Universal spectral statistics in Andreev graphs: The self-dual approximation
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The symmetry classification of quantum systems has recently been extended beyond the Wigner-
Dyson classes. In ergodic systems each class has universal spectral statistics as described by Gaussian
random matrix ensembles. We show that Andreev graphs are simple quantum systems belonging
to new symmetry classes and give a interpretation of some universal features of their spectra using

trace formulae.

I. INTRODUCTION

More than 40 years ago Wigner [1] proposed to use
random matrix theory to describe universal features of
quantum spectra. Based on Wigner’s idea Dyson [2] gave
a symmetry classification of complex quantum systems
according to their behavior under time reversal. In the
ergodic limit each symmetry class defines a universality
class which may be described by Gaussian random ma-
trix ensembles. A quantum system is invariant under
generalized time reversal if there is an anti-unitary op-
erator T which commutes with the Hamilton operator
[H,T] = 0. Dyson introduced three symmetry classes
of irreducible systems: systems without any generalized
time reversal invariance, systems with time reversal in-
variance and T2 =, systems with time reversal invari-
ance and 72 = — . While the mean density of states re-
mains system specific each class shows universal spectral
fluctuations in the ergodic limit which are described by
the well-known Wigner-Dyson ensembles of random ma-
trix theory (GUE, GOE, GSE). Gaussian random matrix
theory has since then been applied successfully to many
different areas such as atomic nuclei, quantum chaos and
disordered quantum systems.

However, quantum systems may also have a symmetry
that relates the positive and the negative part of the spec-
trum: if F is an eigenvalue then, due to this symmetry
so is —FE. Such a symmetry is often realized in systems
with a combined electron-hole or particle-antiparticle dy-
namics and has strong impact on both, the mean density
of states and spectral correlations near £ = 0. Dyson
has not included this type of symmetry in his classifi-
cation and the Wigner-Dyson ensembles of random ma-
trix theory cannot be applied to their spectral statistics
at £ = 0. Extending Dyson’s three-fold way an addi-
tional seven symmetry classes have been identified [4]
which are naturally realized in part by Dirac fermions
in random gauge fields (so called chiral classes) [5] and
in part by quasi-particles in disordered mesoscopic su-
perconductors [6] or superconducting-normalconducting

*Electronic address: sven@gnutzmann.de
fElectronic address: bseif@thp.uni-koeln.de
fElectronic address: vonoppen@physik.fu-berlin.de

(SN) hybrid systems [7]. In the ergodic limit this leads
to seven new universality classes each described again by
Gaussian random matrix ensembles. The ten symmetry
classes of quantum systems correspond to Cartan’s ten-
fold classification of symmetric spaces. As customary,
we use the Cartan scheme to refer to the symmetry class
(A, Al, AIl for the Wigner-Dyson classes) which we dis-
tinguish from the corresponding universality class such
as the Gaussian random matrix ensembles (GUE, GOE,
GSE for the Wigner-Dyson classes).

In this paper we will give a semiclassical interpretation
of the universal features of the density of states in terms
of periodic orbits for Andreev graphs. A similar argu-
ment has been derived by us before for Andreev billiards
[8] where we also touched graphs. In section IT we will
introduce two of the new symmetry classes and introduce
the generalized form factor as the Fourier transform of
the mean density of states. The universal mean density
of states is known from the corresponding random ma-
trix theory. In section III we will introduce to quantum
graphs as simple ergodic quantum systems. An Andreev
graph adds the concepts of an electron-hole symmetry
and Andreev scattering. By construction they belong to
the new symmetry classes. An exact semiclassical trace
formula relates the density of states to a sum over pe-
riodic orbits on the graph. In section IV we will use
this trace formula to partially reproduce the universal
features of the generalized form factor as known from
random matrix theory. Our self-dual approximation for
the Fourier transform of the density of states (generalized
form factor) is an analogue to Berry’s diagonal approxi-
mation [9] for the Fourier transform of the spectral two-
point correlation function (form factor) for the Wigner-
Dyson ensembles. Berry’s semiclassical derivation for
chaotic quantum systems was based on Gutzwiller’s trace
formula, partially reproducing the results of random ma-
trix theory and clarifying its limitations.

There have been several attempts to apply semiclas-
sical theory to SN hybrid systems [10-12] — mainly An-
dreev billiards. Melsen et al. [10] pointed out that the
gap induced by the proximity effect in a billiard cou-
pled to a superconducting lead is sensitive to whether the
classical dynamics of the (normal) billiard is integrable
or chaotic. These authors showed that the proximity-
induced hard gap in the chaotic case is not fully repro-
duced by semiclassical theory, the reasons for which have



been discussed further in [11].

Non-magnetic Andreev billiards, though belonging to
the new symmetry classes, do not show the universal
mean density of states as predicted by the corresponding
Gaussian random matrix theory. The reason is that in
this case, the combined electron-hole dynamics near the
Fermi level is not chaotic in the classical limit (even if the
billiard is chaotic when the superconductor is replaced by
an insulator). This is also the reason for the problems
in constructing a semiclassical theory for some Andreev
billiards. Here, however, we deal with classically chaotic
systems which exhibit the universal spectral statistics of
the random matrix ensembles corresponding to the new
symmetry classes. We identify the class of periodic orbits
contributing to the form factor and show that in this case,
semiclassics reproduces the universal spectral statistics.

II. THE NEW SYMMETRY CLASSES

A symmetry that relates positive and negative parts
of the spectrum may either be represented by a unitary
operator P or an anti-unitary operator C' that anticom-
mutes with the Hamilton operator

PH+HP =0 (1a)
CH+HC=0. (1b)

In the first case one also requires that P be chosen such
that

pP? = (2a)
while the anti-unitary operator C either has
c? = or c?=— . (2b)

The seven new ensemble arise from possible combinations
of these symmetries with time reversal. In time reversal
invariant systems the anti-unitary operator 7" has to com-
mute not only with the Hamilton operator but also with
PorC.

For the three chiral symmetry classes there is a unitary
operator P anticommuting with the Hamilton operator.
In class AIII there is no additional time reversal, class
BDI is time reversal invariant with 7% = and class CII
is also time reversal invariant, but with 72 = — . The
corresponding Gaussian random matrix ensembles have
been called chGUE, chGOE and chGSE. Note that BDI
and CI1I also have a anti-unitary operator C= PT thus
C2= inBDIand C? = — in CIL

In the four remaining classes the symmetry in the spec-
trum is due to a anti-unitary operator (’charge conjuga-
tion’) C. If there is no time reversal symmetry there
are two symmetry classes called C' and D. In the first
class C? = — while in the latter C? = We will
call the corresponding Gaussian random matrix ensem-
bles (universality classes) C-GE and D-GE. For time re-
versal invariant systems there are again two symmetry

classes called DIII and C1. In the first class C2 = and
7?2 = — while in the latter C2 = — and 72 = and
we call the corresponding Gaussian random matrix en-
sembles DIII-GE and CI-GE. The two other possibilities
C? =1% = and C? = T? = — have already been
accounted for in the chiral symmetry classes (BDI and
CTI). These four classes naturally appear in hybrid su-
perconducting normalconducting heterostructures (An-
dreev systems) where quasi-electron and quasi-hole (we
will omit the ’quasi’ in the following) excitations are de-
scribed by the Bogoliubov-de-Gennes equation. We will
focus in the sequel on the classes C' and C1 — these are re-
alized in Andreev systems that are invariant under spin-
rotations. One then deals with effectively spinless elec-
trons and holes and the Bogoliubov-de-Gennes equation
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This is a two-component eigenequation for the excita-
tion energy E. The electron and hole component inter-
act via the superconducting order parameter A, pu is the
Fermi-energy and p = —iAV. The spectrum is symmet-

ric: if ¥ = (;ﬁ is an eigenfunction with energy E then

*

= (00U = is also an eigenfunction but now

with energy —F. The equation (3) is generally not time
reversal invariant and belongs to class C. For time rever-
sal invariance (class CT) one has to restrict (3) to A =0
(no magnetic field) and A = A* (real superconducting

order parameter). Then U7 = TV = Z*> differs only

by a global phase from the eigenfunction ¥ — thus one
may choose ¥ real from the start.

In contrast to the Wigner-Dyson universality classes
the spectral statistics of the Gaussian random matrix en-
sembles for the new symmetry classes, while still univer-
sal, is no longer stationary under shifts of the energy. The
additional spectral correlations are most prominent near
E = 0 while for energies much larger than the mean level
spacing E > AFE Wigner-Dyson statistics is recovered.

One significant difference is in the mean density of
states. In the Wigner-Dyson ensembles the mean den-
sity of states is given by Wigner’s semi-circle law. This
cannot be used to predict the density of states of a any
quantum system in the same class as the latter is given
by Weyl’s law

d'pd’q
PWeyl(E)Z/W5(E—

H(p,q)) (4)
where H(p,q) is the classical Hamilton function and f
the number of freedoms. Weyl’s law shows that the mean
density is system specific and universality can only be
found in the fluctuations

5p(E) = p(E) = pweyi (E) (5)
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FIG. 1: Mean density of states for the random matrix en-
sembles C-GE (full line) and CI-GE (dashed line). Weyl’s
law (thin full line) predicts a constant mean density of states
near € = 0.

where p(E) =Y, 0(E — E;) is the full density of states.
Upon averaging over some system parameter dp(E) van-
ishes in the Wigner-Dyson case. The latter is not true for
the new symmetry classes with symmetric spectra. Even
after averaging over a system parameter dp(FE) does not
vanish near £ = 0 — thus the mean density of states dif-
fers from Weyl’s law near £ = 0. The difference between
Weyl’s law and the mean density of states vanishes how-
ever for energies much larger than the mean level spacing
E> AFE = pw -t The corresponding Gaussian random
matrix theories predict a universal function for each sym-
metry class that describes the difference of Weyl’s law
and the mean density of states near £ = 0 on the scale
of the mean level spacing. For C-GE and CI-GE the
mean density of states is

sin e

C-GE:

(p(€)) =1 -

?le|

(p(e€)) = (Jo(me)® + 1 (7re)2) — (6b)
- gJo(we)Jl(ﬂ\eD

— (6a)

CI-GE:

where the energy e is measured in units of the mean level
spacing and Jy 1(§) are Bessel functions (see figure 1).

A central quantity in the semiclassical analysis of
chaotic systems in the Wigner-Dyson classes is the form
factor

Kwp(1) = [ h de e 2™ O (€) (7

where C(€) = (dp(¢')dp(€’ + €)) is the two-point correla-
tion function. For the Gaussian unitary ensemble (GUE)
the form factor is given by
|7| for|r| <1
K
wo(7) = {1 for|r] > 1

(®)

Much insight into the range of validity of the Wigner-
Dyson random-matrix ensembles has been gained from
the semiclassical approach to the spectral statistics of
chaotic quantum systems, based on Gutzwiller’s trace
formula. In a seminal paper [9], Berry gave a semiclassi-
cal derivation of the spectral form factor of chaotic quan-
tum systems for the Wigner-Dyson ensembles, partially
reproducing the results of RMT and clarifying its lim-
itations. We will now briefly review the semiclassical
derivation of the spectral form factor of the GUE. There
one starts from the Gutzwiller trace formula [13], which
relates the oscillatory contribution dp(E) to the density
of states to a sum over periodic orbits p,

1 .
Sp(E) = ﬁRethApelSp/”L. (9)
p

Here, S, denotes the classical action of the orbit, A, de-
notes its stability amplitude, and ¢,, is the primitive orbit
traversal time. The explicit factor ¢, arises because the
traversal of the periodic orbit can start anywhere along
the orbit. Inserting this expression into the definition
of the spectral form factor, and employing the diagonal
approximation, one finds

ZTQ\A 26(r — tp/ty).  (10)

KWD dlag

Here ty = Tg is the Heisenberg time. Finally averaging

over some time interval A7 and using the Hannay-Ozorio-
de-Almeida (HOA) sum rule [14]

AT
Z |4p|* = - (11)
pitp/tHE[T,T+AT]
one obtains the result
Kwp,diag(T) =7 (12)

valid for 7 <« 1.

Now, for the new symmetry classes the central quantity
of our study is the generalized spectral form factor which
we define to be the Fourier transform of the density of

states
=2 / de(op(e)) e

=2 /jo dE(Sp(E)) e

—i2meT

(13)

Bty T
“ho

Here E = ¢AFE and 0p(E) =
1

PWeyl
symmetry class C' random matrix theory (C-GE) predicts
[7]

AEdp(e) (Note that AE =
is taken from Weyl’s law). In ergodic systems in the

KC GE( )

—0(1 = |7)), (14a)
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FIG. 2: The dashed lines give the generalized form factors for
the random matrix ensembles C-GE (top) and CI-GE (bot-
tom). The full lines are calculated numerically for a star graph
with N = 100 bonds (averaged over 50000 realizations) and
have been averaged over a small time interval

while the prediction (CI-GE) for class CT is [7]

T+ 1 4T
1
* 5(<f+1>2>+

T—1 4T
* T ’C((T+1)2>

=—1+ g + O(|7]?).

KleGE(T) —

(14b)

The result is given in terms of the complete elliptic inte-

grals of first kind K(x) = 077/2 \/1: df and of sec-

ond kind &(z ﬁ/ *V1—zsin20df. The generalized
form factors are shown together with numerical results
obtained for Andreev graphs (see section III) in figure 2.

III. ANDREEV GRAPHS

Quantum graphs have recently been introduced [15]
as simple quantum chaotic systems. Due to an exact
semiclassical trace formula they are extremely powerful
and transparent in the semiclassical analysis of universal
spectral statistics. The main new ingredient to quantum
graphs which allows for the construction of very simple

FIG. 3: Andreev star graph with five peripheral vertices con-
nected to superconductors.

graphs belonging to new symmetry classes is Andreev
reflexion. We show in section IV semiclassically that the
form factor of the resulting Andreev graph takes on the
universal result.

A quantum graph consists of vertices connected by
bonds. A particle (electron/hole) propagates freely on
a bond and is scattered at a vertex according to a pre-
scribed scattering matrix. For definiteness, we discuss
star graphs with NV bonds of equal length L. These have
one central vertex and N peripheral vertices. Each bond
connects the central vertex to one peripheral vertex (see
figure 3).

Andreev (star) graphs are obtained by introducing
(complete) electron-hole conversions at the peripheral
vertices with the vertex scattering matrix at the ith ver-

tex
0 —jelavi
0; = (ieiai 0 > (15)

where «; is the phase of the order parameter of a super-
conductor coupled to the vertex. This scattering matrix
can be obtained from the Bogoliubov-de-Gennes equation
in one dimension where A(z) = €'®|Ag|0(x) in the limit
1<K Ag < E. The vertex scattering matrices obey time
reversal invariance if either a;; = 0 or a; = w. We assume
that the central vertex preserves the particle type and
that scattering between all bonds has the same ampli-
tude (this avoids the localization effects found in usual
star graphs with Neumann boundary conditions at the
central vertex [16])- this is achieved by choosing [17]

1
SC,kl ﬁ 627”7 (16)

for the electron-electron scattering. The electron-hole
symmetry then demands that one chooses S¢, ;, for hole-
hole scattering at the central vertex. This choice also



obeys time reversal symmetry Sc = SZ. Andreev star
graphs of this type will generally belong to the symme-
try class €' only when all peripheral vertex scatter-
ing matrices obey time reversal symmetry they belong to
class C1. Accordingly, we build ensembles corresponding
to the symmetry classes C' (uncorrelated Andreev phases
a; with uniform distributions in the interval [0, 27)) and
CT (uncorrelated Andreev phases taking values o; = 0 or
a; = 7 with equal probability). Numerically computed
ensemble averages are in excellent agreement with ran-
dom matrix results from C-GE and CI-GE as shown in
figure 2.

The quantization condition for the Andreev star graph
has the form

det (S(k)— ) =0 (17)

where k is the quantized wave number and S(k) is the
unitary N x N matrix

S(k) =

Here S¢ (S¢,) is the central scattering matrix for an elec-
tron (hole) given by equation (16). The matrix £ =
e*L  contains the phases accumulated when the quasi-
particle propagates along the bonds (k is the wavenum-
ber measured from the Fermi wavenumber). Finally,
D, = —idiag(eT'®¢) contains the Andreev phases accu-
mulated at the vertices. Since

ei4kLSO (19)

ScLD_LSLLD., L. (18)

S(k) =
where
So = SeD_S5D, (20)

does not depend on k, the k-spectrum is periodic with
period 57. As we are interested in the spectrum near
k = 0 on the scale of the mean level spacing Ak = 53+
this periodicity has no effect on our results for N < 1.

Following previous work on quantum graphs [15], we
write the density of states in k-space as

p(k) = prweyt + 3p(k) (21)
with
2NL
Pt = —— (22)

and obtain the exact trace formula

d — 1 .
dk — EtrS(k)
m= (23a)

1 . .
= —Re g t, A, etortix
- - pAp

as a semiclassical sum over periodic orbits p of the
graph. Here, periodic orbits are defined as a sequence
i1,12,...,% of peripheral vertices, with cyclic permuta-
tions identified. Since the particle type changes at the

peripheral vertices, the sequences must have even length
[ = 2m. The primitive traversal ‘time’ of a periodic
orbit is ¢, = 4mL/r (where r is the repetition num-
ber). Note that the bond length L is a dimensionless
quantity. We will refer to it nevertheless as time. The
stability amplitude is A, = 1/N™ and the action is
Sp = 4mkL + Z2m (— )JJr 2mijijy1/N. The accumu-

lated Andreev phase is x = —mm — Z?Z(—l)jﬂa”.
The trace formula (23a) depends trivially on k. With
k = 53/ we measure the wave number in units of the

mean level spacing and have

oo

Z cos (27m ) tr Sg° (23b)
Then, the form factor becomes
K(r)=2 / dr 2™ (5p(r)
~ (24a)
Z (r— —)

Here, (-) denotes the average over Andreev phases. The
coefficients can be written as a sum over periodic orbits
Pm with 2m Andreev reflections,

=2 (tr S™) _22 <

K,, can be viewed as a form factor in discrete time m/N.
A smooth function can be obtained by averaging over a
small time interval 1 < A7 < % — this gives

K,
Z ATN’

m:T<m/N<1t+AT

p (k= 0)+1x> (24b)

K(r)=2

(24c)

IV. UNIVERSAL FORM FACTOR FOR
ANDREEV GRAPHS

We now turn to compute the generalized form factor
(24a). Let us first focus on the Andreev graphs with
broken time reversal (symmetry class C'). The average
over Andreev phases reduces the number of contributing
periodic orbits. Only those periodic orbits survive the
average that visit each peripheral vertex an even number
of times half as incoming electron and half as incom-
ing hole. In the spirit of Berry’s diagonal approximation
we now look for the orbits that contribute coherently i.e
the orbits whose total phase due to the scattering ma-
trix of the central vertex vanishes. As the phase factors
due to scattering between bonds ¢ and j for electrons
and for holes are complex conjugates of one another, this
requires that the periodic orbits contain equal numbers
of scatterings from i to j as electron and hole. This
leads to the orbits sketched in figure 4: An odd num-
ber of peripheral vertices are visited twice, once as an



FIG. 4: Periodic orbits contributing in the self-dual approxi-
mation (at m = 5). The vertices in the diagram correspond to
peripheral vertices of the original star graph, full and dashed
lines represent electron and hole propagation. In the univer-
sality class C-GE, only the left diagram contributes. In class
CI1-GE, the right diagram gives m additional contributions as
the turning point can be any of the m vertices.

electron and once as a hole. First, the peripheral ver-
tices are visited once, alternating between electrons and
holes, and subsequently the vertices are visited again in
the same order but with the roles of electrons and holes
interchanged. Such orbits are also singled out by invari-
ance under electron-hole conjugation and will be called
self-dual periodic orbits for this reason. The self-dual
approximation to the form factor takes only these orbits
into account. For a self dual orbit contributing to K,, we
have Ap =1/N™, S, = 2nk%;, and x = mm (since m is
odd eX = —1). The number of such orbits of length 2m
is N™/m, where the denominator m reflects the identifi-
cation of cyclic permutations of peripheral vertices. With
these ingredients, we find the short-time result

Kmsa =—1+(-1)" = Ksa(r)=-1, (25)

where K (t) is the time averaged form factor. This repro-
duces the random matrix result from C-GE.

For the ensemble of Andreev graphs of symmetry class
CT, the average over Andreev phases (over signs) is sur-
vived by periodic orbits with an even number of visits
to each vertex. This condition is weaker than the con-
dition we had before in class C. Thus there are more
periodic orbits contributing to the form factor. The self-
dual orbits are again defined to be the orbits that are
invariant under the symmetries that define the symme-
try class: electron-hole conjugation and time reversal. In
the self-dual approximation, this leads to additional or-
bits (see figure 4). Self-dual periodic orbits either visit
the same peripheral vertices in the same sequence twice
with electrons and holes interchanged (these orbits are

also self-dual in class C') or they visit the same periph-
eral vertices twice but in opposite sequence (these orbits
are invariant under the combination of time reversal and
electron-hole conjugation). As discussed above the first
type of self-dual orbits only exists if the number m of
visited peripheral vertices is odd and their contribution
to the form factor K,,is —1+ (—1)™. The second kind of
orbits exists for any number of visited peripheral vertices
— however for any fixed choice of m peripheral vertices
there are now m different periodic orbits (the turning
point can be any of the m vertices). Since e’X = 1 for
even M and eX = —1 for odd m the contribution to K,
of these orbits is (—1)"™2m. Altogether one has

Kmsda =—14+(-1)"2m+1) = Ku(r)=-1, (26)

again his is in accordance with the random matrix result
from CI-GE for short times.

The results can be extended to other new symmetry
classes. We also note that our results remain valid for
a rather large class of central scattering matrices Sc.
Finally, by going beyond the diagonal approximation, it
is possible to extract the orbits contributing to the form
factor to linear order in 7 (weak localization corrections).
These extensions will be discussed elsewhere [18].

V. CONCLUSIONS

We considered the universal spectral statistics for er-
godic Andreev graphs belonging to the new symmetry
classes, in the semiclassical approximation. While it was
known that semiclassics has problems in some types of
Andreev systems [10, 11], we showed here for quantum
graphs that the universal spectral statistics is correctly
reproduced by a semiclassical analysis of the appropriate
generalized form factor. The universal spectral statistics
is predicted by the random-matrix ensembles C-GE and
C1-GE that describe systems of the symmetry classes C'
and CT in the ergodic limit. One important ingredient is
the classically chaotic dynamics of quantum graphs. Our
results clarify under which conditions to expect spectral
statistics described by the Gaussian random-matrix en-
sembles C-GE and CI-GE.
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