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Abstract

The spin configuration induced by single holes and hole pairs doped into stoichiometric, antiferromagnetic cuprates
is considered. Unrestricted Hartree—Fock calculations for the three-band Hubbard model are employed to study spin-
polaron and vortex-like (meron) solutions. Meron solutions for a single hole are found to be metastable with higher
energy than spin polarons. We observe that the meron solution shifts from site-centered to bond-centered as the
interaction is increased. Meron—antimeron solutions for hole pairs are found to be unstable. The results are in
agreement with earlier findings for the one-band Hubbard model. However, we find that the Hubbard interaction of the
one-band model has to be chosen similar to the one of the three-band model to obtain comparable results, not of the
order of the charge-transfer gap, as previously expected.
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1. Introduction

Superconductivity appears in cuprates upon
introduction of electrons or holes into the insulat-
ing, antiferromagnetic parent compounds. These
are insulators due to the strong electron—electron
interactions, which lead to a Mott—Hubbard
splitting of the bands. Upon doping with holes,
the antiferromagnetic order is lost at about 2%
holes per copper atom and the system becomes
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superconducting at a somewhat higher doping
level. The doping of Mott-Hubbard insulators has
been studied quite extensively. Nevertheless, there
is still no agreement on what happens when a few
electrons or holes are introduced.

From experiments as well as from band-
structure calculations it is known that the undoped
compounds have one hole in each Cu d-shell,
whereas the oxygen-dominated bands are comple-
tely filled. Consequently, the Cu ions carry spins %,
which order antiferromagnetically due to super-
exchange. Electron and hole doping are qualita-
tively different: electrons mostly fill the Cu hole so
that the local spin vanishes. Holes predominantly
reside in the planar oxygen orbitals, introducing
another spin % This physics can be modeled by the

0921-4526/$ - see front matter © 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0921-4526(03)00492-7



52 A. Kesting, C. Timm | Physica B 339 (2003) 51-59

three-band Hubbard Hamiltonian
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where d; (p;(,) is the creation operator of an
electron in a 3d,._,» (2py,2p,) orbital at site i ()
and n? =d d, is the corresponding density
operator. The parameters ¢4, ¢, denote onsite
energies. The hopping amplitude tlfl between
nearest-neighbor copper and oxygen sites <ij)
changes sign due to the two possibilities of
overlap, e.g., positive (negative) for the bonds
pointing from a Cu site in the positive (negative) x
and y directions. Finally, Uy is the onsite Coulomb
interaction for two electrons on the same Cu site
with opposite spins.

The Coulomb interaction U, between oxygen
electrons is irrelevant for the case of one or two
holes, since the probability of two holes sitting on
the same oxygen ion is extremely low. Further-
more, the hybridization between the oxygen
orbitals is omitted as the hopping #,; is the
dominant process. Furthermore, we neglect the
Coulomb interaction between Cu and O electrons.

Electron and hole doping also have rather
different experimental consequences: antiferro-
magnetic order is destroyed by only x~0.02 holes
per Cu, whereas it survives on the electron-doped
side up to x~0.14. This asymmetry is easily
understood: electrons dilute the antiferromagnet,
which perturbs the order relatively weakly. On the
other hand, holes introduce extra oxygen spins,
which couple antiferromagnetically to both their
neighboring Cu spins, resulting in a strong
ferromagnetic coupling between those spins [1].
This ferromagnetic bond strongly frustrates the
antiferromagnet, leading to its rapid destruction
[1-3]. This picture is supported by experiments on
cuprates doped with non-magnetic impurities such
as zinc [4,5]. They dilute the spin system similarly
to electron doping, leading to a large critical
concentration for the destruction of antiferromag-
netic order [5], which is essentially a percolation
transition [6].

The qualitative difference between electron and
hole doping suggests that a small number of
charge carriers doped into the parent compounds
should also behave quite differently. Indeed,
several authors propose that hole doping leads to
the appearance of non-trivial structures of the
surrounding Cu spins, such as dipolar configura-
tions [1,7], vortices or merons [8-10] skyrmions
[11-13], and domain walls or stripes [8,9,14-16].
This should be contrasted with a spin-polaron
configuration, where the spins in the vicinity of the
hole might be reduced or even inverted in sign but
are still collinear. Timm and Bennemann [2] have
proposed a mechanism for the rapid destruction of
antiferromagnetic order in the hole-doped regime
that relies on the formation of merons in the
staggered magnetization upon doping. We here
use the term “meron” to refer to a topological
defect in the easy-plane Heisenberg model. It is
very similar to a vortex in the XY model, but the
order parameter may rotate out of the easy plane
close to the defect center in a “lotus flower”
configuration. The easy-plane anisotropy is caused
by the Dzyaloshinskii-Moriya interaction [17,18],
resulting from buckling of the CuO; planes and
spin—orbit coupling. For energy reasons, merons
are expected to be created as meron—antimeron
pairs. It is suggested that merons appear since each
hole introduces a ferromagnetic Cu—Cu bond,
leading to frustration, which can be reduced by
forming merons centered on each such bond [2].
This mechanism only works for hole doping, not
for electron doping, in agreement with the
pronounced asymmetry of the phase diagram.

The question of the existence of meron—anti-
meron pairs in the ground state has been studied
with various approaches [8—10]. The present
situation is not satisfactory, since unrestricted
Hartree—Fock calculations for the one-band Hub-
bard model have found meron—antimeron pair
solutions, but never as the ground state [8]. On
the other hand, Hartree-Fock calculations have
been performed for the three-band model [19,20],
but meron—antimeron pairs have not been con-
sidered.

The one-band Hubbard model can be derived
from the three-band model, Eq. (1), as an effective
low-energy model [21]. The one-band model is
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defined by the Hamiltonian

Hp= —1t Z (c;cjg + h.c)
{ijy.0

+ U Z cj'Tc,-ch'lc,'l. (2)

In the undoped three-band model the Fermi
energy lies between an occupied oxygen-type band
and the unoccupied upper Hubbard band. The
charge-transfer gap between them is mimicked by
the Mott—Hubbard gap of the one-band model
and the onsite interaction U of the one-band
model must be chosen accordingly [22,23]. How-
ever, this derivation [21] of the one-band model
assumes a polaron-like configuration for a doped
hole and would not work if meron—antimeron
pairs were the true ground state.

On the other hand, a slave-boson approach did
find meron—antimeron pairs as the ground state
for two holes, again in the one-band model [9].
This approach goes beyond the Hartree—Fock
approximation (HFA) and leads to lower varia-
tional ground-state energies. Furthermore, in a
one-band spin-flux model Berciu and John [10]
also find meron—antimeron pairs as the ground
state, employing the configuration-interaction (CI)
method, which also goes beyond Hartree—Fock
theory. Both approaches have not yet been applied
to the three-band model. The question appears to
be open.

In the present paper we consider the three-band
Hubbard model within the HFA. In Section 2 we
briefly outline the theory. In Section 3 we compare
the results with Hartree—Fock calculations for the
one-band model for larger system sizes than
studied previously. We study the stability of spin-
plasmon and meron solutions for a single hole and,
in particular, of meron—antimeron solutions for two
holes. We also consider changes in the meron
structure as a function of the interaction strength.

2. Theory

Since it is mostly standard, we can be brief in
describing our implementation of the unrestricted
Hartree—Fock approximation [24]. We here do this
for the three-band Hubbard model. The HFA

reduces the many-body problem to a set of single-
electron problems by decoupling the interaction, in
our case in the particle-hole channel. To include
transverse spin degrees of freedom we decouple on
the level of creation and annihilation operators,
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and §7 =8 —-iS = dIdT and the constant en-
ergy shift
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After decoupling the interaction, the many-particle
ground state |¥) for T'=0 in the HFA is
constructed by creating N, electrons in the low-
est-energy single-particle states out of the vacuum
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The single-particle states are given in terms of
wave functions ¢,, by

ay = ¢,(i.0)cy. (6)

where the sum over i runs over all relevant Cu
dy_,» and oxygen p, and p, orbitals, and clTU
creates an electron in orbital i.

The Hartree—Fock eigenequations are derived
by minimizing the expectation value to the total
energy in the state |¥) with the ¢,(i,0) as
variational parameters. For the nth state with spin

g = 1, | at the Cu site i the equation is of the form
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The notation jeV; means that the sum is
performed over the sites j which are nearest
neighbors of site i. 6 = (6%, 07, 6%) is the vector of
Pauli matrices and ¢° is the unit matrix. The local
Hartree—Fock fields of the charge and spin density,
ndy =P dobdi| Py

v

= 1.0, (®)

1 .
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are computed self-consistently. The sum over »n is
performed for the NV, electrons in the system. The
terms for the oxygen sites j are of an analogous
form. Finally, the Hartree-Fock ground-state
energy is given by the sum of the eigenvalues E,
for occupied states,

Ne
Ey=) E,—E. (10)
n=1

We solve the Hartree—Fock Eq. (7) by iteration,
which requires a numerical diagonalization at each
step. Self-consistency is assumed when the differ-
ence in all spin and charge components is less than
e~107°. Typically, the charge distribution con-
verges very rapidly to the self-consistent value,
while the spin configuration needs a lot more
iteration steps. The number of steps depends
strongly on the initial configuration and the
boundary conditions.

3. Results and discussion

In the present section we examine the Hartree—
Fock solutions for the three-band Hubbard model
for one and two holes [24]. The results are
compared with corresponding ones for the one-
band model. The calculations have been carried
out for a square lattice with up to 14 x 14 unit cells
for the three-band model as well as for the one-
band model. We have treated periodic as well as
open boundary conditions (BC). The latter disturb

the elementary cells at the edge of the lattice in the
three-band case. We have studied edges of alter-
nating copper and oxygen ions but also edges
made up entirely of oxygen ions. Finite size effects
are stronger for open BC, as expected, but are
neglectible for the lattice sizes used here. Relevant
parameters in the three-band model are (i) the
hopping t,4, (ii) the Coulomb interaction U, for
copper sites and (iii) the band gap 4 =¢, — &4
between the oxygen and copper orbitals. A
Coulomb interaction between oxygen electrons
and a non-zero oxygen—oxygen hopping amplitude
do not change the solutions qualitatively and are
neglected in the present study. A band gap 4 > 0 in
combination with U; > A implies that holes pre-
ferentially occupy oxygen orbitals as observed in
experiments. In this regime the occupied oxygen
states and the empty copper states in the upper
Hubbard band are separated by a charge-transfer
gap, which is given by U; — A. For the calculations
we have used the parameters taken from Ref. [25],

ta=1eV, Uj=8eV, A=5¢V. (11)

The results for the three-band model are compared
to corresponding Hartree—Fock results for the
one-band Hubbard model [8] with # =1 eV and U
in the range from 5-8 eV.

3.1. Single-hole solutions

For a single hole we find a spin-polaron
configuration as the seclf-consistent solution of
the HFA for open as well as periodic boundary
conditions, see Fig. 1. In its center a reduced
copper spin (of modulus 0.55 in units where the
fully polarized state corresponds to unity vs. an
average order parameter of 0.78) is pointing in the
same direction as its four nearest copper neigh-
bors, e.g., a ferromagnetic ‘“‘microdomain” is
formed. The charge is mainly distributed over the
four oxygen neighbors of the central copper ion.
Small magnetic moments at the oxygen sites are
induced, which are oriented oppositely to the
copper spins. This result is consistent with the
over-compensation of the antiferromagnetic super-
exchange by an effective ferromagnetic Cu—Cu
coupling for all values of U; > 4, supporting the
picture of Aharony et al. [1].
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Fig. 1. Self-consistent Hartree—Fock solution of the three-band
Hubbard model for one hole. The figure shows part of a 10 x
10 lattice with the spin and relative charge density indicated for
each atomic site by the arrows and circles, respectively. The
reduced copper spin at point (5, 5) forms a spin polaron with its
four nearest copper neighbors. The charge is mainly distributed
over the four oxygen neighbors.

In the one-particle spectrum of Fig. 2(a) two
states appear in the gap due to the interaction. One
is split off from the occupied oxygen-dominated
band but is now empty due to the extra hole. This
is the Zhang—Rice singlet [21]. The other state
originates from the unoccupied upper Hubbard
band. The first unoccupied state is to about 75%
localized on oxygen sites emphasizing the oxygen
character of doped holes [26].

It is worth considering the limit of strong
interaction Uy /s> 1 studied by Zhang and Rice
[21]. For U; = 50 eV, 4 = 25 eV we find a polaron
solution similar to Fig. 1, but with the copper spin
moment in the polaron center hardly reduced (to
0.99) and the charge mainly (to 80%) localized on
its four oxygen neighbors. These four ions together
carry a spin moment of —0.79. Thus in the HFA
the central copper spin forms a singlet with its four
oxygen neighbors, as predicted [21].

It is instructive to compare the results with the
one-band Hubbard model, for which the polaron
configuration is also a self-consistent solution in
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Fig. 2. One-particle energy spectra for self-consistent solutions
of the HFA. LHB and NB denote the occupied lower Hubbard
and non-bonding bands, respectively. UHB denotes the
unoccupied upper Hubbard band [22,23]. (a) Spectrum for the
spin-polaron solution of Fig. 1; (b) Spectrum for the meron
solution of Fig. 3(a); (c) Spectrum for the solution of Fig. 6. The
right-hand side figures are enlargements of the regions close to
the Fermi energy.

the HFA [8]. For an intermediate interaction of
U=5—8 ¢V the charge distribution and the spin
moment at the polaron center are of the same
order of magnitude as in the three-band case so
that in this respect the one-band model indeed
mimicks the three-band physics. However, it is
surprising that we find this relation for values of U
for the one-band model similar to U; = 8 eV and
not to the charge-transfer gap U; — 4 = 3 eV, as
we would have expected [22,23]. On the contrary,
for U3 eV we find the diagonal cigar-shaped
configuration predicted in Refs. [27,28] without
any inverted Cu spin [24]. We suggest that U is of
the order of U; since the local moment is
dominated by the interaction in the copper d
orbital and is only marginally affected by the
hybridization with oxygen orbitals.

We now turn to meron configurations for a
single doped hole. We start the HFA with a
coplanar vortex configuration. Site-centered Mer-
ons turn out to be stable Hartree—Fock solutions
for U;<7¢V. Because of the non-vanishing
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Fig. 4. The average value (S >? at the site closest to the meron
center as a function of the interaction U for the one-band
model and Uy for the three-band model. For a site-centered
meron, (S>? is negligible due to symmetry. A non-vanishing
value corresponds to a qualitative change in the spin texture,
see Fig. 3.

winding number only open boundary conditions
are possible. In Fig. 3(a), a site-centered meron
solution for U; = 7 eV is shown for a lattice with
edges of alternating copper and oxygen ions. But
there is no qualitative difference to lattices with
edges made up entirely of oxygen ions. Increasing
U, shifts the center of the meron first in the
direction of a plaquette and then onto a bond, see
Figs. 3(b) and (c¢). In addition, a tendency towards
ferromagnetic alignment, i.e., formation of a spin
polaron, is observed. These results correspond to
the one-band solutions for U =8 eV, in which the
spin in the meron center is no longer suppressed
and shows a tendency towards formation of a
ferromagnetic microdomain. Note that again U
has to be chosen similar to U; and not to the
charge-transfer gap to obtain this result. To
exhibit the transition from site- to bond-centered
merons more quantitatively, we plot in Fig. 4 the

4
N

Fig. 3. Self-consistent Hartree—Fock solutions with (a) U, =
7eV,(b) Uy =8¢V and (c) U; =10eV on an 11 x 11 lattice.
For U,;<7 eV site-centered merons are stable solutions of the
HFA. Increasing Uy shifts the center of meron but preserve the
winding number of the initial configuration.
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Fig. 5. Starting configurations for the spin and charge density for a system with two holes on a 14 x 14 lattice: (left) plaquette-centered
meron—antimeron pair and (right) bond-centered meron—antimeron pair.

average (S)? at the site i = (6,6) for the three-
band solution and the corresponding quantity for
the one-band model. For a site-centered meron
this number is negligible due to symmetry.

For the one-band model we have compared the
energies of polaron and meron solutions for a
single hole by considering their respective forma-
tion energies.! As expected, the meron energy is
higher than the energy of the spin polaron and
diverges logarithmically with system size. How-
ever, the iteration process of the HFA turns out to
be unable to change the winding number. Adding
small random numbers during the iteration
process makes it converge to a spin-polaron
configuration. Thus a meron is a metastable
solution.

In the one-particle spectrum for the meron
solution with U; = 7 ¢V, Fig. 2(b), two discrete,
degenerate hole states appear: one from the filled
oxygen-dominated non-bonding band and the
other from the unoccupied upper Hubbard band.
The states are degenerate because an additional
electron can be introduced either with spin up or

"This is the energy needed to add a hole to the half-filled
system. First, one has to lift an electron to the Fermi-level
which is given by the half of the Mott-Hubbard gap. A second
contribution comes from the change of the configuration energy
due to the interaction of the particles in the system.

spin down. The same holds for the one-band
model. A mirror image of these degenerate states
appears in the gap between the occupied bands.

3.2. Two-holes solutions

We now turn to a system doped with two holes
to investigate possible meron—antimeron solutions.
As initial configurations we consider pairs of
bond-centered as well as plaquette-centered de-
fects, see Fig. 5, and both open and periodic BC.
We find that these configurations are not stable
under the HFA iteration. This result holds for all
parameter sets we have investigated. Instead, the
system develops into a polaron-type spin config-
uration, the detailed structure of which depends on
the choice of BC. For example, Fig. 6 shows the
solution for the bond-centered initial configuration
and periodic BC on a 14 x 14 lattice. We find two
spin polarons with antiferromagnetically aligned
center spins. The polaron centers are localized on
neighboring copper sites. At the oxygen sites small
magnetic moments are induced which are oriented
in antiparallel to the copper spins.

The origin of the instability of meron—antimer-
on solutions is their higher energy and their
vanishing winding number. The latter means that
they can be destroyed during the HFA iteration
since no high-energy barrier has to be overcome.
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Fig. 6. Resulting double-polaron configuration for two holes
ona 14 x 14 lattice with periodic boundary conditions using the
parameters in Eq. (11).

Since for large separations R of meron and
antimeron the interaction increases logarithmically
with R, the energy of the meron—antimeron
solution will eventually become larger than the
spin-polaron energy. However, our results indicate
that this is also the case at the smallest separations.

Again, similar results are obtained for the one-
band model. Bond-centered as well as plaquette-
centered meron—antimeron pairs as initial config-
urations develop into spin polaron solutions as
shown earlier by Vergés et al. [8]. In contrast,
Seibold [9] has found a stable solution in the one-
band model using a slave-boson approximation
beyond Hartree—Fock.

In Fig. 2(c) the spectrum of the discussed
double-polaron solution is shown. For each doped
hole one state splits off from the occupied non-
bonding band and another from the unoccupied
upper Hubbard band. The first two hole states are
localized to about 80% on oxygen sites. Further,
the states are energetically degenerate reflecting the
symmetry of the solution under inversion in the
center of the bond between (7, 6) and (7,7) in Fig.
6 and simultaneous spin inversion.

4. Conclusions

In this paper we have used unconstrained
Hartree—Fock theory at 7' = 0, keeping all local
spin and charge degrees of freedom to study
inhomogenous spin textures in the three- and
one-band Hubbard model. This approach neglects
flucutations around the mean-field solutions.
Thus one has to consider the reliability of the
these solutions. The HFA predicts the correct
behavior for large U, in the half-filled case. For
one doped hole spin polarons are obtained as
solutions for the three band Hubbard model. This
agrees with the case of the one-band model [§],
in agreement with the mapping [21,23] of the
three-band on the one-band model at low energies.
However, we find that in the one-band model an
on-site interaction U of the order of the three-
band interaction U, is required to obtain similar
results.

A meron is only a metastable self-consistent
solution due to its non-zero winding number. As
our main result we find that meron—antimeron
pairs are not stable solutions in the HFA of the
three-band Hubbard model. This holds for peri-
odic as well as open boundary conditions. The
same is true for the one-band model. Thus a
consistent picture of the one- and three-band
models emerges, at least in the framework of the
HFA: Both show the same qualitative behavior for
weak hole doping.

While the mean-field approximation serves
as an useful tool for studying the local charge
and spin density, it yields only an upper bound for
the true ground-state energy. In the one-band
Hubbard model Seibold [9] found a meron—
antimeron ground state for 7= 0 for suitable
parameters using a slave-boson method. This
method uses a Hartree-Fock ansatz as the
initial configuration but treats the spin and
charge excitations at each site as distinct bosonic
degrees of freedom. It leads to a lower ground
state energy than the HFA and is thus the supe-
rior variational method. We suggest that this
method applied to the repulsive three-band
Hubbard model could clarify the still open
question of stable meron—antimeron pairs as the
effect of hole doping.
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