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Interaction-induced magnetization of a two-dimensional electron gas
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We consider the contribution of electron-electron interactions to the orbital magnetization of a two-
dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This
regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At
sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contri-
butions. Curiously, the interaction-induced magnetization is third-order in the~renormalized! Coulomb inter-
action. We give a simple interpretation of this effect in terms of classical paths using a renormalization
argument: a polygon must have at least three sides in order to enclose an area. To leading order in the
renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.
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I. INTRODUCTION

Within the independent-electron picture, the magnetic
sponse of a bulk two-dimensional electron gas has
sources: Pauli paramagnetism originating from the elec
spin and Landau diamagnetism originating from the orb
electronic motion. After studies of the contribution of supe
conducting fluctuations to the magnetic response of su
conductors aboveTc ,1,2 Aslamazov and Larkin3 pointed out
that electron-electron interactions make an analogous co
bution to the magnetic response of normal-metal syste
While the fluctuation contribution is diamagnetic in supe
conductors, the Coulomb interaction gives a paramagn
contribution to the susceptibility of normal metals; this d
ference is a direct consequence of the different signs of
effective interaction in the two cases.

In their seminal work, Aslamazov and Larkin3 computed
the interaction contribution to the susceptibility of thre
dimensional metals and of layered systems at zero magn
field. They found that the effect was particularly strong f
layered systems. In view of the importance of the physics
the two-dimensional~2D! electron gas, the purpose of th
present paper is to compute the interaction-induced ma
tization of a strictlytwo-dimensionalbulk system. We shall
moreover, go beyond the zero-field limit considered
Aslamazov and Larkin and compute the magnetization
arbitrary classically weak magnetic fields. We find that t
interaction-induced magnetization generally dominates o
the Landau and Pauli contributions at sufficiently low te
peratures.

The relevant length scales of the problem are the ther
length LT5\vF /(2pT), the magnetic length LH
5(\/eB)1/2, the cyclotron radiusRc5mevF /eB, and the
elastic mean free pathl el . Throughout this paper, we focu
on the regimeLT! l el , which allows us to neglect the effec
of impurity scattering. Moreover, we restrict ourselves
classically weak magnetic fields, defined by the condit
LT!Rc ~or equivalently\vc!T, wherevc is the cyclotron
frequency!. Within a semiclassical approach, this impli
that we can neglect the classical effects of the magnetic fi
PRB 620163-1829/2000/62~3!/1935~8!/$15.00
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on the trajectories and only need to consider the Aharon
Bohm phases induced by theB field. For classically weak
magnetic fields, we can distinguish between two magn
field regimes: The low-field regime, considered by Aslam
zov and Larkin, whereLT!LH and the high-field regime
LT@LH . We present analytical results in both regimes a
also show numerical results bridging these two regions. M
importantly, we present a simple renormalization argum
based on classical paths which exactly reproduces the re
of the complicated full treatment.

The magnetization of the two-dimensional electron g
has been studied experimentally in mesoscopic sampl4,5

and in the quantum-Hall regime.6–9 To the best of our
knowledge, no experiments have been performed on bulk
samples at classically weak magnetic fields. Such exp
ments would be a valuable test of our theoretical understa
ing of the interaction contribution to the magnetization.

This paper is organized as follows. In Sec. II we deve
the semiclassical approach to the interaction-induced ma
tization for 2D bulk systems. In Sec. III we employ the ge
eral results derived in Sec. II to derive explicit expressio
for the magnetization in the high- and low-field regimes.
curious feature of these results is that the interaction-indu
susceptibility is third order in the~renormalized! interaction
strength. In Sec. IV we show how the renormalization-gro
approach introduced in Ref. 10 allows one to give a sim
semiclassical interpretation of this result. We conclude
Sec. V by comparing the interaction-induced susceptibility
the Landau and Pauli susceptibilities and discussing fin
size effects.

II. THE SEMICLASSICAL APPROACH

A. Basics

1. Cooper channel

Calculating the interaction contribution to the magne
response requires one to extend the high-density expan
@random-phase approximation~RPA!# of the thermodynamic
potential11 by including interaction corrections from dia
1935 ©2000 The American Physical Society
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1936 PRB 62FELIX von OPPEN, DENIS ULLMO, AND HAROLD U. BARANGER
grams in the Cooper channel. This was first done in the c
text of superconducting fluctuations and then applied to
ordered normal metals.3,12–15 Such expansions usually giv
reliable results even beyond the high density limit, if t
relevant sets of terms are properly resummed. The rele
Cooper-like diagrams are shown in Fig. 1. The scree
Coulomb interaction~wavy lines! can be treated as local:13,14

U(r2r 8)5l0N(0)21d(r2r 8). Here,N(0)5me /(p\2) de-
notes the full density of states and the bookkeeping in
l051 identifies the order of perturbation. For a local inte
action, the direct and exchange term are the same up
factor of (22) coming from the spin sums and the differe
number of fermion loops. The straight lines in Fig. 1 rep
sent finite-temperature Green functions of the noninterac
system. These take the form

Gr ,r8~e!5u~e!Gr ,r8
R

~EF1 i e!1u~2e!Gr ,r8
A

~EF1 i e!
~1!

in terms of the retarded and advanced Green functi

Gr ,r
R8(E)5@Gr8,r

A (E* )#* .
The perturbation expansion for this interaction contrib

tion V to the thermodynamic potential, which yields th
magnetic response, can be formally expressed as12,13

V52
1

b (
n51

`
~2l0!n

n (
v

E dr1¯drn

3Sv~r1 ,r2!•••Sv~rn ,r1! ~2!

5
1

b (
v

Tr$ ln@11l0Ŝv#%. ~3!

Here v denotes the bosonic Matsubara frequenciesv
52pm/b ~m is any positive or negative integer! with b
51/kBT. ~We employ units such thatkB51 in this paper.!
The particle-particle propagatorSv is expressed~in position
representation! in terms of products of finite-temperatur
Green functions as11

Sv~r ,r 8!5
1

bN~0!(e

EF

Gr ,r8~e!Gr ,r8~v2e!, ~4!

where the sum runs over the fermionic Matsubara frequ
cies e5(2n11)p/b. The shortlength~high-frequency! be-
havior is included in the screened interaction, thus requir
a cutoff of the frequency sums at the Fermi energyEF .13

2. Semiclassical Green function

In view of the fact that the Fermi wavelength is the sma
est length scale in the problem, our strategy will be to

FIG. 1. Leading Cooper-channel diagrams for the interact
contribution to the thermodynamic potential. Because we can
the interaction to be local~a d function!, the corresponding Fock
like diagrams differ from the Hartree-like diagrams shown only
a factor of21/2.
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place the free Green functions in the particle-particle pro
gator by their semiclassical approximations. Generally,
semiclassical approximation to the Green functionGr ,r8(EF
1 i e,B) is expressed as a sum over all classical paths fror
to r 8 at energyEF .16 For the bulk 2D electron gas, there
only a single such trajectory, namely the straight line co
necting the two points. Fore50 andB50 one therefore has

Gr ,r8
R

~EF ,B50!.
1

iA2p

me

\2

exp@ iSr ,r8~EF!/\2 ip/4#

~kFur2r 8u!1/2
,

~5!

whereSr ,r8(EF)5\kFur2r 8u is the classical action along th
path. Moreover, since we assume the magnetic field is c
sically weak, the field affects the action along the pa
through

S~B!5S~B50!1
e

cEr

r8
dx A~x!, ~6!

where the integral is along the unperturbed straight line p
Finally, it turns out that only small values of the imagina
part of the energye should be considered, so we can use
relation

~]S/]E!5t, ~7!

wheret5ur2r 8u/vF is the time of flight fromr to r 8. In this
way one obtains the semiclassical Green function for fin
field and finite~imaginary! energye,

Gr ,r8
R

~EF1 i e,B!5Gr ,r8
R

~EF ,B50!expF ie

\cEr

r8
dx A~x!G

3expF2
ueuur2r 8u

\vF
G . ~8!

3. Semiclassical particle-particle propagator

In the calculation of the thermodynamic potential Eq.~2!,
one should neglect all rapidly oscillating contributions
Sv(r ,r 8) as these will give a small contribution upon int
gration. Thus, in the particle-particle propagatorS, it is nec-
essary to pair advanced and retarded Green functions,
furthermore, to pair each path in the semiclassical expres
for GR with those in GA for which the dynamical phase
factor cancels. The obvious case of pairing each path w
itself is excluded because it yields no field dependence inV
and hence zero magnetization. Thus one is led to cons
pairs of time-reversed paths—for these the dynamical ph
cancels but the magnetic field part is multiplied by two. T
pairing of GR with GA means concretely that one shou
keep only those terms in whiche and v2e have opposite
signs in the sum over Matsubara frequencies. Using the
lation

(
e(v2e),0

exp@2u2e2vut/\#5
exp@2uvut/\#

sinh~2tp/b\!
, ~9!

one obtains the final result forS

Sv~r ,r 8!5Sv
(0)~ ur2r 8u!expH 2ie

c\ E
r

r8
dx A~x!J , ~10!

n
e
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where we have introduced the zero field limit of the partic
particle propagator

Sv
(0)~ ur2r 8u!5

1

4pLTur2r 8u

exp@2umuur2r 8u/LT#

sinh~ ur2r 8u/LT!
.

~11!

B. Derivation of the eigenvalues

The ladder-diagram contribution to the thermodynam
potential is expressed in Eq.~3! solely in terms of the eigen
values of the operatorSv(r ,r 8). We therefore need to solv
the eigenvalue equation

E dr 8 Sv~r ,r 8!cn,l~r 8!5sv
n,lcn,l~r !, ~12!

wheren and l are quantum numbers.
Assuming from now on the symmetric gaugeA5B3r /2,

Eq. ~10! reads

Sv~r ,r 8!5Sv
(0)~ ur2r 8u!expH 2ie

c\

B

2
~r3r 8!J . ~13!

It can be easily checked that any operator of the form
~13! commutes with any element of the magnetic translat
group

T̂~R!5expF i

\
R•S p̂2

2e

c
AD G ~14!

and therefore with its generators

P̂x5@ p̂x2~2e/c!Ax#,

P̂y5@ p̂y2~2e/c!Ay#.

Noting that, first,Sv(r ,r 8) is invariant under rotation and
second, the Landau Hamiltonian for a particle of charg
(22e) can be written as

ĤL5S p̂1
2e

c
AD 2

5P̂x
21P̂y

21
4e

c\2 Ĵz , ~15!

we see thatSv(r ,r 8) is diagonal in the basis$cn,l% of the
eigenvectors ofĤL and Ĵz , wheren and l are the Landau-
level and angular-momentum quantum numbers, resp
tively. For l 50 the Landau-level wave function~for a par-
ticle of charge22e) has the well-known form

cn,0~r !5expH 2
ur u2

2LH
2 J LnS ur u2

LH
2 D , ~16!

with Ln the Laguerre polynomial andLH5(\/eB)1/2.
Finally, an important property of theT̂(R) is that they

commute with bothĤL andSv(r ,r 8) but not withJz . Since,
moreover, within a Landau level there is no stable subsp
for all the T̂(R), the eigenvaluessv

n,l cannot depend on th
angular-momentum quantum numberl. At r50, Eq. ~12!
then reads
-

c

.
n

c-

ce

sv
n,l5sv

n,05
1

cn,0~0!
E dr Sv

(0)~ ur u!cn,0~r !. ~17!

Using the explicit expressions forSv
(0)(r ) @Eq. ~11!# and

cn,0 , we finally obtain for the eigenvalues

sv
n,l5sv

n,0

5
1

2Exmin

`

dx
exp$2umux%

sinhx

3exp$2x2/2a2%Ln~x2/a2!, ~18!

wherea5LH /LT is the essential dimensionless parameter
is important to keep in mind that the screened interact
already implicitly takes into account the effect of the inte
action on scales shorter than the Fermi wavelength, so
integral overx should be cut off for smallx at approximately
x min51/(kFLT).

C. Reordering of the sum

The interaction contribution to the thermodynamic pote
tial is given in terms of the eigenvaluessv

n by

V5
2BA

f0

1

b (
v

(
n50

`

ln~11l0sv
n !. ~19!

Here we have already taken proper account of the deg
eracy of the eigenvalues by the prefactor 2BA/f0. The mag-
netization per unit area now follows by differentiation wi
respect toB,

M52
2

f0b (
v

(
n50

` H ln~11l0sv
n !1

Bl0

11l0sv
n

]sv
n

]B J .

~20!

When done naively, the sum over the quantum numbe
this expression diverges. We assume that this is assoc
with the inadequate treatment of the interaction at short
tances. We expect that when working with the full screen
interaction, the contribution of large quantum numbers is
propriately suppressed. Hence, we reorder the sum in su
way that the sum becomes convergent and the eigenva
with sufficiently largen do not contribute appreciably to th
sum. This philosophy is completely analogous to the
proach taken in the work on the fluctuation contribution
the diamagnetic susceptibility in superconductors ab
Tc .1,2 In fact, our reordering closely follows the reorderin
proposed by Payne and Lee.1

In a first step, we compute

B
]sv

n

]B
52pE

0

`

dr rSv
(0)~r!expH 2

eB

2\
r2J eB

\

3r2@Ln8~eBr2/\!2 1
2 Ln~eBr2/\!#. ~21!

To simplify this expression, we use the recursion relatio
for Laguerre polynomials

xLn8~x!5nLn~x!2nLn21~x!, ~22!

xLn8~x!5~n11!Ln11~x!2~n112x!Ln~x!, ~23!
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and obtain

2B
]sv

n

]B
5~n11!@sv

n112sv
n #1n@sv

n 2sv
n21#. ~24!

We can also rearrange

(
n50

`

~n11!ln
f n11

f n
5 (

n50

`

n ln f n2 (
n50

`

~n11!ln f n

52 (
n50

`

ln f n . ~25!

Using these expressions, we have for the magnetization

M5
1

f0

1

b (
v

(
n50

`

~n11!H 2 ln
11l0sv

n11

11l0sv
n

2
l0@sv

n112sv
n #

11l0sv
n

2
l0@sv

n112sv
n #

11l0sv
n11 J . ~26!

In terms of the notation

Xv
n 5

l0@sv
n112sv

n #

11l0sv
n

, ~27!

we have

M5
1

f0

1

b (
v

(
n50

`

~n11!H 2 ln~11Xv
n !2Xv

n 2
Xv

n

11Xv
n J .

~28!

For all cases considered below,Xv
n !1 so that

M.2
1

f0

1

b (
v

(
n50

`
~n11!

3
@Xv

n #3. ~29!

This expression will be our starting point for computing t
magnetization and the susceptibility. Referring back to
definition of Xv

n in Eq. ~27! above, we see that all contribu
tions to the susceptibility are at least third order in the int
actionl0.

III. MAGNETIC SUSCEPTIBILITY

Using the general results of Sec. II, we now find expr
sions for the susceptibility in two limits—small and larg
magnetic fields—and then evaluate the susceptibility in
intermediate regime numerically. Before considering
various regimes, it is useful to note thatXv

n , as defined in Eq.
~27!, consists of two factors with noticeably different beha
ior. On the one hand, because the integrand in Eq.~18! be-
haves as 1/x at small x, both sv

n and l0 /(11l0sv
n ) are

dominated by a logarithmic singularity at zero and so ha
little magnetic-field dependence. On the other hand, us
the relationLn(x)2Ln21(x)52xLn21

1 (x)/n (Ln
1 is a gener-

alized Laguerre polynomial!, we can rewriteDsv
n [sv

n11

2sv
n as
e

-

-

e
e

-

e
g

Dsv
n 52

1

~n11!

1

2a2E
0

`

dx x2
e2umux

sinhx

3exp$2x2/2a2%Ln
1~x2/a2!. ~30!

Here thex integration is well behaved at smallx, and so the
lower limit xmin can be replaced by zero.

A. Small-magnetic-field „high-temperature… limit

The small-magnetic field, or equivalently high
temperature, limit is defined bya@1. The factor
e2umux/sinhx provides an upper cutoff at min(1,umu21) in the
integrals Eqs.~18! and ~30!. In addition, x2/a2 is much
smaller than one in the entire range of integration. We c
therefore use the asymptotic expression17

e2x/2Ln
a~x!.

G~a1n11!

n!
~nx/4!2a/2Ja~@nx#1/2!,

~31!

valid in the range 0<x<n1/3 @Ja(x) denotes the Bessel func
tions, G(n) the Gamma function, andn54n12a12], and
we obtain

sv
n .

1

2Exmin

`

dx
exp~2umux!

sinhx
J0~2An11/2x/a!, ~32!

Dsv
n .2

1

An11

1

2aE0

`

dx x
exp~2umux!

sinhx
J1S 2An11x

a D .

~33!

For n!n05a2 max(1,umu), Eqs.~32! and ~33! yield18

sv
n .

1

2Exmin

min(1,umu21)dx

x
5

1

2
ln~kFLT /max$1,umu%!, ~34!

Dsv
n .2

1

2a2E
0

`

dx x2
e2umux

sinhx
, ~35!

up to constants of order one, and so then dependence can b
neglected. Forn.n0, bothDsv

n andsv
n depend onn. How-

ever, for sv
n the dependence is only logarithmic, since

merely amounts to replacing the upper bound of the integ
by a/An. Hence the dominantn dependence ofXv

n comes
from Dsv

n .
From these results for the eigenvalues, the magnetiza

@Eq. ~29!# to lowest order in the small parameter ln21(kFLT)
is

M5
1

3f0

1

b (
v

1

a3 ln3~kFLT!

3 (
n51

`
1

An
H E

0

`

dx
x exp~2umux!

sinhx
J1~2Anx/a!J 3

.

~36!

The sum overn converges only slowly and of ordern0 terms
contribute. In view of the fact thatn is multiplied byx2/a2 in
the argument of the Bessel function, we can replace the
over n by an integral. This yields the final expression
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M5
CT

p ln3~kFLT!
~kFLT!uxLandauuB, ~37!

whereuxLandauu5e2/12pmc2 andCT is given by

CT5 (
r 52`

` E
0

`dn

n2 f v
3 ~n!.0.97, ~38!

where we define

f v~n![AnE
0

`

dx
x exp~2umux!

sinhx
J1~2Anx!. ~39!

We see that the interaction-induced contribution to
magnetization will generally be larger than the Landau m
netization due to the large factorkFLT .3 The factor
1/ln(kFLT) must be interpreted as a renormalized interact
strength in the Cooper channel.3,13 It is interesting that the
interaction contribution to the susceptibility isthird order in
this renormalized interaction strength. This unusual state
affairs can easily be understood by considering the class
paths involved, as we shall discuss in Sec. IV.

The magnetic susceptibilityx obtained above is at zer
field and to lowest order in the renormalized interacti
strength which is proportional to 1/ln(kFLT). It is possible to
derive, with a similar approach, an expression forx(0) with-
out expanding in the renomalized interaction strength. Thi
done in Appendix A; one obtains

x~0!

uxLandauu
5

3

p
~kFLT!(

v
E

0

`dj

j2
lv

3 ~j! f v
3 ~j!, ~40!

where we have introduced

lv~j!5
l0

21l0@2s0~T!2gv~j!#
, ~41!

gv~x!5E
0

j f v~j8!

j8
dj8, ~42!

2s0[2sv
n ~B50!5E

xmin

`

dx
e2umux

sinhx
. ln@kFLT /max~1,umu!#.

~43!

B. Large-magnetic-field „low-temperature… limit

In the high-magnetic-field or equivalently the low
temperature limit, defined by a!1, the factor
exp$2x2/2a2%Ln(x2/a2) always cuts off the integral in Eq
~18! at x!1 so that we can approximate sinhx.x. Hence,
we find

sv
n .

1

2Exmin

min[umu21,a/An] dx

x

5 1
2 min@ ln~kFLH /An!, ln~kFLT /umu!#, ~44!

Dsv
n .2

1

2~n11!
E

0

`

dy ye2aumuy2y2/2Ln
1~y2!. ~45!
e
-

n

of
al

is

In this case, the sum overn converges rapidly~faster than
1/n2), but typically about 1/a terms contribute to the Mat
subara sum. Neglecting again the logarithmic dependenc
sv

n on n and umu, we can make progress by noting that t
sum overm can be turned into an integral. This yields th
high-field result

M5
CH

p ln3~kFLH!
~kFLH!uxLandauuB, ~46!

where the constantCH is

CH5E
2`

`

dm(
n50

`
„Fn~m!…3

~n11!2 .0.74 ~47!

with

Fn~m!5E
0

`

dy ye2umuy2y2/2Ln
1~y2!. ~48!

The principal difference between the results for high and l
fields is thus the replacement of the thermal lengthLT by the
magnetic lengthLH .

C. Intermediate range

When a is neither much smaller nor much larger tha
one, it is not possible to obtain a simple expression for
magnetic response. In this regime, we have performed a
merical integration of Eq.~18! to compute the eigenvalue
sv

n as well as their derivatives with respect toB. The mag-
netic susceptibility is then obtained through the field deriv
tive of Eq. ~28!,

x5
21

bf0
(
v

(
n

n
~Xv

n21!2dXv
n21/dB

~11Xv
n21!2

, ~49!

by direct summation over the eigenvalue index and
bosonic Matsubara frequencies.

Figure 2 shows the resultingx/uxLandauu as a function of

FIG. 2. Magnetic-field dependence of the susceptibility at t
temperatures,EF /T52000 ~solid! and 200~dashed!. The Landau
susceptibilityxL is the natural unit forx; the lower panel shows the
same data on an logarithmic scale. Note the crossover in beha
whenLT'LH .
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magnetic fieldb5a225(2pLT
2/f0)B for fixed values of the

temperature. The crossover between the low- and high-fi
regimes is clearly seen. AsB increases,x has a slight maxi-
mum aroundLH5LB which arises from the competition be
tween the increased field sensitivity of large triangles and
thermal suppression of long sides. In the large-field regi
the numerical result is in reasonable agreement with
value obtained from the asymptotic expression~46!: for LT
510LH and kFLH564, x/uxLandauu'0.28 numerically and
0.18 analytically.

Figure 3 shows the temperature dependence ofx at fixed
LH /LT in the low-field regime. The (kFLT)/ ln3(kFLT) behav-
ior is apparent, particularly in the inset. Again, the numeri
result agrees nicely with the asymptotic result: at the l
temperatureT/EF51023, Eq. ~37! yields x/uxLandauu'0.51
while our numerical result is 0.52.

IV. SEMICLASSICAL INTERPRETATION

We have seen above that the magnetic response h
rather peculiar property: it isthird order in the renormalized
coupling constantl̃52 ln21(kFLT,H), both in the low- and
high-field regimes. Within the approach used up to now, i
difficult to understand the physical origin of this behavior.
this section we show that an approach in terms of class
paths provides a natural understanding of this fact. Con
ering for instance the low-field regime~the argument can be
transposed to high fields with no essential difficulty!, we
shall, moreover, recover precisely the expression Eq.~37! in
a much simpler way.

From the expression Eq.~10! for the particle-particle
propagator, it is clear that the interaction contribution to
thermodynamic potential in Eq.~2! can be written as a sum
over closed polygonal paths, where each vertex is assoc
with an interaction event and the magnetic field enters o
via the Aharonov-Bohm factor associated with the magn
flux enclosed by the polygon. Performing the sum ov
bosonic Matsubara frequencies in Eq.~2! and grouping the

FIG. 3. Temperature dependence of the interaction-induced
field susceptibility;LH /LT58.9 is fixed. The total susceptibility
differs from the interaction-induced contribution shown here o
by aconstant offsetdue to the Landau and Pauli contributions. T
inset shows the same data on a log-log scale. For this low field
contribution of thev50 Matsubara frequency~dashed! gives a
substantial portion of the result~solid!. Note the approximate powe
law increase in x at low temperatures, consistent with th
asymptotic expression 1/T ln3 T.
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field-dependent terms together, one finds

V5 (
n51

`

V (n), ~50!

V (n)52
1

b

~2l0!n

n E dr1•••drn

3S̃~r1 ,r2!•••S̃~rn ,r1!cothS L tot~r1 , . . . ,rn!

2LT
D

3cosS 4pAtot~r1 , . . . ,rn!B

f0
D , ~51!

where S̃(r ,r 8) is the particle-particle propagator forB50
andv50, L tot is the total length, andAtot the area enclosed
by the polygon.

As it stands, Eq.~50! is of little practical use because th
series inn is strongly divergent~the term of ordern is typi-
cally larger than the one of ordern21). It is, however, pos-
sible to apply a simple renormalization-group argument,
troduced in Ref. 10 and discussed in more detail in Ref.
Indeed, as we already stressed when deriving the eigenva
of the particle-particle propagator,S̃(r ,r 8) must be cutoff at
L051/kF because the use of the screened interaction
sumes that all high-momentum degrees of freedom have
ready been integrated out.13 We therefore have

S̃~r ,r 8;L0!5
1

4pLTur2r 8usinh~ ur2r 8u/LT!

for ur2r 8u.L0

50 for ur2r 8u,L0 . ~52!

References 10 and 22 show than if a new length scaleL
.L0 much smaller that any other characteristic length sc
of the problem (LT or LH) is introduced, one can replaceL0
by L in Eq. ~52! provided the ‘‘bare’’ coupling constantl0
in Eq. ~50! is replaced by the renormalized one,

lRG~L!5
l0

11~l0/2!ln~L/L0!
. ~53!

For the leading behavior in ln21(kFLT), we can assume
L5eLT with e!1 but assumed fixed as ln(kFLT) goes to
infinity. In that caselRG(L)52 ln21(kFLT)1O@ln22(kFLT)#
is small, and Eq.~50! becomes a genuine perturbative expa
sion whose leading behavior is given by the first nonvani
ing term. Clearly,V (1)50, andV (2) is independent of the
magnetic field and so does not contribute to the magn
response. Therefore, the leading behavior is given
V (3)—that is,third order in ln21(kFLT)—as illustrated in Fig.
4, and we have

x~B50!5
1

3b S 2

ln~kFLT! D
3E

L2 ,L3 ,L23.L
dr2dr3

3S̃~0,r2!S̃~r2 ,r3!S̃~r2 ,0!cothS L tot

2LT
D S 4pAtot

f0
D 2

~54!
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(L25ur2u, L35ur3u, L235ur32r2u). Expressing all distance
in the integral in units ofLT gives

x~B50!5
CRG

p ln3~kFLT!
~kFLT!uxLandauu ~55!

with the constantCRG given by

CRG5
1

p2E dr2dr3

1

L2L23L3

Atot
2 coth~L tot /2!

sinhL2 sinhL23sinhL3
.

~56!

Because of the factorAtot
2 in the numerator, the integran

here is regular and the cutoff can be taken to zero. By c
sidering the limitl0! ln(kFLT)!1 ~instead ofl051) where
both the standard and renormalization-group approaches
accurate, it can be shown thatCRG5CT , so that Eq.~55! is
strictly equivalent to Eq.~37!. This approach shows clearl
that the third power of the coupling constant arises beca
only trajectories with three or more vertices enclose flux.

V. DISCUSSION AND SUMMARY

In this paper we study the interaction contribution to t
magnetization of a two-dimensional electron gas in the li
LT!Rc ,l el . We find that this interaction-induced contribu
tion is paramagnetic for the repulsive Coulomb interact
and dominates over the Landau diamagnetism at sm
enough temperatures and fields.3 The Pauli paramagnetism i
even smaller than Landau diamagnetism
GaAs/AlxGa12xAs heterostructures because of the small
fective mass and the reduction in theg factor. It appears from
the quantitative answer that one needs to go to rather
temperatures before the interaction becomes truly larger
the Landau susceptibility~cf. Fig. 3!. Still, such temperature
are possible in two-dimensional electron-gas systems
should be possible to distinguish the interaction contribut
by way of either its temperature dependence~since the Lan-
dau susceptibility isT independent! or its dependence onkF
in a gated structure.

We find that the leading contribution to the magnetizat
is third-order in the renormalized Coulomb interaction. Th

FIG. 4. ~a! Typical trajectory of lowest order in the couplin
constant which contributes to the interaction contribution to
magnetization. Each vertex of the polygon corresponds to an in
action event. Note that at least three interaction events are req
to obtain a trajectory enclosing magnetic flux. This explains the
that the interaction contribution to the magnetization is third or
in the ~renormalized! interaction. ~b! Higher-order contributions
predominantly lead to a renormalization of the third-order res
due to short trajectories like the one shown.
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can be given a natural semiclassical interpretation in term
the classical-path picture for the thermodynamic potentia
polygon must have at least three sides in order to enc
area. Moreover, the much simpler classical-path appro
gives exactly the same answer as the eigenvalue calcula
Higher-than-third-order contributions~in the bare coupling
constant! predominantly lead to an substantial downwa
renormalization of the coupling constant. This picture h
been made precise in the present paper by means
renormalization-group approach.

In the low-field ~high-temperature! limit LT!LH , the
temperature dependence of the susceptibility is 1/T ln3 T: this
comes from the thermal lengthLT which dominates here
because only trajectories shorter thanLT make significant
contributions to the Green functions. At the lowest tempe
tures, this behavior is cut off by a finite magnetic field on
LH,LT . In the high-field~low-temperature! limit LT@LH ,
the susceptibility is no longer temperature dependent.
Green function is still dominated by trajectories shorter th
LT , but now trajectories enclosing more area thanLH

2 con-
tribute with random signs due to the Aharonov-Boh
phases. Hence, in this case, the relevant cutoff length isLH .

So far, we ignored dephasing due to inelastic scatter
At low temperatures, this should be mostly due to electr
electron scattering. We expect, however, that dephasing
not significantly affect our results. Within the semiclassic
approach employed in this paper, dephasing suppresse
contribution of trajectories longer than the dephasing len
Lf . For a clean Fermi liquid such as discussed here,
expectsLf;1/T2. Thus, at sufficiently low temperatures th
dephasing length should always be longer than the ther
lengthLT;1/T. Correspondingly, the suppression of traje
tories due to thermal smearing should always set in be
the suppression due to dephasing.

It is interesting to compare the present results with
contributions to the susceptibility of~chaotic! mesoscopic
samples of linear sizeL within the independent-electro
approximation19–21

x;uxLandauu, ~57!

and due to interactions10

x;
~kFL !

ln~kFL !
uxLandauu, ~58!

where we have takenLT;L, T.D ~D is the level spacing!,
and LH@L. In contrast to the bulk results derived in th
paper, these expressions are zeroth or first order in the re
malized interaction constant. These contributions exist
mesoscopic samples because, in finite-size systems,
enclosing trajectories are produced by scattering from
geometric boundaries of the system. Nevertheless, apart
the different order in the renormalized interaction, the fini
size result due to interactions is qualitatively the same as
bulk result derived here.

Orbital magnetism in mesoscopic samples has been a
troversial issue over the last decade, both for ballistic a
diffusive structures, ring and dot geometries.4,5,23–26In par-
ticular, the fact that the measured values are apparently
stantially larger than the theoretical results has attracted a
of attention. In order to benchmark the theory in a simp
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system, we think the magnetization of a clean tw
dimensional electron gas should be measured and that
would provide valuable information in addressing the ‘‘pe
sistent current problem’’ in rings and dots.
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APPENDIX

In this appendix we derive an expression for the susc
tibility at zero field, Eq.~40!, which does not involve ex-
panding in the renormalized coupling constant. Starting fr
the magnetization Eq.~29!, the essential ingredient needed
expressions for the eigenvalues. One can check that both
Bessel approximations, Eqs.~32! and ~33!, and the replace-
ment of the discrete sum over Landau-level indexn by an
integral only yield corrections of orderB2 to the magnetic
susceptibility. Therefore, as long as we are only intereste
the susceptibility atB50, we can make the change of var
ables n→j5bn where b5a225(2pLT

2/f0)B is propor-
tional to the magnetic field. We can thus write

2Dsv
n2152b fv~j!/j, ~A1!
B

B

.C

.L
nd

er

g-

A.
-
his

e

p-

the

in

where f v(j) is defined by Eq.~39!. In the same way, taking
the derivative of Eq.~32! with respect tob yields

2
dsv

n21

db
52

1

b
f @~n21/2!b#.2

1

b
@ f ~j!1O~b!#.

~A2!

Thus, using the notation of Eqs.~42! and ~43!,

2sv
n2152s02g@~n21/2!b#.2s02g~j!1O~b!.

~A3!

From these expressions for the eigenvalues, we obtai

Xv
n215Xv~j,b!

52b
l0f v~j!/j

21l0@2s02g~j!#
1O~b2!

52blv~j! f v~j!/j1O~b2!. ~A4!

Note that it is necessary to compensate the factorb22 origi-
nating from the termndn when changing variables fromn to
j. Using the above expression, one can therefore write
magnetization up to corrections of orderb2,

M52
1

3f0b(
v

E jdj

b2
Xv~j,b!31O~b2!, ~A5!

which immediately gives Eq.~40!.
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