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A recent experiment Mourik et al. [Science 336, 1003 (2012)] on InSb quantum wires provides possible

evidence for the realization of a topological superconducting phase and the formation of Majorana bound

states. Motivated by this experiment, we consider the signature of Majorana bound states in the

differential tunneling conductance of multisubband wires. We show that the weight of the Majorana-

induced zero-bias peak is strongly enhanced by mixing of subbands, when disorder is added to the end of

the quantum wire. We also consider how the topological phase transition is reflected in the gap structure of

the current-voltage characteristic.
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Introduction.—A recent experiment [1] reports the real-
ization of proximity-induced topological superconducti-
vity [2–4] and the formation of Majorana bound states in
InSb quantum wires. Following theoretical suggestions
[5,6], superconducting order is induced in an InSb quantum
wire by proximity to a Nb lead attached alongside the wire.
At the other end, the quantum wire is contacted to a normal
lead via a gate-induced tunnel junction. Evidence for the
formation of Majorana bound states is found through mea-
surements of the differential conductance, which exhibits a
zero-bias peak when a magnetic field is applied in certain
directions. Similar results were also obtained for normal-
metal–superconductor structures based on InAs quantum
wires [7].

At zero temperature and in single-subband quantum
wires, the Majorana-induced zero-bias peak is predicted
to have a height of 2e2=h [8,9]. At finite temperature, the
zero-bias peak broadens with its weight fixed, so that the
peak height is no longer expected to reach 2e2=h. In this
Letter, we consider the current-voltage characteristic of
multisubband wires—a situation which is presumably rele-
vant to the experiment of Ref. [1]—with a particular
emphasis on the dependence of the zero-bias peak on
subband mixing by disorder. We show that, remarkably,
the weight of the Majorana-induced zero-bias peak is
typically enhanced as the tunnel junction becomes more
disordered. The basic idea is that disorder couples the
topological channel, which itself is only weakly transmit-
ted through the barrier, with the other nontopological sub-
bands which have higher transmission coefficients. This
coupling broadens the conductance peak and hence, in the
presence of a finite temperature, enhances the zero-bias
conductance [10]. The intentional inclusion of disorder in
or near the barrier, either during the fabrication process of
the InSb nanowires used in the experiment, or after fabri-
cation of the device, could thus lead to an additional, strong
signature of the Majorana end state. A similar effect is

expected if the tunnel barrier is replaced by a point contact
[11], provided the point contact is nonadiabatic.
The interest in Majorana bound states in low-

dimensional condensed matter systems [1,7,12–17] is
driven by their remarkable properties: They are their own
antiparticle, have zero energy, and obey non-Abelian ex-
change statistics [18,19] upon adiabatic permutation of
their positions. The latter two properties make Majorana
bound states potentially useful for topological quantum
computation [20].
Model system.—We consider a geometry close to that

of the experiment in Ref. [1] shown schematically in
Fig. 1(a). It consists of a two-dimensional multisubband
semiconducting wire with spin-orbit velocity �, chemical
potential�, and widthW. At one end, the semiconductor is
coupled laterally to a superconducting lead. At the other
end, it is contacted to a normal metal via a tunnel barrier
defined by the gate potential U. The system is placed in a
magnetic field parallel to the wire direction with Zeeman
energy B. Taking the x direction to be along the wire, the

(a) (b)

FIG. 1 (color online). (a) Setup of multisubband quantum
nanowire (NW) with gate-induced tunnel barrier (G) and prox-
imity coupled s-wave superconductor (S). As in Ref. [1] we
consider the conductance between the normal lead (N) and the
superconductor. Subband mixing is induced through disorder in
the short segment of length L between the tunnel barrier
and superconductor. (b) Normal-state dispersion in the absence
of disorder for four subbands with B ¼ 1 meV and m�2=2 ¼
50 �eV.
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system is then described by the Bogoliubov–de Gennes
Hamiltonian [5,6,12,21]

H ¼
�
p2

2m
þ �px�y � �ypy�x þUðxÞ

þ VdisðrÞ ��

�
�z � B�x þ�ðxÞ�x; (1)

where the Pauli matrices � and � operate on the spin and
particle-hole degrees of freedom, respectively. The pa-
rameter �y is included for future reference and equals �

for the case of Rashba spin-orbit coupling. The lateral
contact to the superconductor covers the region x > 0, so
that we set �ðxÞ ¼ � for x > 0 and �ðxÞ ¼ 0, otherwise,
where � is the proximity induced gap for B ¼ 0. The
disorder potential VdisðrÞ is nonzero in the region �L <
x < 0 between the gate-defined tunnel barrier and the
superconducting contact only. In this region, we choose a
Gaussian random potential with hVdisðrÞi ¼ 0 and

hVdisðrÞVdisðr0Þi ¼ v2
F

kFl2d
�ðr� r0Þ; (2)

where vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=m

p
and l2d are the Fermi velocity and

mean free path. It is important to note that the mechanism
discussed here is different from reflectionless tunneling
[22] induced by disorder on the normal side of NS tunnel
junctions.

We numerically calculate the normal and Andreev re-
flection matrices reeð"Þ and rheð"Þ for the Hamiltonian (1),
using the technique described in Ref. [23]. The differential
conductance GðVÞ is then evaluated according to [24]

GðVÞ ¼ e2

h
tr½1þ rheðeVÞrheðeVÞy � reeðeVÞreeðeVÞy�;

where the trace is in spin and channel space. In a wire of
width W lateral momenta are quantized as py;n ¼ @n�=W

with n ¼ 1; 2; . . . . In our numerical calculations we use an
effective mass m ¼ 0:015me, me being the bare electron
mass, proximity induced gap � ¼ 250 �eV, spin-orbit
energy m�2=2 ¼ 50 �eV, and width W ¼ 110 nm [25].
This choice corresponds to the parameters of the InSb
quantum wires used in Ref. [1]. The chemical potential
in the nanowire is chosen as � ¼ 32:1 meV, correspond-
ing to N ¼ 4 occupied channels [cf. Fig. 1(b)]. The sub-
bands in the nanowire are therefore separated by several
meV and for Zeeman energies less than 1.5 meV (corre-
sponding to B< 1 T for InSb) only the highest channel
(subband index n ¼ N ¼ 4) can be in the topological
phase.

Clean multisubband quantum wires.—We first consider
a clean multisubband wire with �y ¼ 0. To a good ap-

proximation, a gate-induced tunnel barrier exposes the
electrons to a potential which depends only on the coor-
dinate x along the wire. Consequently, the tunnel barrier
does not mix the transverse subbands (channels) of the

quantum wire and the subbands can effectively be consid-
ered as independent. Each subband is characterized by a

Fermi velocity vF;n ¼ 1
m ð2m�� p2

y;nÞ1=2, an excitation

gap �n, and a transmission coefficient Tn of the gate-
induced tunnel barrier. Since the highest occupied subband
n ¼ N determines whether the wire is in the topological
phase, we refer to this subband as the ‘‘topological sub-
band.’’ A nontrivial topological phase exists if B2 > B2

N ¼
�2 þ ð�� p2

y;N=2mÞ2 [5,6]. At the topological phase tran-
sition, i.e., for B ¼ BN , the topological gap �N vanishes,
whereas the excitation gaps for the other subbands remain
finite.
The topological phase is characterized by a zero-bias

conductance peak

GðVÞ ¼ 2e2

h

�2

�2 þ ðeVÞ2 ; (3)

with width � ¼ �0�NTN if L � � ¼ @vF;N=�N . The nu-

merical constant �0 takes the value �0 � 0:375 for the
range of parameters we investigated (TN � 1,� between 0
and 60 �eV). This width may be very small, since the
transmission coefficient TN of the topological subband is
typically much smaller than the transmission coefficients
of the other channels. (For the Nth subband to be topologi-
cal, it is important that its band bottom be close to the
chemical potential.) At finite temperature, the conductance
peak is thermally broadened,

GðV; TÞ ¼
Z 1

�1
d"Gð"; 0Þ df

d"
ðeV � "; TÞ; (4)

where fð	; TÞ is the Fermi distribution function at tem-
perature T. Thermal broadening preserves the weight of the
zero-bias peak. For kBT � �, the peak width is of order
kBT, whereas the height ð2e2=hÞð��=4kBTÞ is inversely
proportional to temperature. Both regimes are illustrated
in Fig. 2.
Effect of disorder.—If the disorder is limited to the seg-

ment of the semiconductor wire that is not in contact with
the superconductor, i.e., to �L< x < 0 (cf. Fig. 1), it has
no effect on the existence of the topological phase [26].
However, impurity scattering in the ‘‘normal’’ part of the
wire has profound consequences for the weight of the zero
bias peak associated with the existence of the topological
phase. The underlying reason is the large disparity in the
transparencies of the different subbands, with the topologi-
cal subband having the smallest transparency TN. Mixing
of subbands by impurity scattering allows for the coupling
of the topological subband to the normal lead via the lower
subbands with higher transparency.
The effect is illustrated in Fig. 2, where we show the

shape of the zero-bias peak for various disorder configura-
tions, such that the distance L between gate-induced tunnel
barrier and the superconducting contact equals one tenth of
the characteristic scattering length
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l ¼ l2dvF;1vF;N=v
2
F: (5)

A systematic dependence on disorder strength can be seen
in Figs. 3 and 4. Figure 3 shows the probability distribution
of the zero-temperature peak width for different values of
the ratio L=l. We conclude that already a moderate amount
of disorder causes subband mixing and an increase in the
peak width. At very strong disorder, L � l, Anderson
localization suppresses the overall coupling to the normal
lead, leading to a decrease of the weight of the zero-bias
peak. This effect is not related to subband mixing and can
be removed by normalizing the peak weight to the normal-
state conductance GB � ð2e2=hÞNTB of the device; see
Fig. 4. The average peak width from disorder-induced
subband mixing saturates for L=l�1 to h�1i¼�1TB�N ,
where �1 is a numerical factor of the order of 0.1, the exact
value depending on the barrier transparencies for different
subbands and spin mixing due to the magnetic field.

Other causes of subband mixing.—The lateral spin-orbit
term proportional to �y in Eq. (1) may be an additional

source of subband mixing. For small �y its contribution to

the width of the zero-bias peak is

�2 ¼ �2Cm�2
y; C ¼ �NTB

W2k3FvF;N

; (6)

 0  0.5
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FIG. 3 (color online). Probability distribution of the zero-bias
peak width � in the presence of disorder in the nanowire segment
�L < x < 0 between the superconducting part and the barrier
for a multichannel wire with the same choice of parameters as in
Fig. 2. With increasing disorder, � increases on average (red and
green curve) due to subband mixing. For L � l Anderson
localization reduces the overall transparency of the junction,
causing � to decrease again in the case of very strong disorder
(blue curve).
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FIG. 4 (color online). Ensemble average of the contribution �1

from disorder-induced subband mixing to the width � of the
zero-bias peak as a function of disorder strength in the segment
�L < x < 0. The peak width is normalized by the normal state
conductance GB � ð2e2=hÞNTB to focus on the effects of sub-
band mixing and to eliminate changes in the overall transparency
by Anderson localization. Inset: Contribution �2 to the peak
width from lateral spin-orbit coupling for a rectangular barrier
(red crosses) and a Gaussian barrier (blue dashed line). In both
figures the parameters of the barrier potential have been chosen
such that only T1 differs appreciably from zero.
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FIG. 2 (color online). (a) Zero-bias conductance peak at zero
temperature in a quantum wire with B ¼ 0:5 meV and N ¼ 4
transverse subbands, one of which is in the topological phase
with barrier transmission T4 ¼ 0:01. The three nontopological
subbands have transmissions 20T4, 10T4, and 4T4. The red
curves show the conductance for four different disorder configu-
rations with l ¼ 10L. The black dashed line shows the peak
shape for the clean wire. (b) Same as in (a), but for a temperature
T ¼ 60 mK, larger than the zero-temperature peak width.
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proportional to �2
y, with a numerical prefactor �2 that

depends on the precise shape of the barrier. In the inset of
Fig. 4 we show its effect on the conductance of a clean wire
for a long and low tunnel barrier, so that only the lowest
subband n ¼ 1 has an appreciable transmission. For a rect-
angular barrier, the subband mixing caused by lateral spin-
orbit coupling is maximal, but still weak in comparison to
the maximal subband mixing obtained from disorder, since
for B ¼ 0:5 meV we obtain C � 10�4. For a smooth bar-
rier, which is the experimentally relevant limit, the numeri-
cal prefactor �2 becomes vanishingly small and lateral

spin-orbit coupling does not give any appreciable subband
mixing. Subbands may also be mixed by a gate-defined
barrier that is not perpendicular to the direction of the
wire. The mixing effect is maximal if the barrier is rectan-
gular, and effectively absent for smooth barriers.
Current-voltage characteristic and topological gap.—

Unlike in single-channel models for spinlessp-wave super-
conductors, multisubband models are characterized by the
coexistence of multiple superconducting gaps in different
sections of the Fermi surface. Specifically, the proximity-
induced gaps in the lower subbands are only weakly
affected by the applied magnetic field. In contrast, the high-
est occupied subband should have a gap closing when it
enters into the topological superconducting phase at the
critical magnetic field. Thus, it is interesting to investigate
to which degree the differential conductance contains sig-
natures of the gap closing at the topological phase transition
and how disorder near the barrier affects these signatures.
In Fig. 5(a), we show the differential conductance versus

bias voltage for a clean multichannel quantum wire at
T ¼ 60 mK. At the critical Zeeman field of the topmost
channel Bc ¼ 0:27 meV a peak appears at zero bias volt-
age. Since the topological channel is only weakly trans-
mitted through the barrier, its contribution to the
conductance is weaker than that of the other channels. In
conjunction with density of states effects [27], this explains
the very weak signature of the topological gap closing in
transport in Fig. 5(a), consistent with the absence of the
topological gap in the experimental measurements of
Ref. [1]. As for the zero-bias peak, the gap-closing feature
in the differential conductance will also be significantly
enhanced by disorder in the barrier region. This is shown in
Fig. 5(b) where both the zero-bias peak and the peaks
associated with the topological gap for B< Bc are much
more pronounced than in Fig. 5(a). Indeed, the topological
gap originates from the same subband as the zero-bias peak
and its visibility is thus enhanced by the same mechanism.
Given that the predictions of the multiband model (1) are
consistent with the experimental data of Ref. [1], the
deliberate introduction of subband mixing would be an
instructive probe of Majorana bound states.
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