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Interaction-induced magnetization of a two-dimensional electron gas
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We consider the contribution of electron-electron interactions to the orbital magnetization of a two-
dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This
regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At
sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contri-
butions. Curiously, the interaction-induced magnetization is third-order itirémormalizedl Coulomb inter-
action. We give a simple interpretation of this effect in terms of classical paths using a renormalization
argument: a polygon must have at least three sides in order to enclose an area. To leading order in the
renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.

I. INTRODUCTION on the trajectories and only need to consider the Aharonov-
Bohm phases induced by th field. For classically weak
Within the independent-electron picture, the magnetic remagnetic fields, we can distinguish between two magnetic
sponse of a bulk two-dimensional electron gas has twdield regimes: The low-field regime, considered by Aslama-
sources: Pauli paramagnetism originating from the electrogov and Larkin, whereL;<Ly and the high-field regime
spin and Landau diamagnetism originating from the orbitalL.+>L, . We present analytical results in both regimes and
electronic motion. After studies of the contribution of super-also show numerical results bridging these two regions. Most
conducting fluctuations to the magnetic response of supetmportantly, we present a simple renormalization argument
conductors abov@,,'? Aslamazov and Larkihpointed out based on classical paths which exactly reproduces the result
that electron-electron interactions make an analogous contrbf the complicated full treatment.
bution to the magnetic response of normal-metal systems. The magnetization of the two-dimensional electron gas
While the fluctuation contribution is diamagnetic in super-has been studied experimentally in mesoscopic safhples
conductors, the Coulomb interaction gives a paramagnetignd in the quantum-Hall reginte? To the best of our
contribution to the susceptibility of normal metals; this dif- knowledge, no experiments have been performed on bulk 2D
ference is a direct consequence of the different signs of theamples at classically weak magnetic fields. Such experi-
effective interaction in the two cases. ments would be a valuable test of our theoretical understand-
In their seminal work, Aslamazov and Larﬁinomputed ing of the interaction contribution to the magnetization.
the interaction contribution to the susceptibility of three- This paper is organized as follows. In Sec. Il we develop
dimensional metals and of layered systems at zero magnetibe semiclassical approach to the interaction-induced magne-
field. They found that the effect was particularly strong fortization for 2D bulk systems. In Sec. Ill we employ the gen-
layered systems. In view of the importance of the physics ofral results derived in Sec. Il to derive explicit expressions
the two-dimensional2D) electron gas, the purpose of the for the magnetization in the high- and low-field regimes. A
present paper is to compute the interaction-induced magnegurious feature of these results is that the interaction-induced
tization of a strictlytwo-dimensionabulk system. We shall, susceptibility is third order in thérenormalizedl interaction
moreover, go beyond the zero-field limit considered bystrength. In Sec. IV we show how the renormalization-group
Aslamazov and Larkin and compute the magnetization fopproach introduced in Ref. 10 allows one to give a simple
arbitrary classically weak magnetic fields. We find that thesemiclassical interpretation of this result. We conclude in
interaction-induced magnetization generally dominates oveBec. V by comparing the interaction-induced susceptibility to
the Landau and Pauli contributions at sufficiently low tem-the Landau and Pauli susceptibilities and discussing finite-

peratures. size effects.
The relevant length scales of the problem are the thermal
length I1/T2=th/(27rT), the_ magnetic length Ly Il. THE SEMICLASSICAL APPROACH
=(h/eB)~4, the cyclotron radiuR.=mge/eB, and the
elastic mean free path,. Throughout this paper, we focus A. Basics

on the regimé_t<<l¢,, which allows us to neglect the effects
of impurity scattering. Moreover, we restrict ourselves to
classically weak magnetic fields, defined by the condition Calculating the interaction contribution to the magnetic
L+<R, (or equivalently? o, <T, wherew, is the cyclotron response requires one to extend the high-density expansion
frequency. Within a semiclassical approach, this implies [random-phase approximati¢RPA)] of the thermodynamic
that we can neglect the classical effects of the magnetic fielgotentiat* by including interaction corrections from dia-

1. Cooper channel
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place the free Green functions in the particle-particle propa-
+ F ceovees + gator by their semiclassical approximations. Generally, the

semiclassical approximation to the Green functen, (E¢
+ie€,B) is expressed as a sum over all classical paths from
tor’ at energyEr.1® For the bulk 2D electron gas, there is

FIG. 1. Leading Cooper-channel diagrams for the |nteract|onOnly a single such trajectory, namely the straight line con-

contribution to the thermodynamic potential. Because we can tak . . - -
the interaction to be local & function), the corresponding Fock- %ectlng the two points. For=0 andB=0 one therefore has

like diagrams differ from the Hartree-like diagrams shown only by . .

a factor of —1/2. GR (Ef,B=0)= 1 meexfiS;  (Ee)/h '77/4],
n iv2m A2 (ke|r—r"|)¥2

grams in the Cooper channel. This was first done in the con- 5)

text of superconducting fluctuations and then applied to dis:

2-18 ; . ““WwhereS, ,/(Eg) =fike|r —r'| is the classical action along the
ordered normal metafs. slich éxpansions usga!ly give path. Moreover, since we assume the magnetic field is clas-
reliable results even beyond the high density limit, if the

relevant sets of terms are properly resummed. The releva§4Cally weak, the field affects the action along the path

Cooper-like diagrams are shown in Fig. 1. The screene rough

Coulomb interactiorfwavy lineg can be treated as lockt el
U(r—r")=xoN(0)"18(r—r"). Here,N(0)=m,/(7%?) de- S(B)=S(B=0)+ Ef dxA(Xx), (6)
notes the full density of states and the bookkeeping index '

Ao=1 identifies the order of perturbation. For a local inter-where the integral is along the unperturbed straight line path.
action, the direct and exchange term are the same up to Rinally, it turns out that only small values of the imaginary
factor of (—2) coming from the spin sums and the different part of the energy should be considered, so we can use the
number of fermion loops. The straight lines in Fig. 1 repre-relation

sent finite-temperature Green functions of the noninteracting

system. These take the form (9SI9E)=t, (7)

wheret=|r—r'|/vg is the time of flight fromr tor’. In this
way one obtains the semiclassical Green function for finite
@) field and finite(imaginary energye,
in terms of the retarded and advanced Green functions

G (€)= 0(€)G (Ep+ie)+0(—€)G,, (Eg+ie)

' A ie !
GF(E)=[G, (E*)]*. Gl (Er+ie,B)=G} (Ef ,B=0)exp[ﬁ—fr dx A(X)
The perturbation expansion for this interaction contribu- ' ' CJr
tion Q) to the thermodynamic potential, which yields the lellr—r'|
magnetic response, can be formally expressét‘as X ;{— —Z | )
Ur
1o (=N)"
O=- E T 2 drq---dr, 3. Semiclassical particle-particle propagator
n= 0]
In the calculation of the thermodynamic potential Ez),
XZ(r1,r2) 2y (rn,ry) (2)  one should neglect all rapidly oscillating contributions in
L 3, (r,r’) as these will give a small contribution upon inte-
_- a gration. Thus, in the particle-particle propagatqrit is nec-
; Tr{in[1+No2 ]} ®) essary to pair advanced and retarded Green functions, and

) ) furthermore, to pair each path in the semiclassical expression
Here » denotes the bosonic Matsubara frequencies for GR with those inG* for which the dynamical phase
=2mm/B (m is any positive or negative integewith 8 factor cancels. The obvious case of pairing each path with
=1kgT. (We employ units such thatz=1 in this pape).  jtself is excluded because it yields no field dependend® in
The particle-particle propagatdr, is expressedin position  and hence zero magnetization. Thus one is led to consider
representationin terms of products of finite-temperature pairs of time-reversed paths—for these the dynamical phase

Green functions as cancels but the magnetic field part is multiplied by two. The
1 E pairing of GR with G* means concretely that one should
"N _ _ keep only those terms in which and v — ¢ have opposite
r,r')= , , , 4 ) ; . :
Zo(rr) BN(O)Z Grr (G (@) @ signs in the sum over Matsubara frequencies. Using the re-
o lation
where the sum runs over the fermionic Matsubara frequen-
cies e=(2n+1)x/B. The shortlengthhigh-frequency be- exd —|w|t/#]
havior is included in the screened interaction, thus requiring E(w§)<o exd —|2e—w|t/h]= Wﬂ/ﬁﬁ) 9

a cutoff of the frequency sums at the Fermi enefgy. '3

one obtains the final result f&i
2. Semiclassical Green function

In view of the fact that the Fermi wavelength is the small- s (r,r’):E(O)(Ir—r’I)eX 2i—efr’dXA(X) . (10
est length scale in the problem, our strategy will be to re- ¢ © ch Ji
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where we have introduced the zero field limit of the particle- | o 1 o
particle propagator o' =olP= f dr 2O r]) g o). (17
¥n,0(0)
o ) 1 exd —|ml|r—r’|/L] Using the explicit expressions fat‘9(r) [Eq. (11)] and
r—r'|)= . i i i
© amlqr—rt'|  sinh|r—r'|/Ly) ¥n o, We finally obtain for the eigenvalues
(11) O'n’|=0'n'0
B. Derivation of the eigenvalues _ EJ” g exp{ — |m|x}
The ladder-diagram contribution to the thermodynamic 2 J g sinhx
potential is expressed in E(B) solely in terms of the eigen- S exp — x2/2a2' L (X2 a2 18
values of the operatd@ ,(r,r’). We therefore need to solve & a“tLn(xa%), (18
the eigenvalue equation wherea=Ly /Lt is the essential dimensionless parameter. It
is important to keep in mind that the screened interaction
, , ol already implicitly takes into account the effect of the inter-
dr’ 2o (1,1 ) g (1) =057 ¢, (1), (12 action on scales shorter than the Fermi wavelength, so the
integral overx should be cut off for smal at approximately
wheren and| are quantum numbers. X min=1/(KeL1).

Assuming from now on the symmetric gauge=BXxr/2,

Eq. (10 reads C. Reordering of the sum

The interaction contribution to the thermodynamic poten-
(13)  tial is given in terms of the eigenvalues, by

3,(rr)=30r—r'|)ex 2i—eE(rxr’)
or @ ch 2

It can be easily checked that any operator of the form Eq. _2BA1
(13) commutes with any element of the magnetic translation Q= 0 B % nZ IN(1+X007)- (19)
group

Here we have already taken proper account of the degen-
eracy of the eigenvalues by the prefact®@A ¢,. The mag-

A [ 2e
T(R)=exr{h (p— —A) (14 netization per unit area now follows by differentiation with

respect toB,
and therefore with its generators .
M 3 {in(1+ne0D)+ By 9o
A ~ = n S —
— [Py~ (26/)A], ¢o/3 2 & | M RoT) T oT TR
(20
II,=[py—(2€e/c)A,]. When done naively, the sum over the quantum number in

this expression diverges. We assume that this is associated
with the inadequate treatment of the interaction at short dis-
tances. We expect that when working with the full screened
interaction, the contribution of large quantum numbers is ap-
propriately suppressed. Hence, we reorder the sum in such a
_ej] (150  Wway that the sum becomes convergent and the eigenvalues
ch® ™%’ with sufficiently largen do not contribute appreciably to the
L . . sum. This philosophy is completely analogous to the ap-
we see thaﬁw([,r’) 1S Adlagonal in the basigy,} of the proach takepn in thz v)\//ork on tFr)]e ﬂuyctuationg contribution tg
eigenvectors oH_ andJ,, wheren and| are the Landau- the diamagnetic susceptibility in superconductors above

level and angular-momentum quantum numbers, respeer 12 |n fact, our reordering closely follows the reordering
tively. ForI=0 the Landau-level wave functioffor a par- proposed by Payne and Lé&e.

Noting that, first,2 ,(r,r’) is invariant under rotation and,
second, the Landau Hamiltonian for a particle of charge
(—2e) can be written as

. .20\ o .
p+A| =T+ +

HL:

ticle of charge—2e) has the well-known form In a first step, we compute
_ |r|2 |r|2 B a'n 2 f g 2(0) eB eB
Ynolr)=exp — oL2 Ly ) (16) 5 =2 | dppS{(p)exp — o p? 1=
H H
with L,, the Laguerre polynomial and, = (%/eB)>. X p?[Ln(eBp’lh)—3Ln(eBp?/h)].  (21)

Finally, an important property of th&(R) is that they  To simplify this expression, we use the recursion relations
commute with both—IL and, (r,r") but not withJ,. Since, for Laguerre polynomials
moreover, within a Landau level there is no stable subspace
for all the T(R), the eigenvalues”"' cannot depend on the XLp(X)=nLn(x) =NnLn-1(x), (22)

angular-momentum quantum numblerAt r=0, Eq. (12) )
then reads XLa(X)=(N+1)Lpp1(X) = (n+1=X)La(X), (23
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and obtain e~ Imlx

R KT
@ (n+1) 2a2], sinhx

Jo, +1 -1
2B—=(n+1)[o) "=l ]+n[al—a) . (29

JB X exp{ —x212a?}L Y (X%l a?). (30)
We can also rearrange Here thex integration is well behaved at small and so the
lower limit X, can be replaced by zero.
o0 f o0 e
E (n+1)In ;H = E ninf,— 2 (n+21)Inf, A. Small-magnetic-field (high-temperature) limit
n=0 n n=0 n=0

The small-magnetic field, or equivalently high-
” temperature, limit is defined bya>1. The factor
== nZO Inf,. (25 e~ IM¥/sinhx provides an upper cutoff at min{iy| 1) in the
integrals Eqgs.(18) and (30). In addition, x?/«® is much
Using these expressions, we have for the magnetization smaller than one in the entire range of integration. We can
therefore use the asymptotic expression

11 - 1+ Noop I'(a+n+1
M:%E%: n§=:0 (n+l)[2lnm eiX/zLﬁ(X)z ( - )(VX/4)7a/2Ja([VX]l/2),
)\O[O_n-%—l_o_n] )\0[0’n+1_0'n] (31)
- - " ] (26)  valid in the range 8 x=<n'3[J,(x) denotes the Bessel func-
1+Noo, 1+hoo, tions, I'(n) the Gamma function, and=4n+2a«+ 2], and
In terms of the notation we obtain
1= exp —|m|x)
1 nz— —
o Nolol ol o1 L= Jxmmdx iy Jo(2Vn+12da), (32
@ 1+)\00’2 ’
Agh 1 1 (= exp—|m|x) (2 n+1x

we have 0u= /_n+1 2a)o XX sinhx 1 o .

o (33
11 n
M= 5B % go (n+1)12In(1+X7)— X5~ 1+XZJ' For n<ny=a?max(1/m|), Egs.(32) and(33) yield™®
(28) 1 (mi -1
n min(1,m| )dX 1
=_ — = zIn(kgL+/max1,m|}), (34
For all cases considered beloX/, <1 so that To Zme X 2 (keLr/max(1|ml}), (34
o - —|m[x
11 (n+1) . . N ij e

M=— 5 % nZO 5 [X0T. (29) Aoy=—5— . dx ¥ S (35

This expression will be our starting point for computing the UP o constants of order one, and so theependence can be

magnetization and the susceptibility. Referring back to the'edlected. Fon>no, bothA o, ando, depend om. How-

definition of X” in Eq. (27) above, we see that all contribu- €Ver, for o, the dependence is only logarithmic, since it
tions to the susceptibility are at least third order in the interMerely amounts to replacing the upper bound of the integral
action\g. by al\/n. Hence the dominam dependence oK comes

from Ao .
From these results for the eigenvalues, the magnetization
[Eq. (29)] to lowest order in the small parameter fitk:L+)
Using the general results of Sec. Il, we now find expresis
sions for the susceptibility in two limits—small and large

Ill. MAGNETIC SUSCEPTIBILITY

magnetic fields—and then evaluate the susceptibility in the _ i E 2 1

intermediate regime numerically. Before considering the 3¢o B % a® Ing(kFLT)

various regimes, it is useful to note thélt , as defined in Eq. . o= o .
(27), consists of two factors with noticeably different behav- 1 *  XexXxp—|m[x

ior. On the one hand, because the integrand in(E§). be- Xn; ﬁ[ fo dx sinhx Jl(z‘/ﬁX/a) )
haves as ¥ at smallx, both o) and \y/(1+\q0o)) are

dominated by a logarithmic singularity at zero and so have (36)

little magnetic-field dependence. On the other hand, usingrhe sum oven converges only slowly and of ordeg terms

the relationl,(x) — Ly 1(X) = —XL;_1(X)/n (L is a gener-  contribute. In view of the fact thatis multiplied byx/ a2 in
alized Laguerre polynomigl we can rewriteAo’,=0",""  the argument of the Bessel function, we can replace the sum
—o" as overn by an integral. This yields the final expression
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Ct
m(kp )| XLandad B, (37
where| x| andal = €%/12mrmc? and Cy is given by
Cr= 2 %(n)=0.97, (39)
r=—o
where we define
|X)
fum=i [ "ax” SO 5 2m0. (@9

We see that the interaction-induced contribution to the
magnetization will generally be larger than the Landau mag-

netization due to the large factokcL;.2 The factor

INTERACTION-INDUCED MAGNETIZATION OF A TWO- ...

1939
1.0 T T T T
. \
¥ o5t
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(Ly/Lp?  [=<B]

1/In(keLt) must be interpreted as a renormalized interaction FIG. 2. Magnetic-field dependence of the susceptibility at two

strength in the Cooper chanrief It is interesting that the
interaction contribution to the susceptibility tisird order in

temperatureskEg /T=2000 (solid) and 200(dashed The Landau
susceptibilityy, is the natural unit foyy; the lower panel shows the

this renormalized interaction strength. This unusual state g$ame data on an logarithmic scale. Note the crossover in behavior
affairs can easily be understood by considering the classicafthenLy~Ly .

paths involved, as we shall discuss in Sec. IV.
The magnetic susceptibility obtained above is at zero

In this case, the sum over converges rapidlyfaster than

field and to lowest order in the renormalized interactionl/n?), but typically about 1 terms contribute to the Mat-

strength which is proportional to 1/k{L+). It is possible to
derive, with a similar approach, an expression6@) with-

subara sum. Neglecting again the logarithmic dependence of
o onnand|m|, we can make progress by noting that the

out expanding in the renomalized interaction strength. This iSUm overm can be turned into an integral. This yields the

done in Appendix A; one obtains

o 3 g€,
|XLandalJ_ (kFLT)g fo gz)\w(g)fw(g)y (40

ks

where we have introduced

Ao

A, (&)= , 41
© 2+No[20%(T) =g, ()] @0
0,00 [ “’S) ¢, 42

- ~|mlx
20°=2¢"(B=0)= dx g = INCkeLr/max 1,)m))].

(43

B. Large-magnetic-field (low-temperature) limit

In the high-magnetic-field or equivalently the low-
temperature limit, defined by a<1, the factor
exp{—x42a%}L,(x?/ a?) always cuts off the integral in Eq.
(18) at x<1 so that we can approximate sixkax. Hence,
we find

N 1fmin[|m|1,a/\ﬁ]%

O'w——
Xmin X
=imin[In(keLy /N, In(keL/[m])],  (44)
Aol 5 f “dyye @My 2 (45)
© 2(n+1)Jo my

high-field result

H
= m(kFLH”XLandalLBv (46)
where the constar® is
‘ (Fa(m))?
cH—f dm nZO NCrs ~0.74 (47)
with
Fn(m)= fo dy yeImy=y2 1y2), (48)

The principal difference between the results for high and low
fields is thus the replacement of the thermal lerigftby the
magnetic length .

C. Intermediate range

When « is neither much smaller nor much larger than
one, it is not possible to obtain a simple expression for the
magnetic response. In this regime, we have performed a nu-
merical integration of Eq(18) to compute the eigenvalues
o as well as their derivatives with respectBo The mag-
netic susceptibility is then obtained through the field deriva-
tive of Eq. (28),

-1 (X2 H2dx"1/dB
= — n ,
X" B S 5 (1+X012

by direct summation over the eigenvalue index and the
bosonic Matsubara frequencies.
Figure 2 shows the resulting/| x| angad @s a function of

(49
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20 . . T T field-dependent terms together, one finds
UL L ELLLLLL BRI LLLL DL
1.5 10 3] QZZ Q(n)’ (50)
E ] n=1
T 10 - 1-
= _“ 0 luul v o ok 1 (_)\O)n
it 0.0001 0001 001 oOM=_= dry---dr,
B n
05
- - Ligl(F1, -+ fn)
0.0 . | . . Xz(rl-rz)‘"E(Vn,rl)COt’(z—LT
0.0 0.002 0.004 0.006 0.008 0.010
T/E AmA(re, ... .ry)B
F XCO{ tot( SI(.’ZS n) )’ (51)
0

FIG. 3. Temperature dependence of the interaction-induced low-

field susceptibility;L,,/L+=8.9 is fixed. The total susceptibility Wherei(r,r’) is the particle-particle propagator f@=0
differs from the interaction-induced contribution shown here only_ + " 5 | " ic tha total length, and the area enclosed
by aconstant offsetlue to the Landau and Pauli contributions. The by the po’lygtgn ’ tot

inset shows the same data on a log-log scale. For this low field, the As it stands, Eq(50) is of little practical use because the

contribution of thew=0 Matsubara frequencydashedl gives a ies inn is st v di the t f orden is tvpi
substantial portion of the resukolid). Note the approximate power series inn is strongly divergentthe term (.) orden s typt-
cally larger than the one of order—1). It is, however, pos-

law increase iny at low temperatures, consistent with the ™~ . L .
asymptotic expression Tin® T. sible to apply a simple renormalization-group argument, in-

troduced in Ref. 10 and discussed in more detail in Ref. 22.
Indeed, as we already stressed when deriving the eigenvalues

g\fthe particle-particle propagatc,(r,r') must be cutoff at
o=1/kg because the use of the screened interaction as-
sumes that all high-momentum degrees of freedom have al-
éeady been integrated otitWe therefore have

magnetic fieldo=a 2= (27T|_-2|—/ ¢o) B for fixed values of the
temperature. The crossover between the low- and high-fiel
regimes is clearly seen. A increasesy has a slight maxi-
mum around_y=Lg which arises from the competition be-
tween the increased field sensitivity of large triangles and th
thermal suppression of long sides. In the large-field regime,

the numerical result is in reasonable agreement with the S(r,r'Ag)= !

value obtained from the asymptotic expressid6): for L 4aL4|r—r'|sinh(|r—r'|/Ly)

=10Ly and kgL =64, x/|XLanda=0.28 numerically and ,

0.18 analytically. for [r—r'|>Ao
Figure 3 shows the temperature dependencg af fixed =0 for [r—r'|<As,. (52)

Ly /Ly in the low-field regime. ThekgL+)/In3(k-Ly) behav-
ior is apparent, particularly in the inset. Again, the numericalReferences 10 and 22 show than if a new length sdale
result agrees nicely with the asymptotic result: at the low>Aq much smaller that any other characteristic length scale
temperatureT/Ex=10" 3, Eq. (37) yields x/| xLandaj=0.51  of the problem 1 or L) is introduced, one can replace,
while our numerical result is 0.52. by A in Eq. (52) provided the “bare” coupling constan

in Eq. (50) is replaced by the renormalized one,

IV. SEMICLASSICAL INTERPRETATION (A) No
Ara(A)= :
We have seen above that the magnetic response has a 1+(No/2)In(AlAo)

rather peculiar property: it ighird order in the renormalized For the leading behavior in T(k-L,), we can assume

coupling constani =2 In"!(keLry), both in the low- and A=elLt with e<1 but assumed fixed as kpl7) goes to
high-field regimes. Within the approach used up to now, it ISinfinity. In that case\ge(A)=2 In~(keL1)+O[In~ 2(keL1)]

difficult to understand the physical origin of this behavior. In ;g smail and Eq(50) becomes a genuine perturbative expan-
this section we show that an approach in terms of classicafj,, \yhose leading behavior is given by the first nonvanish-
paths provides a natural understanding of this fact. Conswﬁhg term. Clearly,Q)=0, andQ® is independent of the
ering for instance the low-field regiméhe argument can be )5 netic field and so does not contribute to the magnetic
transposed to high fields W't.h no essential c_hfﬁcultyye response. Therefore, the leading behavior is given by
shall, moreover, recover precisely the expression(Eg. in Q®)_that is, third orderin In~(k-L;)—as illustrated in Fig.

a much simpler way. 4 and we have
From the expression Eq.10) for the particle-particle

propagator, it is clear that the interaction contribution to the 1 2 3

thermodynamic potential in Eq2) can be written as a sum X(B_O)_@(m) J'L21L31L23>Adr2dr3

with an interaction event and the magnetic field enters only _ _ _ Liot| [ 47 Ar)| 2
via the Aharonov-Bohm factor associated with the magnetic XE(O,rz)E(rz,r3)2(r2,0)cot%< )( )

flux enclosed by the polygon. Performing the sum over 2Lt/\ o
bosonic Matsubara frequencies in Eg) and grouping the (54

(53

over closed polygonal paths, where each vertex is associated
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can be given a natural semiclassical interpretation in terms of
the classical-path picture for the thermodynamic potential: a
polygon must have at least three sides in order to enclose
area. Moreover, the much simpler classical-path approach
gives exactly the same answer as the eigenvalue calculation.

N\ / Higher-than-third-order contribution§n the bare coupling
\_,' constant predominantly lead to an substantial downward
renormalization of the coupling constant. This picture has
(a) (b) been made precise in the present paper by means of a

. . . . renormalization-group approach.
FIG. 4. (a) Typical trajectory of lowest order in the coupling " - Lo
constant which contributes to the interaction contribution to the, In the low-field (high-temperature limit Ly<Ly, the

magnetization. Each vertex of the polygon corresponds to an intert-erm:)erature dependence of the suscgptlbllltyT_slli? T: this
mes from the thermal lengtbh; which dominates here

action event. Note that at least three interaction events are requir | . . h h ke sianif
to obtain a trajectory enclosing magnetic flux. This explains the fac?€CaUse only trajectories shorter thap make significant

that the interaction contribution to the magnetization is third ordercOntributions to the Green functions. At the lowest tempera-
in the (renormalizedl interaction. (b) Higher-order contributions tUres, this behavior is cut off by a finite magnetic field once

predominantly lead to a renormalization of the third-order resultt<Lt. In the high-field(low-temperaturglimit L+>Ly,

due to short trajectories like the one shown. the susceptibility is no longer temperature dependent. The
Green function is still dominated by trajectories shorter than

(L2:|r2|’ L3:|r3|’ L23: |r3_r2|)_ Expressing all distances LT, but n.OW trajeCtOI'IeS. enClOS|ng more area th.incon'

in the integral in units of.; gives tribute with random signs due to the Aharonov-Bohm
phases. Hence, in this case, the relevant cutoff length is

Cro So far, we ignored dephasing due to inelastic scattering.
x(B=0)= 3 (keLl 1) | XLandad (55 At low temperatures, this should be mostly due to electron-
7 In°(kely) electron scattering. We expect, however, that dephasing will
with the constanCrg given by not significantly affect our results. Within the semiclassical
approach employed in this paper, dephasing suppresses the

1 AtzotCOt}"(Ltot/Z) contribution of trajector.ie-s anger than thg dephasing length
CRG=—2J drzdrgL Lol SnhLo SinhLossinhLe” L. For a clean Fermi liquid such as discussed here, one
™ 2-23-3 2 2 3 expectsL ,~ 1/T2. Thus, at sufficiently low temperatures the
(56) dephasing length should always be longer than the thermal
Because of the factoA2, in the numerator, the integrand '€ngthLy~1/T. Correspondingly, the suppression of trajec-
here is regular and the cutoff can be taken to zero. By contories due to_thermal smearing should always set in before
sidering the limith y<In(keL1)<1 (instead of\,=1) where the suppression due to dephasing.

both the standard and renormalization-group approaches are !t IS interesting to compare the present results with the
accurate, it can be shown th@ke=Cr, so that Eq(55) is contributions to the susceptibility afchaotig mesoscopic

strictly equivalent to Eq(37). This approach shows clearly Samples of Iijlg_ezalr siz¢. within the independent-electron
that the third power of the coupling constant arises becaus@PProximatio
only trajectories with three or more vertices enclose flux.

X~|XLandaLL (57)
V. DISCUSSION AND SUMMARY and due to interaction®
In this paper we study the interaction contribution to the (kel)
magnetization of a two-dimensional electron gas in the limit X~ mbﬂandad’ (58

L+<R¢,l. We find that this interaction-induced contribu-

tion is paramagnetic for the repulsive Coulomb interactiorwhere we have takebh;~L, T>A (A is the level spacing

and dominates over the Landau diamagnetism at smalnd L,>L. In contrast to the bulk results derived in this

enough temperatures and fieftihe Pauli paramagnetism is paper, these expressions are zeroth or first order in the renor-

even smaller than Landau diamagnetism inmalized interaction constant. These contributions exist for

GaAs/ALGa, _,As heterostructures because of the small efimesoscopic samples because, in finite-size systems, flux-

fective mass and the reduction in théactor. It appears from enclosing trajectories are produced by scattering from the

the quantitative answer that one needs to go to rather logeometric boundaries of the system. Nevertheless, apart from

temperatures before the interaction becomes truly larger thathe different order in the renormalized interaction, the finite-

the Landau susceptibiliticf. Fig. 3. Still, such temperatures size result due to interactions is qualitatively the same as the

are possible in two-dimensional electron-gas systems. Ibulk result derived here.

should be possible to distinguish the interaction contribution Orbital magnetism in mesoscopic samples has been a con-

by way of either its temperature dependef®iace the Lan- troversial issue over the last decade, both for ballistic and

dau susceptibility isT independentor its dependence ok diffusive structures, ring and dot geometrfes>~26In par-

in a gated structure. ticular, the fact that the measured values are apparently sub-
We find that the leading contribution to the magnetizationstantially larger than the theoretical results has attracted a lot

is third-order in the renormalized Coulomb interaction. Thisof attention. In order to benchmark the theory in a simpler
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system, we think the magnetization of a clean two-wheref (&) is defined by Eq(39). In the same way, taking

dimensional electron gas should be measured and that thike derivative of Eq(32) with respect td yields

would provide valuable information in addressing the “per- don-1 1 .
. TR - g

sistent current problem” in rings and dots. o200 _ Bf[(n—l/Z)b]: _ B[f(§)+0(b)]-

ACKNOWLEDGMENTS (A2)
We thank Rodolfo Jalabert and Klaus Richter for valuable! NUS: using the notation of Eq#&2) and(43),

disc_ussio_r]s. The LPTMS,_is “Unitede recherche de 202‘1=2(r°—g[(n—1/2)b]22¢r°—g(§)+0(b).
I'Universite Paris 11 assocte au C.N.R.S.” F.v.O. was (A3)

partly supported by SFB 34@oln-Aachen-Jlich).
From these expressions for the eigenvalues, we obtain

APPENDIX XZ_1=Xw(§,b)

In this appendix we derive an expression for the suscep-
tibility at zero field, Eq.(40), which does not involve ex- Nof (61§

— 2
panding in the renormalized coupling constant. Starting from =D 2+ Ng[20°—9g(8)] +O(b
the magnetization Eq29), the essential ingredient needed is
expressions for the eigenvalues. One can check that both the =—b\ (&) ,(&)/E+O(b?). (A4)

Bessel approximations, Eq&2) and (33), and the replace-
ment of the discrete sum over Landau-level indeky an
integral only yield corrections of ordéB? to the magnetic
susceptibility. Therefore, as long as we are only interested i
the susceptibility aB=0, we can make the change of vari-

Note that it is necessary to compensate the faatdr origi-
nating from the terrmdn when changing variables fromto
. Using the above expression, one can therefore write the
agnetization up to corrections of ordef,

ablesn—&=bn where b=a 2= (27L2/$,)B is propor- 1 &dé , ,
tional to the magnetic field. We can thus write M=— 3¢oﬂ2 ?Xw(&b) +0(b%), (A5
-1_ . . . .
2A07, "=—bf,(§I¢, (A1) which immediately gives Eq40).

1p.A. Lee and M.G. Payne, Phys. Rev5B923(1972. 14v. Ambegaokar and U. Eckern, Phys. Rev. Léf, 381 (1990.
2J. Kurkijarvi, V. Ambegaokar, and G. Eilenberger, Phys. Rev. B 15U. Eckern, Z. Phys. B: Condens. Matt2, 389 (1991).

5, 868 (1972. ; 18M. Gutzwiller, Chaos in Classical and Quantum Mechanics
3L.G. Aslamazov and A.l. Larkin, Zh. IBp. Teor. Fiz.67, 647 (Springer, New York, 1990

(1974 [Sov. Phys. JETRO, 321(1975]. 17A. Erdelyi, Higher Transcendental Functions, Vol. (McGraw-

4L.P. Levy, D.H. Reich, L.N. Pfeiffer, and K.W. West, Physica B Hill, New York, 1955 section 10.15.
189, 204 (1993.

5p. Malilly, C. Chapelier, and A. Benoit, Phys. Rev. Lét@, 2020
(1993.

63.P. Eisenstein, H.L. Stormer, V. Narayanamurti, A.Y. Cho, A.C.
Gossard, and C.W. Tu, Phys. Rev. Lé&5, 875(1985.

"A. Potts, R. Shepherd, W.G. Herrenden-Harker, M. Elliott, C.L.
Jones, A. Usher, G.A.C. Jones, D.A. Ritchie, E.H. Linfield, and "
M. Grimshaw, J. Phys.: Condens. Mat&r5685(1996). 21 von Oppean!d. 50, 17 151(1994.

85 A J. Wiegers, M. Specht, L.P. g M.Y. Simmons, D.A. D. Ullmo, K. Richter, and R.A. Jalabert, Phys. Rev. L&#, 383

Ritchie, A. Cavanna, B. Etienne, G. Martinez, and P. Wyder, (1999; K. Richter, D. Ulimo, and R.A. Jalabert, Phys. Re,

Bstrictly speaking, the Bessel function approximation &4) and
hence Eqgs(32) and(33) are valid only for largen. However,
one checks by direct computation that in the present case, no
serious errors are incurred when using 1) even for smalh.

19B. Shapiro, Physica 200, 498 (1992.

20F, yon Oppen and E.K. Riedel, Phys. Rev4& 9170(1993; F.

Phys. Rev. Lett79, 3238(1997). L (1996 _

9. Meinel, T. Hengstmann, D. Grundler, D. Heitmann, W. Weg- D. Ullmo, H.U. Baranger, K. Richter, F. von Oppen, and R.A.
scheider, and M. Bichler, Phys. Rev. Le82, 819(1999. Jalab,erl(unpublisheai

10D, Ullmo, H.U. Baranger, K. Richter, F. von Oppen, and R.A. L.P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev.
Jalabert, Phys. Rev. Le®0, 895 (1998. Lett. 64, 2074(1990.

11 A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskilethods of ~ 2*V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J.
Quantum Field Theory in Statistical Physi¢®rentice-Hall, Gallagher, and A. Kleinsasser, Phys. Rev. L&#.3578(1997).
Englewood Cliffs, NJ, 1963 ] 25p, Mohanty, E.M.Q. Jariwala, M.B. Ketchen, and R.A. Webb, in

12g L. Altshuler, A.G. Aronov, and A. Yu. Zyuzin, Zh.isp. Teor. Quantum Coherence and Decoherenedited by K. Fujikawa
Fiz. 84, 1525(1983 [Sov. Phys. JETB7, 889(1983]. and Y.A. Ono(Elsevier, New York, 1996

BFor a review see B.L. Altshuler and A.G. Aronov, Electron-  2For recent reviews see, e.g., U. Eckern and P. Schwab, Adv.
Electron Interactions in Disordered Systermedited by A.L. Phys. 44, 387 (1995; K. Efetov, Supersymmetry in Disorder

Efros and M. PollakNorth-Holland, Amsterdam, 1985 and ChaogCambridge University Press, Cambridge, 1996



