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Some models describing unconventional fractional quantum Hall states predict quasiparticles that obey
non-Abelian quantum statistics. The most prominent example is the Moore-Read model#feibthestate, in
which the ground state is a superconductor of composite fermions, the charged excitations are vortices in that
superconductor, and the non-Abelian statistics is closely linked to the degeneracy of the ground state in the
presence of vortices. In this paper we develop a physical picture of the non-Abelian statistics of these vortices.
Considering first the positions of the vortices as fixed, we define a set of single-particle states at and near the
core of each vortex, and employ general properties of the corresponding Bogolubov—-de Gennes equations to
write the ground states in the Fock space defined by these single-particle states. We find all ground states to be
entangled superpositiortd all possible occupations of the single-particle states near the vortex cores, in which
the probability for all occupations is equal, and the relative phases vary from one ground state to another. Then,
we examine the evolution of the ground states as the positions of the vortices are braided. We find that as
vortices move, they accumulateggaometric phaséhat depends on the occupations of the single-particle states
near the cores of other vortices. Thus, braiding of vortices changes the relative phase between different
components of a superposition, in which the occupations of these states differ, and hence transform the system
from one ground state to another. These transformations, that emanate from the quantum entanglement of the
occupations of single-particle states and from the dependence of the geometric phase on these occupations, are
the source of the non-Abelian statistics. Finally, by exploring a “self-similar” form of the many-body wave
functions of the various ground states, we show the equivalence of our picture, in which vortex braiding leads
to a change in the relative phase of components in a superposition, and pictures derived previously, in which
vortex braiding seemingly affects the occupations of states in the cores of the vortices.
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I. INTRODUCTION phase. This phase, which is for fermions and 2z for
bosons, becomes a fraction sffor FQHE quasiparticles.

The experimental discovehof the fractional quantum  The experimental discovetyof the even-denominator
Hall effect(FQHE) led to intriguing theoretical observations FQHE stater=5/2 triggered the introduction of yet another
regarding the elementary excitatioiguasiparticles of a  novel concept with regard to the statistics of the elementary
two-dimensional electron system at a fractional Landau-levegxcitations. Employing conformal field theory to study the
filling factor ». Very soon after the experimental discovery, y=5/2 FQHE, Moore and Reddliscovered that if this state
Laughlir? realized that the quasiparticles at filling factors s well described by the Pfaffian wave function, as numerical
=1/(2p+1) (with p an integey carry a fractional charge investigations seem to confirfnthe elementary excitations
e*=+e/(2p+1) (for brevity, we use the term quasiparticles obey non-Abelian statistics. The state of the system after a
to refer also to quasiholgsFollowing that observation, series of quasiparticle interchanges then depends on the order
Halperir® showed that the hierarchy of observed FQHEin which these interchanges are carried out. By using exact
states, at=p/q (with g an odd integex points to the frac- eigenstates of a model HamiltonidmMayak and Wilczek
tional statistics of the quasiparticles and quasiholes, of theubsequently showed that the ground state of the configura-
type that was previously studied by Wilcz&€Rhis observa- tion in which 2N quasiholes are inserted at fixed positions is
tion was further clarified by Arovas, Schrieffer, and 2N-fold degenerate, and that the quasiparticles realize a
Wilczek® When a system contains two quasiparticles, an®N-1-dimensional spinor braiding statistics. Effective Chern-
the positions of these quasiparticles are adiabatically interSimons theories and their relations to non-Abelian statistics
changed, the state of the system acquires a geometric Berhave been studied in Ref. 11.
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Following earlier observations that related the Pfaffianthe occupation of states near the cores of distant vortices.
state top-wave Cooper pairing, Read and Gréedescribed The second ingredient is familiar fro#belian) fractional
this state as @-wave BCS superconductor of composite fer- statistics: the geometric phase accumulated by a vortex tra-
mions, and conjectured that the non-Abelian statistics of it¥€rsing a closed loop.
quasiparticles results from the zero-energy modes associated Within the Chern-Simons composite-boson theryhe
with vortices in this superconductor. This conjecture was furAbelian fractional statistics of the=1/m states is explained
ther studied by Ivano¥® who mapped out the relation be- by mapping the ground state of the electronic system to a

tween the exchange of quasiparticles and the unitary trané_uperfluid o_f composite bosons_, and the quasiparti_cle excita-
formation carried out on the Hilbert space of the groundt|ons to vortices in that superfluid. Due to the coupling of the

states. Ivanov explicitly derived these unitary transformaYOrt€x to @ Chern-Simons gauge field, the depletion of

tions, showed that they are indeed non-Abelian, and COntl)ﬁi?joan?itc}Qe‘lyr?Sse)t(h?:;?]:r qeuigtrlrzi:g E)O ?g;asg?t'g )ibgsaalso
firmed that they are identical to the transformations derive P : 9 Y

) i . . ractional. The quantum statistics is related to the geometric
earlier by Nayak and WilczéR using conformal field theory. phase accumulated by a vortex traversing a close trajectory.

Wh_lle thes.e two derlyatlons of the unitary tralnsformatlo.ns oughly speaking, the vortex accumulates a phaserqfer
associated with vortex interchange may be easily generaliz

X ) - ~tuid particle which it encircles. When another vortex with its
to calculate the transformations associated with other bra"#‘ractional charge is introduced to the encircled area, this

ings of vortices, they do not provide a clear physical pictureyhase changes by a fraction of-2Upon adapting the argu-
of the non-Abelian statistics. This is exemplified in the fol- ment to interchanging of vortices, one finds that this fraction
lowing observation: using the method of Ref. 13, it is easy t0yf 2+ translates into fractional statistics.
show that when the system is initially in a ground state gjmijlarly, the Moore-Read theory of the=5/2 state de-
|g-s,), and vortex] encircles vortexj+1, then, under the scribes it also as a superfluid, with the quasiparticles being
assumption that no tunneling takes place between the vort&prtices in that superfluid. However, the “effective bosons”
cores, the final state of the system is again a ground stalgyrming the superfluid are Cooper pairs of composite fermi-
given by ons. Consequently, the superfluid has excitation modes asso-
. (IO . ML ciated with the breaking of Cooper pairs. In the presence of
(c;e!2% + CJTe 1720%) (¢ &2 e+ CiT+le 2%)|g.s,), vortices, a Cooper pair may be FE)rolfen such tha{)one or two
(1)  of its constituents are localized in the cores of vortices. For
B . ) p-wave superconduct_ors, the exist_ence of zero-energy intra-
where the operators% ;.1 annihilate(creatg a particle lo-  yortex modes leads, first, to a multitude of ground states and,
calized very close to the cores of tfté and(j +1)th vortex,  second, to a particle-hole symmetric occupation of the vortex
respectively, and); is a phase defined in the next section. cores in all ground states. When represented in occupation-
Equation(1) seemingly implies that the motion of théh  number basis, a ground state is a superposition which has
vortex around thej+1)th vortex affects the occupations of equal probability for the vortex core to be empty or occupied
states very close to the cores of the two vortices. This is inby one fermion.
contrast, however, to the derivation leading to &g, which When a vortex traverses a trajectory that encircles another
explicitly assumes that vortices are kept far enough from ongortex, the phase it accumulates depends again on the num-
another so that tunneling between vortex cores may be diser of fluid particles which it encircles. Since a fluid particle
regarded. is, in this case, a Cooper pair, the occupation of a vortex core
In this work we study the manifold of degenerate groundby a fermion, half a pair, leads to an accumulation of a phase
states|g.s,) in an attempt to give a physical picture of the of 7 relative to the case when the core is empty. And since
effect of braidings in the positions of vortices. We use athe ground state is a superposition with equal weights for the
second quantized formalism to write these states as manywo possibilities, the relative phase af introduced by the
body wave functions in a carefully defined Fock space, withencircling might in this case transform the system from one
the positionsR; of the vortices being parameters in theseground state to another.
wave functions. Then, when the vortices are adiabatically This qualitative picture is made more precise in this paper.
moved and these parameters change, the wave functiomur analysis revolves around the definition of a set of single-
change, in principle, in two ways: first, through their explicit particle states localized at or near thid ortex cores. We
non-single valued dependence Bp and second, through start by defining the “core states,” a set ™ 8tates each of
the induced non-Abelian geometric vector potential matrix,which is localized at a specific vortex core. We find that in all
whose matrix elements are {g1s,|Vg [g.S.). We construct  possible ground states, the occupation of these single-particle
the Fock space in such a way that the second contributiostates near one vortex is entangled with the occupation of
vanishes, and the entire time evolution of the wave functionsingle-particle states near all other vortices. We prove that
is through their multivalued dependence on the changing caany many-body state in which these occupations are disen-
ordinatesR;. Consequently, the unitary transformations assotangled is necessarily an excited state. We show that the evo-
ciated with the braiding of vortex positions can be read offlution of the ground state as positions of vortices are braided
from the explicit form of the wave functions. indeed follows the picture outlined above, and discuss both
Following our derivation of the ground states we showthe case where vortices encircle one another and the case
that two ingredients are essential for the non-Abelian statiswhere they interchange positions. In making this picture of
tics of the vortices. The first is the quantum entanglement ohon-Abelian statistics more precise, we define, starting from
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each core state, further orthogonal single-particle statesomplex p-wave BCS state of composite fermions subse-

(“near-core stateg”which are localized near a vortex core. quently led Read and GreEnto introduce a second-

The occupations of these additional single-particle states iquantization formulation which paved the way for a clearer

the many-body ground states are also particle-hole symmephysical picture. Their starting point is the BCS mean-field

ric and entangled between different vortices. In fact, we reHamiltonian

veal a “self-similar” structure of the many-body wave func- 1

tion with (espect to the occupation of thesg single-particle =J dr (D) hoyr) + = f drdr'{D* (r,r")(r")uar)

states which leads us to express the relation between our 2

picture of non-Abelian statistics and the known representa- R I

tions of vortex braiding in the space of ground stité3in D0y ny(r)} @)

terms of compact operator identities. with the single-particle ternhy and the complexp-wave
The structure of this paper is as follows. We begin in Secpairing function

[l with a review of the description of the Pfaffian state as a ,

p-wave superconductor, with vortices as quasiparticles. In D(r,r’):A<1>(iﬂxr—(9 N =r'). (5)

Sec. Ill, we start with the definition of the single-particle Y

states by introducing the “core states.” In Sec. IV, we explorqqead and Greda retain only the potential part ofiy by
the roles of quantum entanglement and geometric phases In

the evolution of these superpositions when vortex position gettingho=—x(r) and argue that this is sufficient for studying

are braided. The “near-core states” are introduced in Sec. V'€ topological properties of the Pfaffian state, such as the

The occupations of these “near-core states” in the man Statistics of its quasiparticles. In the presence Mf@rtices

. - : inned at positionsR;, the gap function takes the form
body ground states is worked out in Sec. VI, revealing th@'””f . b TN N )
“self-similar” structure of the wave functions. We conclude A(r)=|An)lexrlix(r)] with x(r)=Zisjargr —Ry). In the vi-

in Sec. VII. Some details are relegated to appendixes.  Cinity of vortexk, the phasex(r) can be approximated by

x(r)=argr —-Ry) +Q with Q, ==Z\argR,—Ry).
The fermionic excitations of superconductors are de-
Il. SOLUTIONS OF BOGOLUBOV-DE GENNES scribed by the Bogolubov—de Genn@&dG) equations
EQUATIONS—REVIEW

[ .
The Pfaffian trial wave function for the quantized Hall — () S1A(N). ac+iay)
v artts u(r) 2 u(r)
state at Landau level filling factor=5/2 wasfirst intro- E =\ . .
ggged by Moore and Reéds the first-quantized wave func- v(r) IE{A* (r),de =i} u(r) v(r)
1 2] g W42z ©
— = S — Zi
Y22, -..) = Pf( ._ZJ.)il;[j (z-2) IJIG o For two-dimensional complep-wave superconductors, so-

lutions of nonzero energy should be distinguished from those
2 of zero energy. We denote the nonzero energy solutions by

wherel is the magnetic length argi=x+iy; is the complex  [Ug(r),ve(r)], with Ug(r)=v’g(r). In second quantization,
coordinate of theéth particle. Forp particles(p an even in-  positive-energy solutions are associated with annihilation op-
tege), the Pfaffian in Eq(2) takes the explicit form erators of BCS quasiparticles I'e=fdr[ug(r)y(r)
+ve(r)¢f(r)], while negative-energy solutions are associated
with creation operators of the same quasiparti(ﬂe§=l“g.
' The zero-energy solutionsy;(r),v;(r)] are localized at the
(3)  vortex cores. For well-separated vortices, there is one such
solution per vortex. With a choice of phase the advantages of

where A is the antisymmetrization operator. It is instructive which become clear below, these zero-energy solutions take
to view the Pfaffian appearing in the wave function in BY).  the form
as the real-space BCS wave function of composite fermions
for a fixed number of particle’s:*® According to the associ- w0y 4120,
) . o ; u(r)=o; (r) = —=w; ’(r)e"*i, (7)

ated pair wave functiog(z)=1/z, the pairing is of spinless ! 2!
(or spin-polarizeglcomposite fermions in thb=—-1 angular- . , ,
momentum(p-wave) channel. The Pfaffian corresponds to a Here, the |(r(1)§jex|:1, -, numbers the vortices and the
weakly paired superconductor, which for a two-dimensionafunctions w;™(r) are normalized wave functions localized
p-wave Superconductor is t0p0|ogica”y distinct from the near the core of thé&h vortex. When the vortices are well
strongly paired phasé. The charged excitations of the separated, the functions®(r) are mutually orthogonal. In
guantum-Hall system are, in this description, the half-flux-Sec. V below, we iteratively define additional single-particle
qguantum(h/2e) vortices of the superconductor. states localized in the vicinity of the vortex cores. These

As is often the case, the use of a first-quantization formustates will be denoted bw}k)(r), with the subscript labeling
lation is mathematically involved, and makes the physicathe vortex and the superscript enumerating the states near
picture difficult to read. The identification of the Pfaffian as aeach vortex.

Pf( 1 )_ 1 1 1 1
z-7) 2PHp2V | z-zz-7 71—z,
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The zero-energy eigenstates of the BdG equations correstates. A corresponding basis state of the Fock space is then
spond to the Bogolubov operators written as

1. O)0... 1), (12)

vortex core other

1 ) )
y = TE|:Cje(|/2)ﬂj + che‘("z)QJ], (8)

where we introduced the operatorngdrw}o)(r)lp(r) where 0(1) denotes an empt§occupied state. The first fac-

which annihilate particles in the vortex-core stat/q@(r). tor has N digits and designates the occupations of the

. ) . vortex-core states. We enumerate these stategs)bwyith
Evidently, ij:yj so that the operators associated with the:0 ZN_1. Specifically, |7=0) denotes adnzggy-bgdy

zero-energy solutions are Majorana fermlc_ms. state in which all single-particle vortex-core states are unoc-
The existence of the zero-energy solutions leads to a d ‘upied, i.e., a state that satisfiegr=0)=0 for all j. The

gt(er:erqcy oftthe glrognd stt)ate. Etr;_ur_ner?#orlc/l O.f the groun econd factor in Eq(12) designates the occupations of the
states IS customarily done by combining the Majorana 0peras,,q sates.” Below we find that for every possible ground
tors y; in pairs and definingordinary) fermionic creation and

AN state|g.s,,) the probability to find the core states in an occu-
annihilation operators pation|7) is equal to 1/2V, and is independent af A state
¢ 1 ) in which this occupation depends oris necessarily an ex-
= TE('YZj—l +ivyy) (9)  cited state.

v Although the operatora,; and azj act on the occupations
with j=1,... N. The ground states can now be written in the of the core states only, the quantum numbarslo not fully
occupation-number basis corresponding to these fermioniabel the 2N-dimensional space of statés. In particular,
operators. A ground staten) is then labeled by the occupa- there is no direct relation between the occupation numiers
tion numberam=(m,, m,, ... ,My) with and the occupation of the single-particle staslvé%)(r). In
order to explore the structure of the ground states in terms of

t -
agjas)|m) = my|m) (10) the state$r), we now introduce another set of quantum num-
and bers associated with a second set Nf Majorana operators
— (7 ym Tymy(  Tym — :
Im) = (agy)™N ... (az)™(az)™|m = 0) (11 X; = %(Cje(i/zmj ~ cler(i2%) (13)
leading to a Y-fold degeneracy of the ground state. 2

The BCS Hamiltonian(4) is diagonal when written in . . (0 (/20
terms of the quasiparticle operatdrg and y; (Bogolubov w.ho(sg *as_s(i(/)g;)a}ted BAG  spinors [IWi (r).e b
transformatio. The ground state is determined by the con-—1[W; (1)]*€ ] are orthogonal by construction to the
ditions I'glg.s)=0 for all E>0. For a uniform supercon- Z€ro-energy solutions of the BAG equations. These operators

ductor in the absence of vorticése., for space-independent obviously also act only on the occupations of the vortex-core
A and ), these equations lead to the celebrated BCS wavétates. However, when expanded over the complete set of
function|BCS>:H,Q(uk+vkclcfk)|vac>, where the prime indi- BdG quas_lpart_lcle operators, they involve only nonzero en-
cates that pairs of momenti,—k) should be counted only €rgy quasiparticles so that
once andvag is the state with no particles. In this case, the i x
choice oﬁj a plane-wave basis for the single-particle states is Xj= go [Cile+ Ce FE] (14)
natural.

In the presence of vortices, and u are space dependent, with coefficientsCk=iv2/ dr ug(r)w\” (r)é"2. Upon pairing
and there is no obvious single-particle basis for the descripe vortices, these Majorana operators can again be com-

tion of the ground states. A proper choice of such a basigined to obtainordinary) fermionic operator$
turns out to be helpful in our discussion of non-Abelian sta-

tistics. g1
B2 = = (iXgi-1 + Xy). (15
Ill. CORE STATES V2

A natural starting point for a single-particle basis are theWe label the occupation numbers of these fermions by
2N statesw'”(r). These single-particle states, which we ap-Xa.Xa, --- Xy, and introducex=(xz, s, ... Xan)-
proximate to be orthogonal due to the large distance between We now form a basis of the??-dimensional Fock sub-
the vortices, are associated with &'2limensional subspace space of the vortex-core states by defining
of the many-particle states. The remainitgfinitely-man
single-partizlg basis states remain uns“gacifieg throgghout M%) = (ahy) ™2« () ™(ag) 2 B2 B4+ (Bop) 2N
this section and are partially defined in Sec. V. We will refer X|m=0x=0), (16)
to the first N single-particle states as the “vortex-core
states,” and to the remaining single-particle states as thehere|m=0,x=0) is the state annihilated by all the opera-
“other states.” tors ay and B,. We obviously have (m,x|m’, x")
Many-particle states in Fock space can now be expandeddn m . In terms of the occupations of the vortex-core
in terms of occupation numbers of these single-particlestates, the statgm,x) take the explicit forn’
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N i I A%
1 SulXi X |9.S5) =9, chcl
|m,x> - SmxH {?[1 +i(= 1) (9 vz| I lz|g ﬁ> aﬁE§>:0 E“E
=1 V2
Xe_(ilz)(QZj_l+QZj)CZj—lczj]5mzj*ij = 250/3] drdr ,WJ(S)(")[WJ(?(" N]*
1 : , .
+ =[e1P%ic] | +i(- 1)2e 2] ] X e 0) > ue(r)ug(r’). (21)
V2 E>0
s 7= 0) (17) For sufficiently high energies the functiong(r) are ap-
Mgy gy 1 ’ proximately plane waves so th&uc(r)ug(r’) is a short-

ranged function, presumably decaying exponentially with

Ir=r’|, even for nonuniform superconductors. Then, for
where the vacuum|r=0) of the subspace of vortex- Wwell-separated vorticely andj,, the matrix elements in Eq.
core states was defined above. The sign facsgr, (21) approximately vanish. Put in different words, the opera-
=[N, (-1)%aMmre) arises due to the different operator tion of the operator¥; is spatially localized around vortéx
orderings in Eq(16) and in the product in Eq17). Equation ~ and thus two such operators operating near two distant vor-
(17) is readily derived by first identifying the occupations of tices generate orthogonal excitations. Similarly, the matrix
the vortex core states im=0,x=0) from the condition that ~€lement of any other even number of differétioperators,
this state is annihilated by aft,’'s and B's. Subsequently, taken with respe_ct to any two grpund states, _vamshes as vyell.
the occupations of the vortex-core states in the remaining Sec. V, we will also give a direct algebraic proof of this
states|m,x) can be obtained by successively applying cre_re_su_lt which relies on a relation of th¢ to operators anni-
ation operatom; and ,B'Ej according to Eq(16) and using hilating the QV_OUﬂd_ states. _
Eqgs.(8), (9), (13), and(15) in order to express these creation ~ The conditions in Eqs20) and(21) imply some general

operators in terms of vortex-core operators. conclusions regarding the stat@g), which we first present
A ground state labeled hy is then a superposition of the for the case of two vortices. There are four stateslabeled
form by |00), [01), |10), |11).*® The phases encoding the vortex

positions are related b{,=Q,+. The two ground states
then take the explicit form

Im) =2 |m,x)|A). (18) Im=0) = (|00) - €™1[11))|Ag) + €7%(|10) - [01)|Ay),
) (22
It is important to note that the statg®,) areindependenof
the particular ground state). Arbitrary ground statefg.s,,) Im=1) = (|00) + € '*1|11))|A,) + € 2(]10) + |01))|Ap).
can be written as linear superpositions of the sthtesHere (23)

and below we use the notatidA) to denote states in the

Fock subspace corresponding to the unspecified “otheFhe condition(g.s,|Xi|g.s,)=0 implies that(As|A;)=0. In
states” in the single-particle basis. There afec@mponents addition, (0.50/X1%5|9.5,)=0 imposes (Ag|Ag)=(A1| A1)

in the superpositio18), one for every value of. The states  =1/2. Thus, while we cannot find the complete wave func-
|A,) should be determined by the requirement that the groun€élons of the ground states without a full solution of the BdG
states are annihilated by all positive-energy annihilation opequations, our procedure leads to the conclusion that the two
eratorsI'e. Although we do not know the complete set of ground states are incoherent superpositions of the states
operatord’g, we can now show that (|00)+e7?1|11)) with the statese™?v2(|10)+|01)), with
equal weights to both components. There is an equal prob-
ability 1/4 for all four possible charge arrangemet@s),

|01), |10), |11). The parity of the particle number differs be-
tween the two basis vectors of the ground-state manifold.
! ) However, this difference in parity does not originate from the
To see that, we first note that since the operaljrare . \nations of the two vortex-core states. A local measure-

composed of finite-energy quasiparticle operators only, thgent of one of the two vortex-core states cannot distinguish
matrix element for any odd number ¥foperators between p.nveen the two ground states

any two ground states must vanish. Thus,

1
Sext- (19)

<Ax|Ax’> = ?

Generalizing to Rl vortices, it is easy to see that the re-
quirement that the expectation value of productXafpera-
tors vanishes leads to E@L9). Thus, all basis functions of
(9:5.0X;,]9.59) =(9.5u1% XX |Jg.5) = === =0 (20)  the ground-state manifold are an incoherent superposition of
2N terms, of equal weight. Each of these terms is, by itself, a
coherent superposition of¥! possible occupations of the

for arbitrary indicesa, 3,j4,... . Second, the matrix ele- core states, which constitute all possible occupations of a
ments of a product of twalifferent operatorsX; between given parity. This observation clarifies why there aré 2
states in the ground-state manifold are ground states, rather thad™2 Within the Fock space of the
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core states there aré' 2igenvectors for each eigenvalog  ever, these vanish as one may verify by using the explicit
but a ground state is generated by their incoherent superpstates in Eq(17). Thus, when the wave functions are written
sition, mixing all of them with equal weights. as in Eqgs(17) and (18) the only phase factors that lead to
The wave functions in Eq.18) give an explicit descrip- non-trivial unitary transformations arise from the explicit de-
tion of the occupations of the core states. The operatopendence of these wave functions on the ph#&kes
NW) = (1/2)(y+iX;)(%-iX;) counts the number of par- _ More explicitly, Eq.(17) shows that the part of the wave
ticles in theith core state. It is easy to see that function in which the core stateis occupied has an ampli-
tude proportional t@ /2, while the part in which this state
is empty does not depend dn;. Since the ground states
involve superpositions of empty and occupied core states,
) . ] . ) when the phasé€); accumulates a2 shift, a relative minus
Thus, in all possible ground stat@ecluding arbitrary super-  sjgn is introduced between the components of the superposi-
positions of the statelsn)) the occupation of each core state tions in which core staté is empty and occupied, and the
is particle-hole symmetric, with a probability of one half for ground state does not necessarily come back to itself. The

(IR ) m) = [NV ) =2 3. (28

being empty or occupied. source of the evolution from one ground state to another is
then in the phases between different components of the wave
IV. GEOMETRIC PHASES AND QUANTUM function, and not in any change of occupation of states.
ENTANGLEMENT IN THE EVOLUTION OF CORE It is instructive to examine in detail the case of tie
STATES UNDER VORTEX BRAIDING vortex encircling thgth vortex, for which

When vortices are adiabatically moved along closed tra- O — Qi+ 2m, 4 — O+ 2m. (27
jeCtOfieS, ending with braiding of their pOSitionS, the grOUndThiS Change of phase affects both the Stém&() and the
state may evolve in time away from the initial state, and thestateﬂ A)), according to
final ground state may thus be different from the initial one.

There are, in principle, two contributions to this transforma- Im,x) — (2 %X)(2i,X))|m,x), (28)
tion of the ground stat¥ The first originates from its ex- .
plicit multiply valued dependence on the phasggqexplicit IAD — ByjlA, (29)

monodromy. The second is through a non-Abelian geomet- .
ric vector potential that gives rise to a non-Abelian Berrywhere5;; is an operator that acts on the “other”, non-core,

phase. As is always the case with geometric phases, only thgates, only. The final statB,(2iy.X;)(2i 71X1)|m,X>Z§ij 1A

sum of the explicit monodromy and the Berry phase is obyyyst pe a ground state. However, the operaXor¥; gener-

servable and one can split this sum between both contribu- I h h
tions in any way desired by choice of appropriate phase fac‘?‘te excitations above the ground states. The oper@;o_r
must then be an operator that annihilates these excitations.

tors. We now show that t.he phase c_h0|ce we made ir(Bg. More precisely, since the stat@s) do not depend om, the
makes the second contribution vanish, and proceed to calcu- -~ o
late the first contribution. operatorX;X;5;; must be ac number within the subspace of

We need to prove that the geometric vector poteftial ground states. In fact, for the norm of the ground state to be
conserved during the braiding of vortices, the magnitude of
Im<m|VRi|m’> (25 this ¢ number must be unity, i.e.,

vanishes for allm, m’, R;. The state§m) depend onR; zxixj[gij =¢g%a (30)
through the phase§); and through the functionsvi(o)(r).
Since thewi(o)(r) are real(up to some trivial global phase
factor), their derivative does not contribute in E@5), and

we may writeVe =2;(Vg £)))(9/3€))) and compute the ma-

with ¢, being an Abelian phase. In this way, we recover the
known unitary transformation for winding of two vortices
27y, given in Eq.(1) [see also Appendix A This shows that
despite the appearance of H@), this transformation does

trix element not involve any changes of core-state occupations, but only
9 9 changes in relative phases between the components of a su-
<m|£|m’>: S 2 <AX\E|AX> perposition, each of which has different core-state occupa-
! x ! tions.
1 J ., In the subseq_u_ent se_ctions, we will study the st@g}s
+ ﬁE <m,X|a—Q'|m X). (26)  much more explicitly by introducing the “near-core” single-
X i

particle states. We will find that these states are structurally

The first term on the right-hand side is diagonaipm’ and ~ Very similar to the ground statém) and this allows us to
otherwise independent oh. It therefore leads only to Abe- give explicit expressions for the operatol (up to an
lian phase factors. Using the explicit states in Efy) one  Abelian phase factgr These expressions do indeed satisfy
finds that also the diagonal elememis=m’ of the second Eq.(30).

term are independent af. The only contribution to the non- The above observations allow us to conclude that the
Abelian part of the Berry phase can therefore arise due to thground states spanned by the basis in @8) are states in
off-diagonal contributionsn #m’ of the second term. How- which the occupation of the core states at different vortices
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are fully entangled, in the following sense: There is no Despite the inherent quantum entanglement of the ground
ground state of the system in which the parity of the numbestates, it appears impossible to formulate corresponding Bell
of particles is well defined, and in which the occupations ofinequalities. Each core state defines a two-dimensional Hil-
two subsets of core states are disentangled from one anothéert space, similar to a sp%ﬁ-However, the operators asso-
If such a state were to exist, its wave function could beciated with these spaces at different cores,fémmionicop-
written as erators y; and X;, do not commute. Thus, their classical
o analogs are ill definett
C,C,C4lvao, (31) What happens when two vortices are interchanged can be
- analyzed along similar lines to the case of one vortex encir-
where C, is an operator that acts only on the core stategling another. We now analyze the case of interchanging vor-
belonging to the first subseg, is an operator that acts only tices from the same pairj 21 and 2. Note that choosing the

on core states belonging to the second Subsetfaﬁd an vort?ces from the same pair do_es not imply any loss of gen-

operator that acts solely on the remaining statese states erality, both because for any interchange we can choose a
or other statesnot included in any of the two subsets. How- P&Irng such that the two vortices are from the same pair, and
ever, for the state in Eq31) to have well-defined particle- because our considerations will eventually lead to an opera-

number parity, the states createdﬁ}]yor &, must each have tor expression which is independent of the particular choice
- . o ..~ of pairing.
definite parity. By considering the effect of an encircling in

which one vortex(say, theith vortex from the first subset As the adiabatic motion of vortices does not involve any
winds around another vortex of the second sultsay, the tunneling of particles between vortex cores, an interchange

X . i . of the position of vortices interchanges the occupation of
jth vortex, we find that this cannot happen. The um.tarytheir core states. When both core states are occupied, the
transformation 2;y; corresponding to this transformation

changes the parity of the particle number for both the ﬁrslnterchange s accompanied by a factor(efl), since two

and the second subset, while we showed that the transform grmions mter_change positions. In addition, one of the vorti-
s necessarily crosses the cut line of the phase of the other,

i . ce
tion of the ground state is a consequence of changes i . . .
phases only, rather than changes in core states occupatio anging this phase bys2(see Appendix A The phase

: of the other vortex remains intact. Implementing these
gr%rsjsn%q:far:gy’ a state of the form in E@1) cannot be a transformations  in Eq. (17, the term [1

(1) 2iari( Q-1+ Q02T AT i i
In some sense, the entanglement of the occupations Jf'( 1)%eig (2j-1+02z) Czj—lc2i] remains unaffected by the in-

core states is signaled by EQ.0). As seen from that equa- terchange, while the reIaUXS _s%nTbetvyeenXth?iév\_//(Z) compo-
tion, the ground stateg,;_,/m) and yy|m) differ from one ~ NeNts changes in the terfe™2-%c;;_, +i(-1)"e™"2cy].
another only by a phase factor, despite the fact that they are T_hese transformations of the core-state wave fu'nct|ons
obtained from the ground stalt@) by the application of two &' implemented by the operaigi2-172"e™2-2%%i’2, acting
Majorana operators localized very far from one another.  ©N EQ.(17). By contrast, as found in Ref. 1@eviewed in
Interestingly, despite the entanglement, the occupations dPPendix A), the unitary transformation that enacts the vor-

different core statesandj are uncorrelated, tex interchange on the states in E) is e72-1722, As in
the case of encircling, the difference between these two
(9.sINW)NW)|g.s) transformations is an operatsrthat acts on théA,) part of
the wave function in Eq(18).
— (a s Rw© W g < = & - .
=(g.s|N(w;”)|g.s)(g.sIN(w;”)|g.s) = 7 (32 The stategA,) together with the operatoi8 that act on

them when vortices wind and interchange are the subject of

This lack of correlations persists also to higher-order correlathe following sections. We define a set of single-particle
tors. states adjacent to the core state for each voftesar-core

Furthermore, we can conclude that the total number oftates), and show that the operati%raffects the occupation
particles in the core states, counted by the operdlgr,  Of these states in exactly the same way as the operajoys 2

~ TY2j-172j/2 i
:2i2:l\|1N(Wi(O)), does not have a well-defined parity. Rather, itand e"72-172/'< affect the occupation of the core states for

has equal probabilities for being even and odd, irrespectiV(\a/Ortex winding and encwchgg, respectively. In fact, we find

of what is the parity of the total number of particles in the th€ corresponding operatot$ to have the same functional
ground state. To see that, we consider the particle-numbdPrms, but with the Majorana operatoysand ; replaced by

arity operator exp N ). Due to the lack of correlations analogous Majorana operators associated with the near-core
Eetw)gerr: different Vgrti(é)és. states. We explain this in terms of a “self-similar” structure

of the ground-state wave functions.
2N
(g-slexplimNgor[g.5) = [ (g.slexdi7Nw®)]|g.s) = 0. V. STATES NEAR THE CORE
j=1
(33) Our information on the statd#,) introduced in Eq(18)
has so far relied on the conditions in E¢R0) and(21) for
Thus, the parity of the ground states cannot be determined byatrix elements of products of the operatdgs These op-
a measurement of the occupation of the core states alone.erators were constructed to have two main virtygsThey
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create and annihilate particles in the core states diily. @ _ | 0 @

They create and annihilate only excitatiai@ogolubov qua- Y= > f dr{[w;~'(r) =w;~'(r)Jo(r)

siparticle$ with E>0. We now take these operators as a

starting point in a scheme by which we define the set of = ([WOHT* + W) ]*)yh(r)). (39)

mutual_ly _orthogonal single-particle state (), where thg Thus, these IR operators affect the occupations of the states
subscripti refers to the vortex number and the supersdkipt (g 1)
W (r) andw;~(r) only.

enumerates the iterations in our scheme. The new single- i hi it is heloful e th
particle states remain localized near the vortex cores and 10 Iterate this process it is helpful to summarize the steps

provide insight into the nature of the stafés). leading to the definition ofw™(r) throughY}", using the
We get to these states by using i to construct a set Concise spinor repregentg)t)mn for(é)he (Zpgrators. We s_tart with
of operatorsr'® that, unlike the Majoran;'s, annihilate the ~ the operatorsy;=(1/v2)(w;"(r).[w;"(r)]') in Eq. (8) which
ground states act on the occupation of thwi(o)(r) only. In Eq. (13) we
define the operator¥; =io,y=(1/\2)(iw % (r),=i[w?(r)]")
Yi(k)|m>= 0 (34 acting on the occupations of the same single-particle states
(0, is a Pauli matrix. By construction, the spinors corre-
for all i, k, m. Furthermore, these operators anticommutesponding toX; are orthogonal to those correspondingyo
implying that the corresponding operators anticommute.
Then, in Eq.(35), we extract from the operatod§ the parts
Y that annihilate the ground state. The operayén turn,

{Yi(k),Yi('f')}:O and each operatof creates and annihilates
particles only in the two basis stalwg‘l)(r) andwi(k)(r). By
1

virtue of the conditions in Eq(34), these operators Specify are written in Eqs(36)~(39) as sums of Hermitian operators

:Ee gtrotund(-lf),za)te wave functions in the subspace spanned l%,’ and anti-Hermitian operatoizi(l), and finally, we defined
e statesv; " (r).

. wi(l)(r) through the Majorana operatozél). In spinor repre-
Our scheme starts from the expansion of the operafprs . (4
: , sentation, these last three steps can be recasZ as
in Eq. (14). We define the two sets of operators '

=- 2V with
Ue Ue
Ve Ve '

1. i ot The operatorS is a difference of two projection operators.
=i > (Cel'e = Cel'g). (36 The positive(negativg energy part of the sum projects to the
E>0 o . .
subspace of positivénegative energy BdG solutions.
We now iterate this process to define staﬁé@(r) and a
set of operatorsfi(k) for which Yi(k)|g.su>:0. This is achieved
by generating the set of Majorana operators

.(1) = ,',_ i
Y! \zgo CLIe, (35) o go sanE

(40)

The operatoré/i(l) annihilate all the ground states since they
are constructed frortpositive-energyannihilation operators
only. The operatorii(l) are, by construction, Majorana op-

erators, and can thus be written as 1( w®(r)
i(k) = 7( (L) . ) =[- S"'L]k')’i- (41)
w1 o V2\[wi(r)]
Z7=— | dr[w +H.c. 37 .. S .
! \'zf w0 ¢(n) cJ 37 When writing outS explicitly in real space representation,

according to Eq(40), it contains energy sums of the type

This defines a set of N single-particle statesvi(l)(r). we that has been discussed following E@1). By the same
prove in Appendix B that for well separated vortices the@rguments employed there, we can conclude that as a func-

) . f ;
Wi(l)(l') are mutually orthogonal as well as orthogonal to thetion of the two coordinates andr’, the operatoiS is short
(O)(r). Thus, we can extend our single-particle

ranged, i.e., decays fast for larfye-r’|. Thus,w®(r) is also
core statesw, . . . i
basis by adding to it the K statesw'’(r). Note that for localized around théth vortex although its extent from the
> 0y 9 . [ : vortex core increases with Since the construction assumes
conciseness of notation, we absorb the phase facto

Hat statesv™(r) localized around different vortices do not
exp(i€;/2) into the definition of the stateai(k)(r) throughout )

. . overlap, there exists an upper limit to the number of itera-
this section. We comment below on how they should be reg < \we denote the last iteration numberLby
instated. '

= The functionsw¥(r) are studied in more detail in Appen-
incex =(1/V2)y L+ vyt it i

SinceX;=(1/¥2)[Y;"+¥;™"], the condition dix B. We find that for iteration& <L, the vari0u3Ni(k)(r) are
mutually orthogonal,
Yg.s,)=0 (38)
o . . _ WEIW) = 8 8 (42)
implies immediately that any combination of different opera-
tors X; has zero matrix elements between grounq_states a&s long as the spatial extent of the stawfé)(r) is small
required in Sec. Ill. Using the reIatioNi(l)=(l/\s“2)(Xi compared to the distance between vortices, the dependence

—iZi(l)), we can write of the near-core statew%(k)(r) on the phase$); is analogous
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to that of the core states. Specifically, these phases can Ipgsitions all creation operators for the core states to the left
made explicit by the replacement of creation operators for other states, and 8d) specifies
the order in which core states are being filled. In that spirit,

0 (9 (1) i /2 _ are pein
Wit (r) — wit(r)ete. (43 the creation operators for the first iteration of near-core states
This can be seen from Eq&40) and (41) in combination W "(r) are going to be positioned to the right of those of the
with the observation that far in the vicinity of vortexi, all ~ core states, and so on with increasing number of the itera-
finite-energy BdG solutionsi(r) and vg(r) depend on the tion. Within each iteration, we follow the convention defined
vortex positions through the phase face#/2. in Eq. (16) for the core states.
We also define We first determine the occupations of the near-core states
i of the first iterationwi(l)(r) in the state$A,). To this end, we
¥ = i( iw; o (r) ) (44) define creat)ion and annihilation operators from pairs of the
I R (4 a %)
V2 \ = i[w(r)]* operatorZ” and X",
and the operators 52-:é(2(1-)_ _ iz, (48)
] V2 2j-1 2j
Y0 = X - iz
V2 1
7= G X+ ). (49)

i

= =(1+90,2 "

V2 Then we can express the stat@g) in terms of the states
i _ _

=Sl =) =@ TN @am) Moo= ()N ()™ ) ) ()

, N X|m=0x=0)"Y, (50)
which annihilate the ground statgsee Eq.(34)]. Here, the _ _ _ .
operatorsci(k) annihilate particles in the staters,‘k)(r). This wherg' the SL(IBGI’S.CI’EB'[ on the state indexes the iteration. The
iterative construction enlarges our single-particle basis. Star€onditions(Y;;’, +iY;)|m)=0 for the ground states can be
ing with the 2N core statesv(r), we defined an additional rewritten asisee Eq(45)]

L-1 “near-core” states for every vortex. ) ) (By - 5’rj)|m> =0, (52)

The occupations of the newly definéd-1 “near-core
states are all particle-hole symmetric. This can be seen b

. P "y (K) (K) , i (K) () y (B;] + 52])|m> =0. (52)
noting that the operatorN(w;”)=(1/2)(Z"+iX;")(Z, ) N )
—iXi(k)) counts the number of particles in the staw@(r). Applying these conditions to the ground states, we find

Since IAY = 2 [, X YPIAND, (53

x/

~ 1 1
NWX) = = +iXMZ® = Z[1 + (YD 4 vyl (T -y : : :
(W™ 2 ' 2[ (' A el in terms of further statef\,,) which contain the occupa-

(46) tions of the remaining near-core states as well as the other
states. As expected, E(h3) satisfies Eq(19). Iterating this
and since the operatohél(kyr and Yi(k”) correspond to or- procedure, we get

thogonal excitations, one finds
AP = X [x,x") DA, (54)

- R 1 ,
(m’INwW)[m) = (m”[[INW ) PIm) = 2 8- (47) "
and so on, as long as near-core states from different vortices
In the next section we solve E¢B4) to extract the ground- do not overlap. Consequently, we can write the ground-state
state wave functions in the Fock subspace spanned by th#ave functions as

®
near-core states; " (r). Im) = [m,x@)O |x©@ xDyD
0 D
VI. GROUND-STATE WAVE FUNCTIONS
AND NON-ABELIAN STATISTICS X 2 x®,x@)@ ... 3 [x LD xOYB|A )Y
@ 0

Solving Eg. (34), we now show that the structure we (55)
found in Sec. lll for the occupations of the core states repeats
itself for the near-core states. This allows us to complete th&his structure of the ground states is helpful for analyzing
argument that the effect of vortex braiding can be understoothe effect of vortex braiding.
explicitly in terms of the geometric phasék. As discussed in Sec. 1V, the effect of encircling voriex
The detailed form of the ground-state wave function de-by vortexj on the ground statgs) is given by the unitary
pends on the convention for the order in which creation optransformation 2y [Eq. (1)]. In Egs.(28) and (29), we
erators of various states act on the vacuum. Equatl®  decomposed this transformation into two factors, one affect-
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ing the core states, and the other affecting the other statesmay be orthogonalized by means of a Gram-Schmidt-type
The “self-similarity” of the wave function, evident in Eqs. process. The states resulting from that process, however,

(53)—«55), suggests that the effect of vortex encircling on thewould not necessarily share the properties of the states

statesA,) is analogous to its effect on the ground states wi(")(r) for k<L, namely, their occupation may not be

themselves. Clearly, the analog of the operatgiia the first  particle-hole symmetric, and the way they are affected by

generation of near-core states are the oper:i[ﬁ‘?s Thus, vortex braiding may be different.

one expects

B;= 2717 (56) VIl. SUMMARY
and the associated operator identity The composite-boson theory of the fractional quantum
Dt Hall effect at filling fractionsy=1/m (m odd) employs a
2y, = (2iyX) (2% %) (2ZVZY) (57)  Chern-Simons transformation to map the electronic system

éo a superfluid of composite bosons. It explains the fractional
. . = e statistics of the excitations of these states by describing them
|o!e_nt|ty follows from the fact thav‘:(llvz)(xi__'zi( )) an- s charged vortices in that superfluid, ar31/d the stagstical
nihilates any ground states so that, when acting W'tr(‘l'{‘ th&hase as the effect of the charge of one vortex on the geo-
SUbSpan of ground states, one has/BXY;=1/2-iXZ, metric phase accumulated by another vortex as it moves
or 2iX;z"=1. adiabatically.

An analogous picture emerges for the exchange of vorti- The Moore-Read theory describes the5/2 state also as
ces. Here, we found that the explicit effect of exchange ory superfluid. Again, charged excitations are vortices in this
the stategm,x) is equivalent to the action of the operator syperfluid, and these vortices accumulate geometric phases
exp{my;y;/ 2texp{mXX;/2}. On the other hand, the effect of a5 they move. However, in this case the effective bosons
the interchange on the ground states is given by the operat@srming the superfluid are Cooper pairs of composite fermi-
exp{my;y;/2}. Due to the “self-similarity” of the wave func- ons. As a consequence, this state has excitation modes that
tion, the connection between these two operators is expectéfivolve the breaking of Cooper pairs into two composite
to be furnished by fermions. These modes are solutions of the Bogolubov—de

A (D (1) Gennes equations. In the presence of well-separated vortices,
B=expnz"Z;"/2}. (58) each vortex gives rise to one zero-energy solution. These
Indeed, there exists a corresponding operator identity zero-energy solutions represent Majorana operators, operat-
ing on the core state of their vortex. FoNZortices, these
exp{my;y/2} = exg{7y; YJ/Z}GXP{WXiXj/Z}eXp{WZi(l)ZJ(D/Z} zero modes lead to d'Fold degeneracy of the ground state
(59) in the presence of vortices. TheN2core states define a
2°N_dimensional Fock space, since each core state may be
valid when acting within the subspace of ground states. Itgccupied or empty. We found that each ground state has an
proof uses the same m_grgdlents as in the case of encwclmgqum probability for each of the?? possibilities to occupy

For both vortex encircling and exchange, this procedurgnhe core states, and that the way these possibilities are super-
can now be repeated for the near-core states obtained {hsed is such thaat least for ground states with a definite
higher iter_atic_)ns. In this way, it follows that the effect of parity of the total particle numbgthe occupation of core
vortex encircling or exchange on any core or near-core staté§iates in one vortex is entangled with the occupations of all
is entirely contained in the geometric phasgs _ core states in all other vortices. We showed that it is the

This discussion clarifies the difference between unitaryejative phases between the amplitudes for different occupa-
transformations composed of zero-energy Majorana opergjons that distinguishes between the various ground states,
tors, say,y,j-17,j, and unitary transformations comkposed of and that it is these relative phases that vary as the vortices
nonzero energy Majorana operators, suchxé,%lx(zj) and  move. This allows the system to transform between ground
Zy¥ ,Zy. When acting on a ground state, the first one leavestates due to vortex braiding. It is interesting to observe that
the system within the subspace of ground states, while thenlike the case of ordinary quantized Hall states, there seems
last two excite the system. Any unitary transformation thatto be no direct relation between the charge carried by the
may be implemented by means of an adiabatic vortex braidvortices and their non-Abelian statistics.
ing leaves the system in the ground state subspace. That is While the zero-energy Majorana modes affect only the
the case fory,;_1y,j, Wwhose effect on a ground state may beoccupations of the core states of the vortices, we showed that
reduced to a series of phase changes associated with vortigXs possible to extract some general information regarding
braiding. By contrast, the effect of the other two operatorshe occupations of other single-particle states without explic-
may not be implemented by an adiabatic braiding of vorticesitly solving the Bogolubov—de Gennes equations. In particu-

The number of generationls appearing in Eq(55) is lar, we constructed a set of single-particle states which are
chosen such that the stawg)(r) generated by our iterative localized near the vortex cores and whose occupations are
process do not become extended enough to overlap. If thelso maximally uncertairall possibilities of their occupa-
iterative process is carried out further, states from differentions are equally probableand maximally entangled. The
vortices start overlapping, and therefore cannot be used atefinition of these near-core states allowed us to explicitly
basis states in a single-patrticle basis. In principle, these stateslate our picture of non-Abelian statistics, based on en-

when applied to any ground state. Indeed, the proof of thi
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tanglement and geometric phases, to previously existing agsolely by the explicit monodromy. Before constructidgor
proaches based on representations of vortex braiding iaxchange trajectories or encircling, we first construct unitary
terms of unitary transformations that create and annihilat®perators from the set of’s which are helpful in giving an
particles in the core states. The elucidation of the role ofxplicit expression for the operatos

guantum entanglement and geometric phases may be useful The unitary transformation,= \Eyk adds a minus sign to
for understanding the effect of decoherence on non-Abeliaall operatorsy; with j #k. If j=k, it leaves the operator un-
statistics, a question which is of relevance in the context othanged:

topological quantum computatia. o
The Moore-Read state is only the simplest example of Uyt = % whenj=k, (A3)
proposed FQHE wave functiofiswhose excitations satisfy P - y; otherwise.

non-Abelian statistics. As in this example, non-Abelian Sta_ObviousI (U U} =25,
tistics is generally associated with a degeneracy of the Y itk Ues=2ode. .
_ The unitary transformatioru;;=v+7y; interchangesy,

ground state. However, the other proposed states lack a de- . ) X
scription in terms of second quantization, and in the absencE('th ?’! and adds a minus sign to all other operatggsvith
of such a description it is hard to generalize our analysis fo

the Moore-Read state to the entire set of non-Abelian states. v whenk=j,

We believe, however, that a second-quantization formulation

of other non-Abelian states would lead to a similar picture.

y )

Ujnul =1 % whenk=i, (A4)
- v otherwise.
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1. Winding trajectories

APPENDIX A: UNITARY TRANSFORMATIONS FOR

+ - v Wwhenm, is odd,
VORTEX ENCIRCLING AND INTERCHANGE Uwind YcYwind =

: (A5)
v« Wwhenmis even.

In this appendix, we review for completeness how to con
struct the unitary transformation$ associated with particle
exchange and encircling.For this purpose, we analyze the 2N
time evolution of the many-particle state within the degener- Uying = [T Ui, (AB)
ate subspace of ground states as the vortices adiabatically k=1
traverse trajectories that start and end in the same set Qfnere the operator ordering lt,;q is Not important up to
positions. The unitary transformation is defined by the relayn overall minus sign.
tion between the final statp/(t=T)) and the initial state

|l(t=0)),

This is satisfied by the operator

2. Exchange trajectories

[@(t=T))=U|(t=0)). (A1) . o .
Exchange trajectories in which some of the vortices trade
Correspondingly, the time evolution of the operatgrspan-  places are more complicated since the phase chang@s of
ning the degenerate subspace is given by associated with a particular trajectory do not only depend on
e _ the winding numbers, but also on the details of the trajectory
n(t=T)=Uy(t=0U" (A2) and on the precise definition of the cut of the function(arg
The time evolution of the operatosg can be readily read off where its value jumps by2 The simplest example is the
from their definition(8) and the explicit forn{7) of the zero-  interchange of two vortices. Inevitably one of the vortices
energy spinors of the Bogolubov—de Gennes equations. Thigrosses the cut line of the other vortex. Thus such an inter-
can be used to identify the operatdssup to an Abelian change involves an operatoy, that exchanges the positions
phase. We note that with our choice of phase for the zeroef the two vortices and an operatoy or u, that multiplies
energy spinors in Eq7), their Berry phase during adiabatic the appropriate vortex by —1. As a result, the unitary trans-
phase evolution vanishes and the phase evolution is giveformations generated by these exchanges are

205338-11
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Ul:,Z -

1
=1 +UUy), (A7)
V2

1
ut=2= 75(1 +UyUp). (A8)

N
The transformationJ'=? transformsc, —c¢, and ¢,——¢;
while U'=? transformsc, — —c, and ¢, — c;.
The combination of the motion of the first vortex frdRy
to R, and the motion of the second vortex fraRy to R,

PHYSICAL REVIEW B70, 205338(2004

of the eigenfunctions of the BdG equations, we obtain the
useful result

: (B6)

Sis=1- 2‘

with S a Hermitian operatoB=S'.

For different vortices,i # ], the orthogonality follows
again from the locality properties of thvés. Thus, we focus
on states from the same vortax;j, and drop the subscript
labeling the vortex in the remainder of this appendix. In each

generates a closed curve. When that curve encloses a thifigrative stepk of the construction of thev's, we need to

vortex, the phase of that vortex changes by and so does

prove that

the phase of one of the first two vortices. Altogether, this

gives three phase shifts ofi2 and the transformatiorig*=?
andU*=2 have to be multiplied by eitharu, or usu,. There
are two possible outcomes to that. The firstigu; +u,), a

transformation in which the phase of each of the three vorti-

ces is shifted by 2. The second isi3(u;—U,), in which the
phase of the third vortex is shifted byr2and the other two
2 shifts are both given to one vortex.

APPENDIX B: ORTHOGONALITY OF VORTEX STATES

whwh)y =0 (B7)

for all | <k. Since this amounts to a proof by induction, we
may exploit that two states with indices smaller thak are

‘orthogonal.
Starting withl=0, we have
wk WO
2Rgw®| W) = ,1=0 (BY

In this appendlx we discuss the scheme to generate thince by construction, the spindj has zero overlap with

funct|0nswI (r) in more detail and prove the orthogonality
relation (42). We start by proving the orthogonality of the

StatESNi(O)(I’) andw(l)(r). In spinor notation, we can write

(1)
ug(r) 1 w™(r)
z<1>—|Es nE ( £ ) ( ! ) (B1)
MEC ) ) 7 2 [wiM(r)]
in terms of the expansion coefficients
o1 ug| W
CL=—+= Vo ] B2
i \'z<vE W] (52
These coefficients satisfy the relation
Cle=[CLI (B3)

whose proof uses the identity:(r)=[v_g(r)]*. The states
wi(o)(r) andw}l)(r) are obviously orthogonal due to their lo-
calization properties for+ j. Fori=j, the orthogonality fol-

lows from
(1) 1 _
Re(w!jw(?) =0 (B4)
iw© >
=iw®T

i .
= 5% SgnE|Cg?=0.

W
2\ (w7

w®

(W]

and

(1)
1/ w
1 0y —
Im(wiwi®) = - 5<[W;1>]*
|

(B5)

Here, Eq.(B4) uses that by construction, the spirﬂiﬁ) has
zero overlap with the zero-energy spinors. EquatiB®)
uses the symmetrgB3) of the expanS|on coefﬂmen@'

We now turn to the higher |terat|0n/s (r) and proceed
to prove the orthogonality Eq42). Usmg the completeness

zero-energy spinors. Furthermore,
iw©
—ifwo7
W)
72| fwory

w®
W] =0. (B9

wik
[wT
\Nk—l

Wk—l
[Wk T

k-2, we obtain

wh

w7

(= So)'(- Soz)‘[
w9

w7

wo

W(O)]*

wi-D >
=0 (B10)

= 2 Im{w®| w@) = <

0z

Forl=1,2,...

2Rgw®| wihy = <[
(k-1)

< w

~\[wheny
\N(k—l)
1 W(k—l)

i 5<[ -

WO
“\ wor

k)

vv(k 1)
—i ol
. < wkD
=i . oy
e

wik

I 1)
(I- 1)]

0z

[T

iw®
- i[vv(”]* >
wi
72| fwhy >
1+1)
(|+1)]* >

and
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iW(I+1)

W(k—l)
“\pweeoy | Cipwieny /70 (B1D

Finally, we note forl=k-1 that Réw®|w*Y)y=0 can

PHYSICAL REVIEW B 70, 205338(2004)

be obtained in complete analogy to Eq(B10)
and Imw®|wkDy=0 in analogy with Eq.(B5).2* This
completes the iterative construction of the functions
(k) including the proof of the orthogonality relations

W
Eq. (42).
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