�
�

�c�

agD
� 10−2 �21�

for phonon modes with a linear dispersion �=cq. At the
same time, the suppression of the scalar potential by screen-
ing

�1 + v�q���q,���−1 � �1 +
e2�

	
ln�1/qR��−1

�22�

involves, for realistic values of q, a factor smaller than but
still of order one. Here, � denotes the electronic density of
states and R the radius of the nanotube. As a result, we con-
clude that the damping of the longitudinal stretching mode is
dominated by the effects of the scalar potential. In contrast,
the damping of the radial breathing mode �whose dispersion
approaches a finite frequency as q→0� will be dominated by
the vector potential. In the following, we will only discuss
the dominant dissipation channel for the various phonon
modes of carbon nanotubes. An evaluation of the subdomi-
nant dissipation channel would, however, be straightforward.

1. Radial breathing mode

In order to make contact with the literature,17 it is instruc-
tive to start with the damping of the radial breathing mode in
clean carbon nanotubes. One readily establishes that only the
y component of the vector potential
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Aq = −
��

2aR
�2��


0�q
	− sin�3��

cos�3��

 �23�

contributes to dissipation. Evaluating Eq. �13�, we obtain for
the corresponding component of the dissipative conductivity
tensor

�yy��� =
Ne2vF

2�R�
��� − 2vFkF� . �24�

Inserting Eqs. �23� and �24� into the general expression Eq.
�14�, we recover for the damping rate of the RBM of clean
carbon nanotubes17

�RBM =
N��2vF

8�
0a2�R3�
cos2�3����� − 2vFkF� . �25�

Specifically, this expression confirms the absence of damping
for armchair CNT where �=	 /2. This shows that our ap-
proach is equivalent to standard approaches to damping of
phonon modes.

The strength of making the relation with the synthetic
electric fields lies in allowing us to go beyond the limit of
clean and noninteracting samples. Including disorder for the
armchair CNT, there will also be damping due to electric
fields pointing along the CNT. Again using a Drude expres-
sion for the frequency-dependent conductivity, one recovers
from Eq. �14� the semiclassical result given above in Eq.
�20�.

2. Longitudinal stretching mode

At long wavelengths, the longitudinal stretching mode of
carbon nanotubes has a much lower frequency �=cq than
the radial breathing mode and we can make a diffusive an-
satz for the dynamic conductivity,

��q,�� =
− i��dc

− i� + Dq2 , �26�

which is valid when q��1 and D=vF� /2 is the diffusion
coefficient. Note that the diffusion pole in this expression is
protected by charge conservation since the scalar potential
drives ordinary charge currents. The dissipative conductivity
is then given by

Re ��q,�� =
�2�dc

�2 + �Dq2�2 . �27�

The precise q dependence of the conductivity depends sen-
sitively on the relative magnitudes of �=cq and Dq2. To
clearly bring out the q dependence of the damping rate, we
consider the long-wavelength regime q�q0, dominated by
�, and the short-wavelength regime q�q0, dominated by
Dq2, separately. Here, the characteristic wave vector dividing
between these two regimes is given by

q0 = 2
c

vF

1

�
. �28�

Evaluating the scalar potential Eq. �15� for the longitudinal
stretching mode and inserting the resulting expression into
Eq. �14�, we obtain the damping rate

�q �
2NgD

�2

	2�
0RvF
2�
��q/q0�2, q � q0

1, q � q0
� . �29�

Here, we defined the renormalized coupling-constant

gD
� =

gD

1 +
Ne2

	2�vF
ln�1/qR�

, �30�

which, strictly speaking, still includes a weak logarithmic q
dependence.

Equation �29� predicts that the damping rate increases
quadratically with q for long wavelengths and saturates to a
q-independent constant for shorter wavelengths q�q0. This
behavior is sketched in Fig. 1. It is interesting to compare �q
to the mode frequency �q in order to see whether the longi-
tudinal stretching mode can become overdamped for some
region of wave vectors. Clearly, the ratio �q /�q is maximal
for q=q0. Remarkably, the maximal value of this ratio be-
comes independent of the elastic mean-free path and thus
quite universal,

�q0

�q0

=
NgD

�2

	2
0R�vFc2 . �31�

Inserting numbers typical of carbon nanotubes into this ex-
pression, one finds values of order 0.1 showing that even
though the longitudinal stretching mode remains under-
damped at all wavelengths, damping can be quite significant.

B. Graphene

1. Longitudinal and transverse-acoustic (in-plane) phonons

The analysis of the previous section can be extended to
phonon modes of graphene. However, phonon damping in
�doped� graphene will typically be dominated by the vector
potential. At long wavelengths, this is a consequence of the
much stronger screening in two dimensions than in the car-
bon nanotube setting,

1

1 + v�q���q,��
�

q

q + qTF
, �32�

where qTF=2	e2� denotes the Thomas-Fermi wave vector of
graphene. �For a density of approximately 1012 cm−2, the
screening length is on the order of tens of nm.� At short
phonon wavelengths �relative to the elastic mean-free path�,
this emerges from the fact that unlike −��, E=−�A /�t will

�q2 �q0

1�lq0
log q

log �q

FIG. 1. �Color online� Sketch of the damping rate as function of
wave vector for the longitudinal stretching mode of carbon
nanotubes.
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almost always have a significant transverse component �rela-
tive to the wave-vector q, cf. Figure 2�.32 It turns out that in
this range of wave vectors, the transverse conductivity �and
hence the associated damping� is much larger than the lon-
gitudinal conductivity. In addition, even when the synthetic
electric field is purely longitudinal, the weaker bare coupling
of the vector potential is partially offset by the fact that dis-
sipation by longitudinal valley currents is very sensitive to
�and strongly enhanced by� disorder-induced intervalley scat-
tering. �It is interesting to note that in the context of multi-
valley semiconductors, the importance of intervalley scatter-
ing in acoustic attenuation is actually known for many
decades�.28

Using Eq. �3�, we can readily obtain the longitudinal and
transverse components of the vector potential. Consistent
with the lattice symmetry, we find

Aq,� =
��

2a
�2��


0�q
iq sin 3�q, �33�

Aq,� =
��

2a
�2��


0�q
iq cos 3�q �34�

for the longitudinal phonon and

Aq,� =
��

2a
�2��


0�q
iq cos 3�q, �35�

Aq,� =
��

2a
�2��


0�q
iq sin 3�q �36�

for the transverse phonons. Here, �q denotes the angle be-
tween the direction of the wave-vector q and the x axis.

At finite q, the dissipative conductivity becomes a sym-
metric tensor which is diagonal in a coordinate system whose
axes are parallel and perpendicular to the wave-vector q,

��q,�� = 	���q,�� 0

0 ���q,��

 . �37�

For doped graphene in the diffusive regime q��1, the lon-
gitudinal and transverse conductivities can be obtained from
hydrodynamic equations for charge densities and currents
which follow from a Boltzmann equation. One finds the con-
tinuity equations

�n1

�t
+ � · j1 = −

1

�V
�n1 − n2� , �38�

�n2

�t
+ � · j2 = −

1

�V
�n2 − n1� , �39�

as well as Ohm’s laws

	1

�
+

1

�V

j1 −

1

�V
j2 = −

vF
2

2
� 
1 +

e2�vF
2

2
E1, �40�

−
1

�V
j1 + 	1

�
+

1

�V

j2 = −

vF
2

2
� 
2 +

e2�vF
2

2
E2. �41�

Here, the indices 1 and 2 label the valleys, � denotes the
density of states, and 1 /� and 1 /�V are the intravalley and
intervalley scattering rates due to disorder, respectively. We
left out the effects of induced electric fields from these equa-
tions because screening does not affect the valley odd chan-
nel. We can now obtain the valley-odd conductivity relating
E−=E1−E2 to j−= j1− j2 by taking the difference between the
two Eqs. �40� and �41�, combined with the continuity equa-
tion in the valley-odd channel.

For the longitudinal conductivity, we find

���q,�� =
�− i� + 2

�V
��dc

− i� + Dq2 + 2
�V

. �42�

The reason for the cutoff of the diffusion pole by the inter-
valley scattering rate 1 /�V is that there is no conservation
law associated with valley currents which is analogous to
charge conservation for ordinary charge currents. Despite the
weakness of intervalley scattering �originating from atomic-
scale defects� compared to intravalley scattering, it is actu-
ally rather important to include 1 /�V. From Eq. �42�, the
dissipative conductivity takes the form

Re ���q,�� =
��2 + 2

�V
�Dq2 + 2

�V
���dc

�2 + �Dq2 + 2
�V

�2 . �43�

While it is evidently possible to work with this complete
expression, it is more instructive to analyze the various lim-
iting cases. Except for the scale q0= �2c /vF��1 /�� introduced
above, this expression involves the intervalley scattering
length �V= � 1

2D�V�1/2 as a second length scale. When q�V

q
�

K
K'

q
�

K

K'

(b)(a)

FIG. 2. �Color online� Orientation of the synthetic electric field at the two K points of the dispersion �red arrows� with respect to the
phonon wave-vector q for �a� the purely transverse and �b� the purely longitudinal situation. As shown in Eqs. �33�–�36�, the synthetic
electric field is in general is neither purely parallel nor transverse.
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�1, one finds that Re ���q ,����dc. In the opposite limit
q�V�1, one obtains

Re ���q,�� � � �dc, q � q0

1 + �q0�V�2

�q�V�2 �dc, q � q0 � . �44�

Transverse fields do not induce any charge densities and
therefore, we find

���q,�� = �dc �45�

for the transverse conductivity at any q�1 /�.
For doped graphene in the ballistic regime q��1, we can

obtain the dynamic conductivity ��q ,�� from the Boltzmann
equation. Heuristically, we can obtain ��q ,�� �up to numeri-
cal prefactors� by making the replacements Dq2→vFq and
1 /�→q in the diffusive results Eqs. �43� and �45�. A more
formal derivation is relegated to the Appendix. For trans-
verse electric fields, disorder-induced intervalley scattering is
irrelevant �since no valley charge densities are induced� so
that the transverse conductivity becomes

���q,�� =
Ne2

h

kF

q
�46�

for ��vFq. It is interesting to note that this transverse con-
ductivity �� also controls the attenuation of surface acoustic
waves in the fractional quantum Hall effect at Landau-level
filling factor �=1 /2.29 In contrast, intervalley scattering is
important for the longitudinal conductivity when q0�V�1,

���q,�� = �
e2�

q2�V
, q �

1

�q0�V�2

1

�

e2��2

vFq3 , q �
1

�q0�V�2

1

�
� , �47�

while for q0�V�1, we find

���q,�� =
e2��2

vFq3 �48�

for all q�1 /�. One readily establishes that �� /��

��c /vF�2�10−4 for sufficiently large q, confirming that the
damping will be dominated by the transverse conductivity
except in a very narrow range of directions of q where the
synthetic electric field is almost purely longitudinal.

We are now in a position to combine these results with
Eq. �14� and obtain the phonon damping rate in graphene
over the full range of wave vectors. Whenever the synthetic
electric field has an appreciable transverse component, we
find

�q =
N��2kF

8	
0a2 f��q��q2�/2, q� � 1

q , q� � 1
� . �49�

Here, we defined the function f��� which is equal to unity
deep in the diffusive regime, and crosses over to f���
=cos2 3� for transverse phonons and f���=sin2 3� for longi-
tudinal phonons.33 Thus, we find that the phonon modes are
underdamped at long-wavelengths q��1, but become mar-
ginal for q��1. Inserting numbers, we find that �q

�10−2�q in this marginal regime so that the phonon mode
remains well-defined.

Whenever f��� is close to zero, the damping is dominated
by the longitudinal conductivity. Specifically, this happens
when q points in the zigzag �armchair� direction for longitu-
dinal �transverse� phonons. In these cases, the damping ex-
hibits an intermediate q-independent regime in between the
quadratic and the linear wave-vector dependence. Specifi-
cally, we find

�q =
N��2kF

8	
0a2�
q2�/2, q � q0

q0
2�/2, q0 � q �

1

�

�c/vF�2q , q �
1

�
� �50�

for very weak intervalley scattering q0�V�1 and

�q =
N��2kF

8	
0a2�
q2�/2, q �

1

�V

�/2�V
2 ,

1

�V
� q �

1

�q0�V�2

1

�

�c/vF�2q , q �
1

�q0�V�2

1

�

� �51�

for stronger intervalley scattering q0�V�1.
Our results for the acoustic �in-plane� phonons of

graphene are summarized in Figs. 3 and 4. For transverse
synthetic fields, the damping rate crosses over from a qua-
dratic to a linear dependence on q when q�1 /�. In contrast,
when the damping is dominated by longitudinal fields, there

�q2

�q

l�1q0
log q

log �q

�q2

�q

lv
�1 �q0lv��2l�1 log q

log �q

(b)(a)

FIG. 3. �Color online� Schematic dependence of the damping
rate �q on wave-vector q of acoustic phonons in graphene when the
synthetic electric field is purely longitudinal, cf. Eqs. �50� and �51�.
This applies when the wave vector points in a narrow cone around
the zigzag �armchair� direction for the longitudinal �transverse�
acoustic phonon. Left: q0��V

−1. Right: q0��V
−1.

�q2

�q

l�1 log q

log �q

FIG. 4. �Color online� Schematic dependence of the damping
rate �q on wave-vector q for acoustic phonons in graphene when
the transverse synthetic electric field is dominant, cf. Eq. �49�. This
applies for all directions of q, except when the wave vector points
in a narrow cone around the zigzag �armchair� direction for the
longitudinal �transverse� acoustic phonon.
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is an intermediate constant regime for max�q0 ,1 /�V��q
�max�1,1 / �q0�V�2��1 /��. In magnitude, the damping rate is
the same for longitudinal and transverse electric fields for
small q where we find a quadratic dependence on q in both
cases. For larger q, the damping is much stronger for trans-
verse fields. Deep in the ballistic regime q��1, where one
finds a linear dependence on q in both cases, the ratio satu-
rates at approximately �vF /c�2�104.

2. Flexural modes

We now turn to flexural modes of suspended graphene
samples which are characterized by out-of-plane fluctuations
h�r , t�. A qualitative difference arises since, by symmetry,
h�r , t� appears quadratically in the strain tensor. As a result,
the coupling between electrons and flexural modes is qua-
dratic rather than linear. This implies that the dominant
damping mechanism involves both the creation of a particle-
hole pair and a lower-energy flexural phonon.

The corresponding rate can be obtained from Fermi’s
golden rule �or alternatively, the Feynman diagram in Fig. 5�.
Quantizing the out-of-plane displacements �Figs. 6�, we find
at zero-temperature

�q =
2	

�

1

�4 �
���EF

�
��EF

�
q�

��vF� · Aq,−qei�q−q��·r��2

����� − �� − �q + �q�� �52�

in terms of

Aq1,q2
=

��

4a
	q1xq2y + q1yq2x

q1xq2x − q1yq2y

� ��

2
0�q1

� ��

2
0�q2

.

�53�

Following the approach of this paper, we rewrite this expres-
sion in terms of the dissipative conductivity Eq. �13�,

�q =
1

2e2��
	��

2a

2	 �

2
0

2

�
q�

�q − �q�

�q�q�

��s,ij�q − q�,�q − �q��

�	qxqy� + qyqx�

qxqx� − qyqy�



i
	qxqy� + qyqx�

qxqx� − qyqy�



j

. �54�

As we have seen above, the conductivity tensor is dominated
by the transverse conductivity so that

�s,ij�q,�� � ���q,��	�ij −
qiqj

q2 
 . �55�

At finite temperature T��q, the integrand in Eq. �54� is
modified to include an extra factor T /��q� which is a con-
sequence of the existence of a phonon in the final state.

We first focus on ideal graphene membranes for which the
dispersion of flexural phonons is quadratic, �q=�q2 �where
�=� /
0�. In this case, we find for the angular average of
the damping rate

�q ��
N�2�2kF�


0
2a2�

q4, q� � 1

N�2�2kF


0
2a2�

q3, q� � 1� �56�

in the low-temperature limit T���q2 and

�q ��
N�2�2kF�


0
2a2�

	 T

��

2

, T � ��/�2

N�2�2kF


0
2a2�

	 T

��

3/2

, T � ��/�2� �57�

in the high-temperature regime T���q2. Because of the low
frequency of pure flexural phonons, the vibrations can be-
come overdamped at finite temperature.

If the graphene membrane is under tension � �inducing a
term ���h�2 in the elastic Lagrangian�, the dispersion of the
flexural phonons becomes linear at long wavelengths, �q
=cfq. In this case, we find for the angular average of the
damping rate

30
T�K�

0.5

�q�Ωq

100
T�K�

5�10�4

�q�Ωq

(b)(a)

FIG. 6. �Color online� Inverse quality factor as function of tem-
perature for long-wavelength flexural vibrations in graphene. The
wave vector is q−1=1 �m, the mean-free path is l=100 nm, and
the carrier density is 1012 cm−2. Left: no external tension. Right:
external tension �=0.02.

200
T�K�

5�10�5

�q�Ωq

200
T�K�

10�4

�q�Ωq

(b)(a)

FIG. 7. �Color online� Temperature dependence of the inverse
quality factor �q /�q for acoustic phonons in graphene, induced by
valley Coulomb drag, when damping is dominated by longitudinal
�left� and transverse �right� synthetic electric field. Calculations
have been done for an elastic mean-free path �=100 nm, �V

=200�, q= �1 �m�−1, and a carrier density n=1012 cm−2. Note the
enhancement of �q for transverse synthetic fields.

σ( ,ω)q

qphG ( ,ω)

qphG ( ,ω)

qphG ( ,ω)

FIG. 5. �Color online� Sketch of the Feynman diagram for the
damping rate of flexural phonons.
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�q ��
N�2�2kF�


0
2a2cf

q5, q� � 1

N�2�2kF


0
2a2cf

q4, q� � 1� �58�

in the low-temperature regime T��cfq and

�q ��
N�2�2kFq�


0
2a2cf

	 T

�cf

4

, T � �cf/�

N�2�2kFq


0
2a2cf

	 T

�cf

3

, T � �cf/�� �59�

in the high-temperature T��cfq regime.34

Actual suspended samples are typically expected to be
under some degree of tension. The magnitude of phonon
damping will then depend critically on the sample-specific
degree of tension, which enters through the mode velocity
cf =c��. It is interesting to point out that unlike in-plane
modes, the damping of flexural modes is temperature depen-
dent in the degenerate limit EF�T, even in the absence of
electron-electron interactions.

IV. COULOMB INTERACTION EFFECTS ON PHONON
DAMPING

A. Damping by valley Coulomb drag in graphene

Electron-electron interactions lead to interesting tempera-
ture dependence of the phonon damping which persists even
in clean samples. In fact, it is a well-known effect of spin-
tronics that spin currents decay due to electron-electron in-
teractions even in the absence of disorder since unlike charge
currents, they are not protected by momentum conservation.
By analogy, the valley currents driven by the electric fields
associated with the vector potential will dissipate by interval-
ley Coulomb scattering. A theory of this effect must go be-
yond existing works on Coulomb drag in that one has to
account for the ac nature of the driving valley-odd electric
field.

This is easily accomplished in the diffusive limit where
we can amend the hydrodynamic equations to include the
intervalley electron-electron scattering. While the continuity
equations remain unchanged, Ohm’s laws take the form

	1

�
+

1

�V
+

1

�D

j1 − 	 1

�D
+

1

�V

j2 = −

vF
2

2
� 
1 +

e2�vF
2

2
E1,

�60�

− 	 1

�D
+

1

�V

j1 + 	1

�
+

1

�V
+

1

�D

j2 = −

vF
2

2
� 
2 +

e2�vF
2

2
E2.

�61�

Here, 1 /�D�T2 /EF �possibly up to logarithmic factors from
2kF scattering� is the intervalley scattering rate responsible
for the drag effect. �Coulomb drag in doped graphene is ex-
pected to have the same features as in other 2D electronic
systems�.30 It is then evident that valley Coulomb drag can
be accounted for by evaluating the dc conductivity �dc and

the diffusion constant D with the effective scattering rate

1

�eff
=

1

�
+

2

�V
+

2

�D
. �62�

Thus, the dissipation is dominated by the drag effect �disor-
der scattering� when T�T� �T�T��, where

T� ��EF

�
�

EF

�kF�
. �63�

Here, we used that for realistic samples, disorder predomi-
nantly causes intravalley scattering. For realistic parameters
in suspended graphene, we estimate T��10–100 K.

The inclusion of valley Coulomb drag allows us to dis-
cuss the temperature dependence of the intrinsic phonon
damping in clean �but doped� graphene. The intervalley
electron-electron scattering leads to a temperature-dependent
mean-free path ��vFEF /T2. Thus, when holding the wave-
vector q fixed, we find that the damping will follow the
behavior of the ballistic �diffusive� regime for T�Tq

� �T
�Tq

��, where

Tq
� � �EF��vFq� . �64�

As a result, we find for fixed q and when the damping is
dominated by the transverse synthetic electric field that �q is
constant for temperatures smaller than Tq

� �determined by the
transverse conductivity in the ballistic regime� and decreases
monotonically as �1 /T2 as the system enters the diffusive
regime for T�Tq

�. This remarkable temperature dependence
is a consequence of the fact that the dissipation is propor-
tional to the scattering time and thus inversely proportional
to the scattering rate �see Fig. 7�.

In the presence of disorder, the temperature dependence
also crosses over from constant to monotonically decreasing
as �1 /T2. This crossover occurs at Tq

� when q��1 and at T�

when q��1. When the synthetic electric field is purely lon-
gitudinal, there can be an intermediate regime �for T�Tq

� in
the clean limit� in which the damping rate increases as T2

before it crosses over into the �1 /T2 behavior beyond a tem-
perature �vF /c�1/2Tq

�.

B. Damping by valley Coulomb drag in carbon nanotubes

Valley Coulomb drag also affects the damping of phonon
modes of carbon nanotubes. For the radial breathing mode of
metallic carbon nanotubes, the effect may be significant
since phonon damping is dominated by the decay of valley
currents. Moreover, it is natural to expect that Coulomb drag
is particularly effective in a one-dimensional setting. In con-
trast, we expect that valley Coulomb drag is less significant
for the longitudinal stretching mode where damping is domi-
nated by the effects of the scalar potential. In this case,
damping by decay of valley currents is only a subleading
contribution. Nevertheless, it is worthwhile to remark that
valley Coulomb drag provides the dominant damping mecha-
nism based on the electron-phonon interaction in the strictly
clean limit.

A detailed theory of valley Coulomb drag in carbon nano-
tubes must account for possible electronic correlation effects
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associated with the Luttinger liquid nature of the electron
system. Such a theory is beyond the scope of the present
paper.

V. CONCLUSIONS

We have considered the damping of low-energy phonons
in carbon nanotubes and graphene originating from the
electron-phonon interaction. For most phonon modes, this
damping is closely related to a synthetic electric field asso-
ciated with a strain-induced vector potential in the Dirac
equation for the electronic properties of graphene. We find
that it is very instructive to analyze phonon damping in terms
of these synthetic electric fields: �i� within this approach,
phonon damping is a direct consequence of Joule heating.
�ii� This establishes a close relation between phonon damp-
ing and the dynamic conductivity which we exploit to derive
damping rates in the presence of disorder and electron-
electron interactions. �iii� We find rich physics emerging
from the fact that the synthetic electric field has opposite
signs in the two valleys. Most prominently, we identify val-
ley Coulomb drag as an important dissipation channel which
leads to unconventional temperature dependence of the
damping rate.

Throughout this paper, we have considered idealized
samples in the sense that we ignored finite-size effects and
electrodes. Clearly, when suspended carbon nanotubes or
graphene membranes are coupled to electrodes, there will be
�additional� electronic dissipation taking place in the leads
even if the nanotube is otherwise perfectly ballistic. While
the physics of this damping is certainly highly nonuniversal,
a rough estimate may be obtained from our expressions for
diffusive electronic dynamics by setting the elastic mean-free
path equal to the length of the carbon nanotube or the linear
dimension of the graphene membrane. It is also worthwhile
to point out that the electron-phonon coupling is not ex-
pected to change significantly in multilayer graphene
samples. Thus, our results should also be applicable in these
systems.

Our results should be of direct relevance to the intense
ongoing experimental efforts to build and explore nanome-
chanical as well as nanoelectromechanical devices based on
graphene nanostructures. We expect the electron-phonon in-
teraction to be the dominant source of phonon damping
whenever the system exhibits a metallic conductivity. In such
systems, our results should be valuable by providing upper
bounds on the quality factor as well as by guiding optimiza-
tion strategies.
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APPENDIX: DYNAMIC CONDUCTIVITY OF GRAPHENE
IN THE BALLISTIC REGIME

Here, we sketch the derivation of the longitudinal conduc-
tivity in the ballistic regime, including the effect of interval-
ley disorder scattering. We start from Boltzmann equations
with valley electric field E for the two valleys,

	− i� + ivp · q +
eE

2
· �p
np

�1�

=
1

���V
�
p�

���p − �p���np�
�2� − np

�1�� , �A1�

	− i� + ivp · q −
eE

2
· �p
np

�2�

=
1

���V
�
p�

���p − �p���np�
�1� − np

�2�� , �A2�

where np
�j� denotes the distribution function in valley j. Here

we include the intervalley disorder scattering which is re-
quired to obtain results which match the diffusive results.
Taking the difference between these two equations, we ob-
tain an equation for the odd distribution function �np=np

�1�

−np
�2�,

	− i� + ivp · q +
1

�V

�np + eE · �pnp

�eq�

= −
1

���V
�
p�

���p − �p���np�. �A3�

Here, we assumed linear response and np
�eq� denotes the

Fermi-Dirac distribution. Introducing the Fermi surface de-
formation ����� by �np=���p−������� and introducing the
angle �= � �q ,p�= � �E ,p�, we find

����� =
eEvF cos � − 1

�V
�������

− i� + ivFq cos � + 1
�V

. �A4�

In the absence of interlayer scattering, we find for the density

=e���d� /2	������ the conventional result


 =
e2�

iq
E . �A5�

From the expression for the current, j
=e�vF��d� /2	�cos ������, we obtain the �dissipative� lon-
gitudinal conductivity

���q,�� =
e2��2

vFq3 . �A6�

Equation �A4� shows that in the presence of intervalley scat-
tering, there is an additional contribution �proportional to
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1 /�V� to the current. In this term, we can evaluate �������
using the result for ������eE / iq in the absence of interval-
ley scattering. Noting that we may also replace cos � in the
first term by � /vFq, we find that the second term dominates

as long as q� ��q0�V���−1 while the first term dominates for
q� ��q0�V���−1. Evaluating the longitudinal conductivity
then gives the results quoted in Eq. �47�.
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At the same time, the dynamics of these fields is entirely con-
trolled by elasticity theory which has little resemblance to elec-
trodynamics.

33 The crossover occurs at q�1 /� when q0�V�1 and at q�1 /�V

when q0��1. A more accurate expression for the function f���
can be readily derived by including both the longitudinal and the
transverse components of the synthetic electric field in the cal-
culation of the damping rate.

34 In principle, there are also intermediate cases in which the dis-
persion is linear at long wavelengths due to tension but becomes
quadratic at larger q. Our results can be extended to this situa-
tion but we refrain from giving explicit results.
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