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Some models describing unconventional fractional quantum Hall states predict quasiparticles that obey
non-Abelian quantum statistics. The most prominent example is the Moore-Read model for then=5/2 state, in
which the ground state is a superconductor of composite fermions, the charged excitations are vortices in that
superconductor, and the non-Abelian statistics is closely linked to the degeneracy of the ground state in the
presence of vortices. In this paper we develop a physical picture of the non-Abelian statistics of these vortices.
Considering first the positions of the vortices as fixed, we define a set of single-particle states at and near the
core of each vortex, and employ general properties of the corresponding Bogolubov–de Gennes equations to
write the ground states in the Fock space defined by these single-particle states. We find all ground states to be
entangled superpositionsof all possible occupations of the single-particle states near the vortex cores, in which
the probability for all occupations is equal, and the relative phases vary from one ground state to another. Then,
we examine the evolution of the ground states as the positions of the vortices are braided. We find that as
vortices move, they accumulate ageometric phasethat depends on the occupations of the single-particle states
near the cores of other vortices. Thus, braiding of vortices changes the relative phase between different
components of a superposition, in which the occupations of these states differ, and hence transform the system
from one ground state to another. These transformations, that emanate from the quantum entanglement of the
occupations of single-particle states and from the dependence of the geometric phase on these occupations, are
the source of the non-Abelian statistics. Finally, by exploring a “self-similar” form of the many-body wave
functions of the various ground states, we show the equivalence of our picture, in which vortex braiding leads
to a change in the relative phase of components in a superposition, and pictures derived previously, in which
vortex braiding seemingly affects the occupations of states in the cores of the vortices.
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I. INTRODUCTION

The experimental discovery1 of the fractional quantum
Hall effect (FQHE) led to intriguing theoretical observations
regarding the elementary excitations(quasiparticles) of a
two-dimensional electron system at a fractional Landau-level
filling factor n. Very soon after the experimental discovery,
Laughlin2 realized that the quasiparticles at filling factorsn
=1/s2p+1d (with p an integer) carry a fractional charge
e* = ± e/ s2p+1d (for brevity, we use the term quasiparticles
to refer also to quasiholes). Following that observation,
Halperin3 showed that the hierarchy of observed FQHE
states, atn=p/q (with q an odd integer), points to the frac-
tional statistics of the quasiparticles and quasiholes, of the
type that was previously studied by Wilczek.4 This observa-
tion was further clarified by Arovas, Schrieffer, and
Wilczek.5 When a system contains two quasiparticles, and
the positions of these quasiparticles are adiabatically inter-
changed, the state of the system acquires a geometric Berry

phase. This phase, which isp for fermions and 2p for
bosons, becomes a fraction ofp for FQHE quasiparticles.

The experimental discovery6 of the even-denominator
FQHE staten=5/2 triggered the introduction of yet another
novel concept with regard to the statistics of the elementary
excitations. Employing conformal field theory to study the
n=5/2 FQHE, Moore and Read7 discovered that if this state
is well described by the Pfaffian wave function, as numerical
investigations seem to confirm,8 the elementary excitations
obey non-Abelian statistics. The state of the system after a
series of quasiparticle interchanges then depends on the order
in which these interchanges are carried out. By using exact
eigenstates of a model Hamiltonian,9 Nayak and Wilczek10

subsequently showed that the ground state of the configura-
tion in which 2N quasiholes are inserted at fixed positions is
2N-fold degenerate, and that the quasiparticles realize a
2N−1-dimensional spinor braiding statistics. Effective Chern-
Simons theories and their relations to non-Abelian statistics
have been studied in Ref. 11.
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Following earlier observations that related the Pfaffian
state top-wave Cooper pairing, Read and Green12 described
this state as ap-wave BCS superconductor of composite fer-
mions, and conjectured that the non-Abelian statistics of its
quasiparticles results from the zero-energy modes associated
with vortices in this superconductor. This conjecture was fur-
ther studied by Ivanov,13 who mapped out the relation be-
tween the exchange of quasiparticles and the unitary trans-
formation carried out on the Hilbert space of the ground
states. Ivanov explicitly derived these unitary transforma-
tions, showed that they are indeed non-Abelian, and con-
firmed that they are identical to the transformations derived
earlier by Nayak and Wilczek10 using conformal field theory.

While these two derivations of the unitary transformations
associated with vortex interchange may be easily generalized
to calculate the transformations associated with other braid-
ings of vortices, they do not provide a clear physical picture
of the non-Abelian statistics. This is exemplified in the fol-
lowing observation: using the method of Ref. 13, it is easy to
show that when the system is initially in a ground state
ug.s.al, and vortex j encircles vortexj +1, then, under the
assumption that no tunneling takes place between the vortex
cores, the final state of the system is again a ground state,
given by

scje
si/2dV j + cj

†e−si/2dV jdscj+1e
si/2dV j+1 + cj+1

† e−si/2dV j+1dug.s.al,

s1d

where the operatorscj
s†d ,cj+1

s†d annihilate(create) a particle lo-
calized very close to the cores of thej th ands j +1dth vortex,
respectively, andV j is a phase defined in the next section.
Equation (1) seemingly implies that the motion of thej th
vortex around thes j +1dth vortex affects the occupations of
states very close to the cores of the two vortices. This is in
contrast, however, to the derivation leading to Eq.(1), which
explicitly assumes that vortices are kept far enough from one
another so that tunneling between vortex cores may be dis-
regarded.

In this work we study the manifold of degenerate ground
statesug.s.al in an attempt to give a physical picture of the
effect of braidings in the positions of vortices. We use a
second quantized formalism to write these states as many-
body wave functions in a carefully defined Fock space, with
the positionsRi of the vortices being parameters in these
wave functions. Then, when the vortices are adiabatically
moved and these parameters change, the wave functions
change, in principle, in two ways: first, through their explicit
non-single valued dependence onRi, and second, through
the induced non-Abelian geometric vector potential matrix,
whose matrix elements are Imkg.s.au¹Ri

ug.s.a8l. We construct
the Fock space in such a way that the second contribution
vanishes, and the entire time evolution of the wave functions
is through their multivalued dependence on the changing co-
ordinatesRi. Consequently, the unitary transformations asso-
ciated with the braiding of vortex positions can be read off
from the explicit form of the wave functions.

Following our derivation of the ground states we show
that two ingredients are essential for the non-Abelian statis-
tics of the vortices. The first is the quantum entanglement of

the occupation of states near the cores of distant vortices.
The second ingredient is familiar from(Abelian) fractional
statistics: the geometric phase accumulated by a vortex tra-
versing a closed loop.

Within the Chern-Simons composite-boson theory,14 the
Abelian fractional statistics of then=1/m states is explained
by mapping the ground state of the electronic system to a
superfluid of composite bosons, and the quasiparticle excita-
tions to vortices in that superfluid. Due to the coupling of the
vortex to a Chern-Simons gauge field, the depletion of
bosons at the vortex core is quantized to a fraction 1/m of a
fluid particle. Thus the charge carried by the vortex is also
fractional. The quantum statistics is related to the geometric
phase accumulated by a vortex traversing a close trajectory.
Roughly speaking, the vortex accumulates a phase of 2p per
fluid particle which it encircles. When another vortex with its
fractional charge is introduced to the encircled area, this
phase changes by a fraction of 2p. Upon adapting the argu-
ment to interchanging of vortices, one finds that this fraction
of 2p translates into fractional statistics.

Similarly, the Moore-Read theory of then=5/2 state de-
scribes it also as a superfluid, with the quasiparticles being
vortices in that superfluid. However, the “effective bosons”
forming the superfluid are Cooper pairs of composite fermi-
ons. Consequently, the superfluid has excitation modes asso-
ciated with the breaking of Cooper pairs. In the presence of
vortices, a Cooper pair may be broken such that one or two
of its constituents are localized in the cores of vortices. For
p-wave superconductors, the existence of zero-energy intra-
vortex modes leads, first, to a multitude of ground states and,
second, to a particle-hole symmetric occupation of the vortex
cores in all ground states. When represented in occupation-
number basis, a ground state is a superposition which has
equal probability for the vortex core to be empty or occupied
by one fermion.

When a vortex traverses a trajectory that encircles another
vortex, the phase it accumulates depends again on the num-
ber of fluid particles which it encircles. Since a fluid particle
is, in this case, a Cooper pair, the occupation of a vortex core
by a fermion, half a pair, leads to an accumulation of a phase
of p relative to the case when the core is empty. And since
the ground state is a superposition with equal weights for the
two possibilities, the relative phase ofp introduced by the
encircling might in this case transform the system from one
ground state to another.

This qualitative picture is made more precise in this paper.
Our analysis revolves around the definition of a set of single-
particle states localized at or near the 2N vortex cores. We
start by defining the “core states,” a set of 2N states each of
which is localized at a specific vortex core. We find that in all
possible ground states, the occupation of these single-particle
states near one vortex is entangled with the occupation of
single-particle states near all other vortices. We prove that
any many-body state in which these occupations are disen-
tangled is necessarily an excited state. We show that the evo-
lution of the ground state as positions of vortices are braided
indeed follows the picture outlined above, and discuss both
the case where vortices encircle one another and the case
where they interchange positions. In making this picture of
non-Abelian statistics more precise, we define, starting from
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each core state, further orthogonal single-particle states
(“near-core states”) which are localized near a vortex core.
The occupations of these additional single-particle states in
the many-body ground states are also particle-hole symmet-
ric and entangled between different vortices. In fact, we re-
veal a “self-similar” structure of the many-body wave func-
tion with respect to the occupation of these single-particle
states which leads us to express the relation between our
picture of non-Abelian statistics and the known representa-
tions of vortex braiding in the space of ground states10,13 in
terms of compact operator identities.

The structure of this paper is as follows. We begin in Sec.
II with a review of the description of the Pfaffian state as a
p-wave superconductor, with vortices as quasiparticles. In
Sec. III, we start with the definition of the single-particle
states by introducing the “core states.” In Sec. IV, we explore
the roles of quantum entanglement and geometric phases in
the evolution of these superpositions when vortex positions
are braided. The “near-core states” are introduced in Sec. V.
The occupations of these “near-core states” in the many-
body ground states is worked out in Sec. VI, revealing the
“self-similar” structure of the wave functions. We conclude
in Sec. VII. Some details are relegated to appendixes.

II. SOLUTIONS OF BOGOLUBOV–DE GENNES
EQUATIONS—REVIEW

The Pfaffian trial wave function for the quantized Hall
state at Landau level filling factorn=5/2 wasfirst intro-
duced by Moore and Read7 as the first-quantized wave func-
tion

CMRsz1,z2, . . . d = PfS 1

zi − zj
Dp

i, j

szi − zjd2p
j

e−s1/4l2duzj u
2
,

s2d

wherel is the magnetic length andzi =xi + iyi is the complex
coordinate of theith particle. Forp particles(p an even in-
teger), the Pfaffian in Eq.(2) takes the explicit form

PfS 1

zi − zj
D =

1

2p/2sp/2d!
AH 1

z1 − z2

1

z3 − z4
¯

1

zp−1 − zp
J ,

s3d

whereA is the antisymmetrization operator. It is instructive
to view the Pfaffian appearing in the wave function in Eq.(2)
as the real-space BCS wave function of composite fermions
for a fixed number of particles.12,15According to the associ-
ated pair wave functiongszd=1/z, the pairing is of spinless
(or spin-polarized) composite fermions in thel =−1 angular-
momentum(p-wave) channel. The Pfaffian corresponds to a
weakly paired superconductor, which for a two-dimensional
p-wave superconductor is topologically distinct from the
strongly paired phase.12 The charged excitations of the
quantum-Hall system are, in this description, the half-flux-
quantumsh/2ed vortices of the superconductor.

As is often the case, the use of a first-quantization formu-
lation is mathematically involved, and makes the physical
picture difficult to read. The identification of the Pfaffian as a

complex p-wave BCS state of composite fermions subse-
quently led Read and Green12 to introduce a second-
quantization formulation which paved the way for a clearer
physical picture. Their starting point is the BCS mean-field
Hamiltonian

H =E drc†sr dh0csr d +
1

2
E drdr 8hD * sr ,r 8dcsr 8dcsr d

+ Dsr ,r 8dc†sr dc†sr 8dj. s4d

with the single-particle termh0 and the complexp-wave
pairing function

Dsr ,r 8d = DS r + r 8

2
Dsi]x8 − ]y8ddsr − r 8d. s5d

Read and Green12 retain only the potential part ofh0 by
settingh0=−msr d and argue that this is sufficient for studying
the topological properties of the Pfaffian state, such as the
statistics of its quasiparticles. In the presence of 2N vortices
pinned at positionsRi, the gap function takes the form
Dsr d= uDsr duexpfixsr dg with xsr d=oi=1

2Nargsr −Rid. In the vi-
cinity of vortex k, the phasexsr d can be approximated by
xsr d=argsr −Rkd+Vk with Vk=oiÞk

2N argsRk−Rid.
The fermionic excitations of superconductors are de-

scribed by the Bogolubov–de Gennes(BdG) equations

ESusr d
vsr d

D =1 − msr d
i

2
hDsr d,]x + i]yj

i

2
hD * sr d,]x − i]yj msr d 2Susr d

vsr d
D .

s6d

For two-dimensional complexp-wave superconductors, so-
lutions of nonzero energy should be distinguished from those
of zero energy. We denote the nonzero energy solutions by
fuEsr d ,vEsr dg, with uEsr d=v−E

* sr d. In second quantization,
positive-energy solutions are associated with annihilation op-
erators of BCS quasiparticles GE=edr fuEsr dcsr d
+vEsr dc†sr dg, while negative-energy solutions are associated
with creation operators of the same quasiparticlesG−E=GE

†.
The zero-energy solutionsfuisr d ,visr dg are localized at the
vortex cores. For well-separated vortices, there is one such
solution per vortex. With a choice of phase the advantages of
which become clear below, these zero-energy solutions take
the form

uisr d = vi
*sr d =

1
Î2

wi
s0dsr desi/2dVi . s7d

Here, the indexi =1, . . . ,2N numbers the vortices and the
functions wi

s0dsr d are normalized wave functions localized
near the core of theith vortex. When the vortices are well
separated, the functionswi

s0dsr d are mutually orthogonal. In
Sec. V below, we iteratively define additional single-particle
states localized in the vicinity of the vortex cores. These
states will be denoted bywj

skdsr d, with the subscript labeling
the vortex and the superscript enumerating the states near
each vortex.
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The zero-energy eigenstates of the BdG equations corre-
spond to the Bogolubov operators

g j =
1
Î2

fcje
si/2dV j + cj

†e−si/2dV jg, s8d

where we introduced the operatorscj =edrwj
s0dsr dcsr d

which annihilate particles in the vortex-core stateswj
s0dsr d.

Evidently, g j
†=g j so that the operators associated with the

zero-energy solutions are Majorana fermions.
The existence of the zero-energy solutions leads to a de-

generacy of the ground state. Enumeration of the ground
states is customarily done by combining the Majorana opera-
torsgi in pairs and defining(ordinary) fermionic creation and
annihilation operators

a2j
† =

1
Î2

sg2j−1 + ig2jd s9d

with j =1, . . . ,N. The ground states can now be written in the
occupation-number basis corresponding to these fermionic
operators. A ground stateuml is then labeled by the occupa-
tion numbersm=sm2,m4, . . . ,m2Nd with

a2j
† a2juml = m2juml s10d

and

uml = sa2N
† dm2N . . . sa4

†dm4sa2
†dm2um = 0l s11d

leading to a 2N-fold degeneracy of the ground state.
The BCS Hamiltonian(4) is diagonal when written in

terms of the quasiparticle operatorsGE and gi (Bogolubov
transformation). The ground state is determined by the con-
ditions GEug.s.l=0 for all E.0. For a uniform supercon-
ductor in the absence of vortices(i.e., for space-independent
D andm), these equations lead to the celebrated BCS wave
function uBCSl=pk8suk +vkck

†c−k
† duvacl, where the prime indi-

cates that pairs of momentask ,−kd should be counted only
once anduvacl is the state with no particles. In this case, the
choice of a plane-wave basis for the single-particle states is
natural.

In the presence of vortices,D andm are space dependent,
and there is no obvious single-particle basis for the descrip-
tion of the ground states. A proper choice of such a basis
turns out to be helpful in our discussion of non-Abelian sta-
tistics.

III. CORE STATES

A natural starting point for a single-particle basis are the
2N stateswi

s0dsr d. These single-particle states, which we ap-
proximate to be orthogonal due to the large distance between
the vortices, are associated with a 22N-dimensional subspace
of the many-particle states. The remaining(infinitely-many)
single-particle basis states remain unspecified throughout
this section and are partially defined in Sec. V. We will refer
to the first 2N single-particle states as the “vortex-core
states,” and to the remaining single-particle states as the
“other states.”

Many-particle states in Fock space can now be expanded
in terms of occupation numbers of these single-particle

states. A corresponding basis state of the Fock space is then
written as

s12d

where 0(1) denotes an empty(occupied) state. The first fac-
tor has 2N digits and designates the occupations of the
vortex-core states. We enumerate these states byutl with t
=0, . . . ,22N−1. Specifically, ut=0l denotes a many-body
state in which all single-particle vortex-core states are unoc-
cupied, i.e., a state that satisfiescjut=0l=0 for all j . The
second factor in Eq.(12) designates the occupations of the
“other states.” Below we find that for every possible ground
stateug.s.al the probability to find the core states in an occu-
pation utl is equal to 1/22N, and is independent oft. A state
in which this occupation depends ont is necessarily an ex-
cited state.

Although the operatorsa2j anda2j
† act on the occupations

of the core states only, the quantum numbersm do not fully
label the 22N-dimensional space of statesutl. In particular,
there is no direct relation between the occupation numbersm
and the occupation of the single-particle stateswj

s0dsr d. In
order to explore the structure of the ground states in terms of
the statesutl, we now introduce another set of quantum num-
bers associated with a second set of 2N Majorana operators

Xj =
i

Î2
scje

si/2dV j − cj
†e−si/2dV jd s13d

whose associated BdG spinors fiwj
s0dsr desi/2dV j ,

−ifwj
s0dsr dg* e−si/2dV jg are orthogonal by construction to the

zero-energy solutions of the BdG equations. These operators
obviously also act only on the occupations of the vortex-core
states. However, when expanded over the complete set of
BdG quasiparticle operators, they involve only nonzero en-
ergy quasiparticles so that

Xj = o
E.0

fCE
j GE + CE

j*GE
†g s14d

with coefficientsCE
j = iÎ2edruE

* sr dwj
s0dsr deiV j/2. Upon pairing

the vortices, these Majorana operators can again be com-
bined to obtain(ordinary) fermionic operators16

b2j
† =

1
Î2

siX2j−1 + X2jd. s15d

We label the occupation numbers of these fermions by
x2,x4, . . . ,x2N, and introducex=sx2,x4, . . . ,x2Nd.

We now form a basis of the 22N-dimensional Fock sub-
space of the vortex-core states by defining

um,xl = sa2N
† dm2N

¯ sa4
†dm4sa2

†dm2sb2
†dx2sb4

†dx4
¯ sb2N

† dx2N

3um = 0,x = 0l, s16d

where um=0,x=0l is the state annihilated by all the opera-
tors a2j and b2j. We obviously have km ,x um8 ,x8l
=dm,m8dx,x8. In terms of the occupations of the vortex-core
states, the statesum ,xl take the explicit form17
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um,xl = sm,xp
j=1

N H 1
Î2

f1 + is− 1dx2j

3e−si/2dsV2j−1+V2jdc2j−1
† c2j

† gdm2j,x2j

+
1
Î2

fe−si/2dV2j−1c2j−1
† + is− 1dx2je−si/2dV2jc2j

† g

3dm2j+x2j,1Jut = 0l, s17d

where the vacuumut=0l of the subspace of vortex-
core states was defined above. The sign factorsm,x
=pl=2

N pr=1
l−1s−1dx2lsm2r+x2rd arises due to the different operator

orderings in Eq.(16) and in the product in Eq.(17). Equation
(17) is readily derived by first identifying the occupations of
the vortex core states inum=0,x=0l from the condition that
this state is annihilated by alla2j’s andb2j’s. Subsequently,
the occupations of the vortex-core states in the remaining
statesum ,xl can be obtained by successively applying cre-
ation operatorsa2j

† and b2j
† according to Eq.(16) and using

Eqs.(8), (9), (13), and(15) in order to express these creation
operators in terms of vortex-core operators.

A ground state labeled bym is then a superposition of the
form

uml = o
x

um,xluAxl. s18d

It is important to note that the statesuAxl are independentof
the particular ground stateuml. Arbitrary ground statesug.s.al
can be written as linear superpositions of the statesuml. Here
and below we use the notationuAl to denote states in the
Fock subspace corresponding to the unspecified “other
states” in the single-particle basis. There are 2N components
in the superposition(18), one for every value ofx. The states
uAxl should be determined by the requirement that the ground
states are annihilated by all positive-energy annihilation op-
eratorsGE. Although we do not know the complete set of
operatorsGE, we can now show that

kAxuAx8l =
1

2Ndx,x8. s19d

To see that, we first note that since the operatorsXj are
composed of finite-energy quasiparticle operators only, the
matrix element for any odd number ofX operators between
any two ground states must vanish. Thus,

kg.s.auXj1
ug.s.bl = kg.s.auXj1

Xj2
Xj3

ug.s.bl = ¯ = 0 s20d

for arbitrary indicesa ,b , j1, . . . . Second, the matrix ele-
ments of a product of twodifferent operatorsXj between
states in the ground-state manifold are

kg.s.auXj1
Xj2

ug.s.bl = dab o
E.0

CE
j1CE

j2*

= 2dabE drdr 8wj1
s0dsr dfwj2

s0dsr 8dg *

3esi/2dsV j1
−V j2

d o
E.0

uE
* sr duEsr 8d. s21d

For sufficiently high energies the functionsuEsr d are ap-
proximately plane waves so thatoEuE

* sr duEsr 8d is a short-
ranged function, presumably decaying exponentially with
ur −r 8u, even for nonuniform superconductors. Then, for
well-separated vorticesj1 and j2, the matrix elements in Eq.
(21) approximately vanish. Put in different words, the opera-
tion of the operatorsXi is spatially localized around vortexi,
and thus two such operators operating near two distant vor-
tices generate orthogonal excitations. Similarly, the matrix
element of any other even number of differentX operators,
taken with respect to any two ground states, vanishes as well.
In Sec. V, we will also give a direct algebraic proof of this
result which relies on a relation of theXi to operators anni-
hilating the ground states.

The conditions in Eqs.(20) and (21) imply some general
conclusions regarding the statesuAxl, which we first present
for the case of two vortices. There are four statesutl, labeled
by u00l, u01l, u10l, u11l.18 The phases encoding the vortex
positions are related byV2=V1+p. The two ground states
then take the explicit form

um= 0l = su00l − e−iV1u11lduA0l + e−iV1/2su10l − u01lduA1l,

s22d

um= 1l = su00l + e−iV1u11lduA1l + e−iV1/2su10l + u01lduA0l.

s23d

The conditionkg.s.auXiug.s.al=0 implies thatkA0uA1l=0. In
addition, kg.s.auX1X2ug.s.al=0 imposes kA0uA0l=kA1uA1l
=1/2. Thus, while we cannot find the complete wave func-
tions of the ground states without a full solution of the BdG
equations, our procedure leads to the conclusion that the two
ground states are incoherent superpositions of the states
su00l±e−iV1u11ld with the statese−iV1/2su10l± u01ld, with
equal weights to both components. There is an equal prob-
ability 1/4 for all four possible charge arrangementsu00l,
u01l, u10l, u11l. The parity of the particle number differs be-
tween the two basis vectors of the ground-state manifold.
However, this difference in parity does not originate from the
occupations of the two vortex-core states. A local measure-
ment of one of the two vortex-core states cannot distinguish
between the two ground states.

Generalizing to 2N vortices, it is easy to see that the re-
quirement that the expectation value of products ofX opera-
tors vanishes leads to Eq.(19). Thus, all basis functions of
the ground-state manifold are an incoherent superposition of
2N terms, of equal weight. Each of these terms is, by itself, a
coherent superposition of 22N−1 possible occupations of the
core states, which constitute all possible occupations of a
given parity. This observation clarifies why there are 2N

ground states, rather than 22N. Within the Fock space of the
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core states there are 2N eigenvectors for each eigenvaluem,
but a ground state is generated by their incoherent superpo-
sition, mixing all of them with equal weights.

The wave functions in Eq.(18) give an explicit descrip-
tion of the occupations of the core states. The operator

N̂swi
s0dd;s1/2dsgi + iXidsgi − iXid counts the number of par-

ticles in theith core state. It is easy to see that

km8uN̂swi
s0dduml = km8ufN̂swi

s0ddg2uml =
1

2
dm,m8. s24d

Thus, in all possible ground states(including arbitrary super-
positions of the statesuml) the occupation of each core state
is particle-hole symmetric, with a probability of one half for
being empty or occupied.

IV. GEOMETRIC PHASES AND QUANTUM
ENTANGLEMENT IN THE EVOLUTION OF CORE

STATES UNDER VORTEX BRAIDING

When vortices are adiabatically moved along closed tra-
jectories, ending with braiding of their positions, the ground
state may evolve in time away from the initial state, and the
final ground state may thus be different from the initial one.
There are, in principle, two contributions to this transforma-
tion of the ground state.19 The first originates from its ex-
plicit multiply valued dependence on the phasesVi (explicit
monodromy). The second is through a non-Abelian geomet-
ric vector potential that gives rise to a non-Abelian Berry
phase. As is always the case with geometric phases, only the
sum of the explicit monodromy and the Berry phase is ob-
servable and one can split this sum between both contribu-
tions in any way desired by choice of appropriate phase fac-
tors. We now show that the phase choice we made in Eq.(7)
makes the second contribution vanish, and proceed to calcu-
late the first contribution.

We need to prove that the geometric vector potential20

Imkmu¹Ri
um8l s25d

vanishes for allm , m8 , Ri. The statesuml depend onRi

through the phasesVi and through the functionswi
s0dsr d.

Since thewi
s0dsr d are real(up to some trivial global phase

factor), their derivative does not contribute in Eq.(25), and
we may write¹Ri

=o js¹Ri
V jds] /]V jd and compute the ma-

trix element

kmu
]

]V j
um8l = dmm8o

x
kAxu

]

]V j
uAxl

+
1

2No
x

km,xu
]

]V j
um8,xl. s26d

The first term on the right-hand side is diagonal inm ,m8 and
otherwise independent ofm. It therefore leads only to Abe-
lian phase factors. Using the explicit states in Eq.(17) one
finds that also the diagonal elementsm=m8 of the second
term are independent ofm. The only contribution to the non-
Abelian part of the Berry phase can therefore arise due to the
off-diagonal contributionsmÞm8 of the second term. How-

ever, these vanish as one may verify by using the explicit
states in Eq.(17). Thus, when the wave functions are written
as in Eqs.(17) and (18) the only phase factors that lead to
non-trivial unitary transformations arise from the explicit de-
pendence of these wave functions on the phasesVi.

More explicitly, Eq.(17) shows that the part of the wave
function in which the core statei is occupied has an ampli-
tude proportional toe−iVi/2, while the part in which this state
is empty does not depend onVi. Since the ground states
involve superpositions of empty and occupied core states,
when the phaseVi accumulates a 2p shift, a relative minus
sign is introduced between the components of the superposi-
tions in which core statei is empty and occupied, and the
ground state does not necessarily come back to itself. The
source of the evolution from one ground state to another is
then in the phases between different components of the wave
function, and not in any change of occupation of states.

It is instructive to examine in detail the case of theith
vortex encircling thej th vortex, for which

Vi → Vi + 2p, V j → V j + 2p. s27d

This change of phase affects both the statesum ,xl and the
statesuAxl, according to

um,xl → s2igiXids2ig jXjdum,xl, s28d

uAxl → B̂i j uAxl, s29d

where B̂i j is an operator that acts on the “other”, non-core,

states, only. The final stateoxs2igiXids2ig jXjdum ,xlB̂i j uAxl
must be a ground state. However, the operatorsXi ,Xj gener-

ate excitations above the ground states. The operatorB̂i j
must then be an operator that annihilates these excitations.
More precisely, since the statesuAxl do not depend onm, the

operatorXiXjB̂i j must be ac number within the subspace of
ground states. In fact, for the norm of the ground state to be
conserved during the braiding of vortices, the magnitude of
this c number must be unity, i.e.,

2XiXjB̂i j = eifa s30d

with fa being an Abelian phase. In this way, we recover the
known unitary transformation for winding of two vortices
2gig j given in Eq.(1) [see also Appendix A]. This shows that
despite the appearance of Eq.(1), this transformation does
not involve any changes of core-state occupations, but only
changes in relative phases between the components of a su-
perposition, each of which has different core-state occupa-
tions.

In the subsequent sections, we will study the statesuAxl
much more explicitly by introducing the “near-core” single-
particle states. We will find that these states are structurally
very similar to the ground statesuml and this allows us to

give explicit expressions for the operatorsB̂i j (up to an
Abelian phase factor). These expressions do indeed satisfy
Eq. (30).

The above observations allow us to conclude that the
ground states spanned by the basis in Eq.(18) are states in
which the occupation of the core states at different vortices
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are fully entangled, in the following sense: There is no
ground state of the system in which the parity of the number
of particles is well defined, and in which the occupations of
two subsets of core states are disentangled from one another.
If such a state were to exist, its wave function could be
written as

Ĉ1Ĉ2Ĉ3uvacl, s31d

where Ĉ1 is an operator that acts only on the core states

belonging to the first subset,Ĉ2 is an operator that acts only

on core states belonging to the second subset, andĈ3 is an
operator that acts solely on the remaining states(core states
or other states) not included in any of the two subsets. How-
ever, for the state in Eq.(31) to have well-defined particle-

number parity, the states created byĈ1 or Ĉ2 must each have
definite parity. By considering the effect of an encircling in
which one vortex(say, theith vortex) from the first subset
winds around another vortex of the second subset(say, the
j th vortex), we find that this cannot happen. The unitary
transformation 2gig j corresponding to this transformation
changes the parity of the particle number for both the first
and the second subset, while we showed that the transforma-
tion of the ground state is a consequence of changes in
phases only, rather than changes in core states occupation.
Consequently, a state of the form in Eq.(31) cannot be a
ground state.

In some sense, the entanglement of the occupations of
core states is signaled by Eq.(10). As seen from that equa-
tion, the ground statesg2j−1uml and g2juml differ from one
another only by a phase factor, despite the fact that they are
obtained from the ground stateuml by the application of two
Majorana operators localized very far from one another.

Interestingly, despite the entanglement, the occupations of
different core statesi and j are uncorrelated,

kg.s.uN̂swi
s0ddN̂swj

s0ddug.s.l

= kg.s.uN̂swi
s0ddug.s.lkg.s.uN̂swj

s0ddug.s.l =
1

4
. s32d

This lack of correlations persists also to higher-order correla-
tors.

Furthermore, we can conclude that the total number of

particles in the core states, counted by the operatorN̂core

=oi=1
2NN̂swi

s0dd, does not have a well-defined parity. Rather, it
has equal probabilities for being even and odd, irrespective
of what is the parity of the total number of particles in the
ground state. To see that, we consider the particle-number

parity operator expsipN̂cored. Due to the lack of correlations
between different vortices

kg.s.uexpsipN̂coredug.s.l = p
j=1

2N

kg.s.uexpfipN̂swi
s0ddgug.s.l = 0.

s33d

Thus, the parity of the ground states cannot be determined by
a measurement of the occupation of the core states alone.

Despite the inherent quantum entanglement of the ground
states, it appears impossible to formulate corresponding Bell
inequalities. Each core state defines a two-dimensional Hil-
bert space, similar to a spin-1

2. However, the operators asso-
ciated with these spaces at different cores, thefermionicop-
erators g j and Xj, do not commute. Thus, their classical
analogs are ill defined.21

What happens when two vortices are interchanged can be
analyzed along similar lines to the case of one vortex encir-
cling another. We now analyze the case of interchanging vor-
tices from the same pair, 2i −1 and 2i. Note that choosing the
vortices from the same pair does not imply any loss of gen-
erality, both because for any interchange we can choose a
pairing such that the two vortices are from the same pair, and
because our considerations will eventually lead to an opera-
tor expression which is independent of the particular choice
of pairing.

As the adiabatic motion of vortices does not involve any
tunneling of particles between vortex cores, an interchange
of the position of vortices interchanges the occupation of
their core states. When both core states are occupied, the
interchange is accompanied by a factor ofs−1d, since two
fermions interchange positions. In addition, one of the vorti-
ces necessarily crosses the cut line of the phase of the other,
changing this phase by 2p (see Appendix A). The phase
of the other vortex remains intact. Implementing these
transformations in Eq. (17), the term f1
+ is−1dx2je−isV2j−1+V2jd/2c2j−1

† c2j
† g remains unaffected by the in-

terchange, while the relative sign between the two compo-
nents changes in the termfe−iV2j−1/2c2j−1

† + is−1dx2je−iV2j/2c2j
† g.

These transformations of the core-state wave functions
are implemented by the operatorepg2j−1g2j/2epX2j−1X2j/2, acting
on Eq. (17). By contrast, as found in Ref. 13(reviewed in
Appendix A), the unitary transformation that enacts the vor-
tex interchange on the states in Eq.(18) is epg2j−1g2j/2. As in
the case of encircling, the difference between these two

transformations is an operatorB̂ that acts on theuAxl part of
the wave function in Eq.(18).

The statesuAxl together with the operatorsB̂ that act on
them when vortices wind and interchange are the subject of
the following sections. We define a set of single-particle
states adjacent to the core state for each vortex(“near-core

states”), and show that the operatorB̂ affects the occupation
of these states in exactly the same way as the operators 2gig j
and epg2j−1g2j/2 affect the occupation of the core states for
vortex winding and encircling, respectively. In fact, we find

the corresponding operatorsB̂ to have the same functional
forms, but with the Majorana operatorsgi andg j replaced by
analogous Majorana operators associated with the near-core
states. We explain this in terms of a “self-similar” structure
of the ground-state wave functions.

V. STATES NEAR THE CORE

Our information on the statesuAxl introduced in Eq.(18)
has so far relied on the conditions in Eqs.(20) and (21) for
matrix elements of products of the operatorsXi. These op-
erators were constructed to have two main virtues.(i) They
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create and annihilate particles in the core states only.(ii )
They create and annihilate only excitations(Bogolubov qua-
siparticles) with E.0. We now take these operators as a
starting point in a scheme by which we define the set of
mutually orthogonal single-particle stateswi

skdsr d, where the
subscripti refers to the vortex number and the superscriptk
enumerates the iterations in our scheme. The new single-
particle states remain localized near the vortex cores and
provide insight into the nature of the statesuAxl.

We get to these states by using theXi’s to construct a set
of operatorsYi

skd that, unlike the MajoranaXi’s, annihilate the
ground states

Yi
skduml = 0 s34d

for all i , k, m. Furthermore, these operators anticommute

hYi
skd ,Y

i8
sk8dj=0 and each operatorYi

skd creates and annihilates

particles only in the two basis stateswi
sk−1dsr d andwi

skdsr d. By
virtue of the conditions in Eq.(34), these operators specify
the ground-state wave functions in the subspace spanned by
the stateswi

skdsr d.
Our scheme starts from the expansion of the operatorsXi

in Eq. (14). We define the two sets of operators

Yi
s1d = Î2o

E.0
CE

i GE, s35d

Zi
s1d = i o

E.0
sCE

i GE − CE
i*GE

†d. s36d

The operatorsYi
s1d annihilate all the ground states since they

are constructed from(positive-energy) annihilation operators
only. The operatorsZi

s1d are, by construction, Majorana op-
erators, and can thus be written as

Zi
s1d =

1
Î2
E dr fwi

s1dsr dcsr d + H.c.g. s37d

This defines a set of 2N single-particle stateswi
s1dsr d. We

prove in Appendix B that for well separated vortices the
wi

s1dsr d are mutually orthogonal as well as orthogonal to the
core stateswi

s0dsr d. Thus, we can extend our single-particle
basis by adding to it the 2N stateswi

s1dsr d. Note that for
conciseness of notation, we absorb the phase factors
expsiVi /2d into the definition of the stateswi

skdsr d throughout
this section. We comment below on how they should be re-
instated.

SinceXi =s1/Î2dfYi
s1d+Yi

s1d†g, the condition

Yi
s1dug.s.al = 0 s38d

implies immediately that any combination of different opera-
tors Xi has zero matrix elements between ground states as
required in Sec. III. Using the relationYi

s1d=s1/Î2dsXi

− iZi
s1dd, we can write

Yi
s1d =

i

2
E dr hfwi

s0dsr d − wi
s1dsr dgcsr d

− „fwi
s0dsr dg * + fwi

s1dsr dg * …c†sr dj. s39d

Thus, these 2N operators affect the occupations of the states
wi

s0dsr d andwi
s1dsr d only.

To iterate this process it is helpful to summarize the steps
leading to the definition ofwi

s1dsr d through Yi
s1d, using the

concise spinor representation for the operators. We start with
the operatorsgi =s1/Î2d(wi

s0dsr d ,fwi
s0dsr dg*) in Eq. (8) which

act on the occupation of thewi
s0dsr d only. In Eq. (13) we

define the operatorsXi = iszgi =s1/Î2d(iwi
s0dsr d ,−ifwi

s0dsr dg*)
acting on the occupations of the same single-particle states
(sz is a Pauli matrix). By construction, the spinors corre-
sponding toXi are orthogonal to those corresponding togi,
implying that the corresponding operators anticommute.
Then, in Eq.(35), we extract from the operatorsXi the parts
Yi

s1d that annihilate the ground state. The operatorsYi, in turn,
are written in Eqs.(36)–(39) as sums of Hermitian operators
Xi and anti-Hermitian operatorsiZi

s1d, and finally, we defined
wi

s1dsr d through the Majorana operatorsZi
s1d. In spinor repre-

sentation, these last three steps can be recast asZi
s1d

=−Sszgi with

S= o
EÞ0

sgnEUuE

vE
LKuE

vE
U . s40d

The operatorS is a difference of two projection operators.
The positive(negative) energy part of the sum projects to the
subspace of positive(negative) energy BdG solutions.

We now iterate this process to define stateswi
skdsr d and a

set of operatorsYi
skd for which Yi

skdug.s.al=0. This is achieved
by generating the set of Majorana operators

Zi
skd =

1
Î2
S wi

skdsr d
fwi

skdsr dg*
D = f− Sszgkgi . s41d

When writing outS explicitly in real space representation,
according to Eq.(40), it contains energy sums of the type
that has been discussed following Eq.(21). By the same
arguments employed there, we can conclude that as a func-
tion of the two coordinatesr and r 8, the operatorS is short
ranged, i.e., decays fast for largeur −r 8u. Thus,wi

skdsr d is also
localized around theith vortex although its extent from the
vortex core increases withk. Since the construction assumes
that stateswi

skdsr d localized around different vortices do not
overlap, there exists an upper limit to the number of itera-
tions. We denote the last iteration number byL.

The functionswi
skdsr d are studied in more detail in Appen-

dix B. We find that for iterationsk,L, the variouswi
skdsr d are

mutually orthogonal,

kwi
skduwj

sk8dl = di jdkk8. s42d

As long as the spatial extent of the stateswi
skdsr d is small

compared to the distance between vortices, the dependence
of the near-core stateswi

skdsr d on the phasesVi is analogous
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to that of the core states. Specifically, these phases can be
made explicit by the replacement

wi
skdsr d → wi

skdsr deiVi/2. s43d

This can be seen from Eqs.(40) and (41) in combination
with the observation that forr in the vicinity of vortexi, all
finite-energy BdG solutionsuEsr d and vEsr d depend on the
vortex positions through the phase factoreiVi/2.

We also define

Xi
skd =

1
Î2
S iwi

skdsr d
− ifwi

skdsr dg*
D s44d

and the operators

Yi
skd =

1
Î2

fXi
sk−1d − iZi

skdg

=
i

Î2
s1 + SdszZi

sk−1d

=
i

2
fsci

sk−1d − ci
skdd − sci

sk−1d† + ci
skd†dg s45d

which annihilate the ground states[see Eq.(34)]. Here, the
operatorsci

skd annihilate particles in the stateswi
skdsr d. This

iterative construction enlarges our single-particle basis. Start-
ing with the 2N core stateswi

s0dsr d, we defined an additional
L−1 “near-core” states for every vortex.

The occupations of the newly definedL−1 “near-core”
states are all particle-hole symmetric. This can be seen by

noting that the operatorN̂swi
skdd=s1/2dsZi

skd+ iXi
skddsZi

skd

− iXi
skdd counts the number of particles in the statewi

skdsr d.
Since

N̂swi
skdd =

1

2
+ iXi

skdZi
skd =

1

2
f1 + sYi

sk+1d† + Yi
sk+1ddsYi

skd† − Yi
skddg

s46d

and since the operatorsYi
skd† and Yi

sk+1d correspond to or-
thogonal excitations, one finds

km8uN̂swi
skdduml = km8ufN̂swi

skddg2uml =
1

2
dm,m8. s47d

In the next section we solve Eq.(34) to extract the ground-
state wave functions in the Fock subspace spanned by the
near-core stateswi

skdsr d.

VI. GROUND-STATE WAVE FUNCTIONS
AND NON-ABELIAN STATISTICS

Solving Eq. (34), we now show that the structure we
found in Sec. III for the occupations of the core states repeats
itself for the near-core states. This allows us to complete the
argument that the effect of vortex braiding can be understood
explicitly in terms of the geometric phasesVi.

The detailed form of the ground-state wave function de-
pends on the convention for the order in which creation op-
erators of various states act on the vacuum. Equation(18)

positions all creation operators for the core states to the left
of creation operators for other states, and Eq.(16) specifies
the order in which core states are being filled. In that spirit,
the creation operators for the first iteration of near-core states
wi

s1dsr d are going to be positioned to the right of those of the
core states, and so on with increasing number of the itera-
tion. Within each iteration, we follow the convention defined
in Eq. (16) for the core states.

We first determine the occupations of the near-core states
of the first iteration,wi

s1dsr d in the statesuAxl. To this end, we
define creation and annihilation operators from pairs of the
operatorsZi

s1d andXi
s1d,

d2j =
1
Î2

sZ2j−1
s1d − iZ2j

s1dd, s48d

h2j =
1
Î2

s− iX2j−1
s1d + X2j

s1dd. s49d

Then we can express the statesuAxl in terms of the states

um,xls1d = sd2N
† dm2N

¯ sd4
†dm4sd2

†dm2sh2
†dx2sh4

†dx4
¯ sh2N

† dx2N

3um = 0,x = 0ls1d, s50d

where the superscript on the state indexes the iteration. The
conditionssY2j−1

s1d ± iY2j
s1dduml=0 for the ground states can be

rewritten as[see Eq.(45)]

sb2j − d2j
† duml = 0, s51d

sb2j
† + d2jduml = 0. s52d

Applying these conditions to the ground states, we find

uAxl = o
x8

ux,x8ls1duAx8l
s1d, s53d

in terms of further statesuAx8l
s1d which contain the occupa-

tions of the remaining near-core states as well as the other
states. As expected, Eq.(53) satisfies Eq.(19). Iterating this
procedure, we get

uAxls1d = o
x8

ux,x8ls2duAx8l
s2d, s54d

and so on, as long as near-core states from different vortices
do not overlap. Consequently, we can write the ground-state
wave functions as

uml = o
xs0d

um,xs0dls0do
xs1d

uxs0d,xs1dls1d

3o
xs2d

uxs1d,xs2dls2d
¯ o

xsLd
uxsL−1d,xsLdlsLduAxsLdlsLd.

s55d

This structure of the ground states is helpful for analyzing
the effect of vortex braiding.

As discussed in Sec. IV, the effect of encircling vortexi
by vortex j on the ground statesuml is given by the unitary
transformation 2gig j [Eq. (1)]. In Eqs. (28) and (29), we
decomposed this transformation into two factors, one affect-
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ing the core states, and the other affecting the other states.
The “self-similarity” of the wave function, evident in Eqs.

(53)–(55), suggests that the effect of vortex encircling on the
statesuAxl is analogous to its effect on the ground statesuml
themselves. Clearly, the analog of the operatorsgi in the first
generation of near-core states are the operatorsZi

s1d. Thus,
one expects

B̂i j = 2Zi
s1dZj

s1d s56d

and the associated operator identity

2gig j = s2igiXids2ig jXjds2Zi
s1dZj

s1dd s57d

when applied to any ground state. Indeed, the proof of this
identity follows from the fact thatYi =s1/Î2dsXi − iZi

s1dd an-
nihilates any ground states so that, when acting within the
subspace of ground states, one has 0=Î2XiYi =1/2−iXiZi

s1d

or 2iXiZi
s1d=1.

An analogous picture emerges for the exchange of vorti-
ces. Here, we found that the explicit effect of exchange on
the statesum ,xl is equivalent to the action of the operator
exphpgig j /2jexphpXiXj /2j. On the other hand, the effect of
the interchange on the ground states is given by the operator
exphpgig j /2j. Due to the “self-similarity” of the wave func-
tion, the connection between these two operators is expected
to be furnished by

B̂ = exphpZi
s1dZj

s1d/2j. s58d

Indeed, there exists a corresponding operator identity

exphpgig j/2j = exphpgig j/2jexphpXiXj/2jexphpZi
s1dZj

s1d/2j
s59d

valid when acting within the subspace of ground states. Its
proof uses the same ingredients as in the case of encircling.

For both vortex encircling and exchange, this procedure
can now be repeated for the near-core states obtained in
higher iterations. In this way, it follows that the effect of
vortex encircling or exchange on any core or near-core states
is entirely contained in the geometric phasesVi.

This discussion clarifies the difference between unitary
transformations composed of zero-energy Majorana opera-
tors, say,g2j−1g2j, and unitary transformations composed of
nonzero energy Majorana operators, such asX2j−1

skd X2j
skd and

Z2j−1
skd Z2j

skd. When acting on a ground state, the first one leaves
the system within the subspace of ground states, while the
last two excite the system. Any unitary transformation that
may be implemented by means of an adiabatic vortex braid-
ing leaves the system in the ground state subspace. That is
the case forg2j−1g2j, whose effect on a ground state may be
reduced to a series of phase changes associated with vortex
braiding. By contrast, the effect of the other two operators
may not be implemented by an adiabatic braiding of vortices.

The number of generationsL appearing in Eq.(55) is
chosen such that the stateswi

skdsr d generated by our iterative
process do not become extended enough to overlap. If the
iterative process is carried out further, states from different
vortices start overlapping, and therefore cannot be used as
basis states in a single-particle basis. In principle, these states

may be orthogonalized by means of a Gram-Schmidt-type
process. The states resulting from that process, however,
would not necessarily share the properties of the states
wi

skdsr d for k,L, namely, their occupation may not be
particle-hole symmetric, and the way they are affected by
vortex braiding may be different.

VII. SUMMARY

The composite-boson theory of the fractional quantum
Hall effect at filling fractionsn=1/m (m odd) employs a
Chern-Simons transformation to map the electronic system
to a superfluid of composite bosons. It explains the fractional
statistics of the excitations of these states by describing them
as charged vortices in that superfluid, and the statistical
phase as the effect of the charge of one vortex on the geo-
metric phase accumulated by another vortex as it moves
adiabatically.

The Moore-Read theory describes then=5/2 state also as
a superfluid. Again, charged excitations are vortices in this
superfluid, and these vortices accumulate geometric phases
as they move. However, in this case the effective bosons
forming the superfluid are Cooper pairs of composite fermi-
ons. As a consequence, this state has excitation modes that
involve the breaking of Cooper pairs into two composite
fermions. These modes are solutions of the Bogolubov–de
Gennes equations. In the presence of well-separated vortices,
each vortex gives rise to one zero-energy solution. These
zero-energy solutions represent Majorana operators, operat-
ing on the core state of their vortex. For 2N vortices, these
zero modes lead to a 2N-fold degeneracy of the ground state
in the presence of vortices. The 2N core states define a
22N-dimensional Fock space, since each core state may be
occupied or empty. We found that each ground state has an
equal probability for each of the 22N possibilities to occupy
the core states, and that the way these possibilities are super-
posed is such that(at least for ground states with a definite
parity of the total particle number) the occupation of core
states in one vortex is entangled with the occupations of all
core states in all other vortices. We showed that it is the
relative phases between the amplitudes for different occupa-
tions that distinguishes between the various ground states,
and that it is these relative phases that vary as the vortices
move. This allows the system to transform between ground
states due to vortex braiding. It is interesting to observe that
unlike the case of ordinary quantized Hall states, there seems
to be no direct relation between the charge carried by the
vortices and their non-Abelian statistics.

While the zero-energy Majorana modes affect only the
occupations of the core states of the vortices, we showed that
it is possible to extract some general information regarding
the occupations of other single-particle states without explic-
itly solving the Bogolubov–de Gennes equations. In particu-
lar, we constructed a set of single-particle states which are
localized near the vortex cores and whose occupations are
also maximally uncertain(all possibilities of their occupa-
tions are equally probable) and maximally entangled. The
definition of these near-core states allowed us to explicitly
relate our picture of non-Abelian statistics, based on en-
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tanglement and geometric phases, to previously existing ap-
proaches based on representations of vortex braiding in
terms of unitary transformations that create and annihilate
particles in the core states. The elucidation of the role of
quantum entanglement and geometric phases may be useful
for understanding the effect of decoherence on non-Abelian
statistics, a question which is of relevance in the context of
topological quantum computation.22

The Moore-Read state is only the simplest example of
proposed FQHE wave functions23 whose excitations satisfy
non-Abelian statistics. As in this example, non-Abelian sta-
tistics is generally associated with a degeneracy of the
ground state. However, the other proposed states lack a de-
scription in terms of second quantization, and in the absence
of such a description it is hard to generalize our analysis for
the Moore-Read state to the entire set of non-Abelian states.
We believe, however, that a second-quantization formulation
of other non-Abelian states would lead to a similar picture.
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APPENDIX A: UNITARY TRANSFORMATIONS FOR
VORTEX ENCIRCLING AND INTERCHANGE

In this appendix, we review for completeness how to con-
struct the unitary transformationsU associated with particle
exchange and encircling.13 For this purpose, we analyze the
time evolution of the many-particle state within the degener-
ate subspace of ground states as the vortices adiabatically
traverse trajectories that start and end in the same set of
positions. The unitary transformation is defined by the rela-
tion between the final stateucst=Tdl and the initial state
ucst=0dl,

ucst = Tdl = Uucst = 0dl. sA1d

Correspondingly, the time evolution of the operatorsgi span-
ning the degenerate subspace is given by

gist = Td = Ugist = 0dU†. sA2d

The time evolution of the operatorsgi can be readily read off
from their definition(8) and the explicit form(7) of the zero-
energy spinors of the Bogolubov–de Gennes equations. This
can be used to identify the operatorsU up to an Abelian
phase. We note that with our choice of phase for the zero-
energy spinors in Eq.(7), their Berry phase during adiabatic
phase evolution vanishes and the phase evolution is given

solely by the explicit monodromy. Before constructingU for
exchange trajectories or encircling, we first construct unitary
operators from the set ofgi’s which are helpful in giving an
explicit expression for the operatorsU.

The unitary transformationuk=Î2gk adds a minus sign to
all operatorsg j with j Þk. If j =k, it leaves the operator un-
changed:

ukg juk
† = H gk when j = k,

− g j otherwise.
J sA3d

Obviously huk,uk8j=2dkk8.
The unitary transformationuij =gi +g j interchangesgi

with g j and adds a minus sign to all other operatorsgk with
kÞ i , j :

uijgkuij
† = 5 gi whenk = j ,

g j whenk = i ,

− gk otherwise.
6 sA4d

1. Winding trajectories

We start with the case in which all vortices move along
closed trajectories. Ifmk is the number of windings of thekth
vortex around other vortices, thenVk changes by 2pmk. In
view of Eqs.(7) and (8), this implies that the Majorana op-
eratorgk is multiplied by s−1dmk.

In the simplest case vortex 1 encircles vortex 2, leading to
both g1 andg2 being multiplied by −1, with all other opera-
tors unchanged. This is a consequence of the fact that a phase
factor 2p of the order parameter leads to a phasep (and thus
a minus sign) for the fermionic operators. In the general case,
we need to find a unitary transformationUwind by requiring

UwindgkUwind
† = H− gk whenmk is odd,

gk whenmk is even.
J sA5d

This is satisfied by the operator

Uwind = p
k=1

2N

uk
mk, sA6d

where the operator ordering inUwind is not important up to
an overall minus sign.

2. Exchange trajectories

Exchange trajectories in which some of the vortices trade
places are more complicated since the phase changes ofVk
associated with a particular trajectory do not only depend on
the winding numbers, but also on the details of the trajectory
and on the precise definition of the cut of the function argsr d
where its value jumps by 2p. The simplest example is the
interchange of two vortices. Inevitably one of the vortices
crosses the cut line of the other vortex. Thus such an inter-
change involves an operatoru12 that exchanges the positions
of the two vortices and an operatoru1 or u2 that multiplies
the appropriate vortex by −1. As a result, the unitary trans-
formations generated by these exchanges are
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U1�2 =
1
Î2

s1 + u2u1d, sA7d

U1
2 =
1
Î2

s1 + u1u2d. sA8d

The transformationU1�2 transformsc1→c2 and c2→−c1
while U1
2 transformsc1→−c2 andc2→c1.

The combination of the motion of the first vortex fromR1
to R2 and the motion of the second vortex fromR2 to R1
generates a closed curve. When that curve encloses a third
vortex, the phase of that vortex changes by 2p, and so does
the phase of one of the first two vortices. Altogether, this
gives three phase shifts of 2p, and the transformationsU1�2

andU1
2 have to be multiplied by eitheru3u1 or u3u2. There
are two possible outcomes to that. The first isu3su1+u2d, a
transformation in which the phase of each of the three vorti-
ces is shifted by 2p. The second isu3su1−u2d, in which the
phase of the third vortex is shifted by 2p, and the other two
2p shifts are both given to one vortex.

APPENDIX B: ORTHOGONALITY OF VORTEX STATES

In this appendix, we discuss the scheme to generate the
functionswi

skdsr d in more detail and prove the orthogonality
relation (42). We start by proving the orthogonality of the
stateswi

s0dsr d andwj
s1dsr d. In spinor notation, we can write

Zi
s1d = io

E

sgnECE
i SuEsr d

vEsr d
D =

1
Î2
S wi

s1dsr d
fwi

s1dsr dg* D sB1d

in terms of the expansion coefficients

CE
j =

1
Î2
KuE

vE
UU iwj

s0d

− ifwj
s0dg* L . sB2d

These coefficients satisfy the relation

C−E
j = fCE

j g* sB3d

whose proof uses the identityuEsr d=fv−Esr dg*. The states
wi

s0dsr d andwj
s1dsr d are obviously orthogonal due to their lo-

calization properties fori Þ j . For i = j , the orthogonality fol-
lows from

Rekwi
s1duwi

s0dl =
1

2
K wi

s1d

fwi
s1dg* UU wi

s0d

fwi
s0dg* L = 0 sB4d

and

Imkwi
s1duwi

s0dl = −
1

2
K wi

s1d

fwi
s1dg* UU iwi

s0d

− ifwi
s0dg* L

=
i

2o
E

sgnEuCE
i u2 = 0. sB5d

Here, Eq.(B4) uses that by construction, the spinorZi
s1d has

zero overlap with the zero-energy spinors. Equation(B5)
uses the symmetry(B3) of the expansion coefficientsCE

i .
We now turn to the higher iterationswi

skdsr d and proceed
to prove the orthogonality Eq.(42). Using the completeness

of the eigenfunctions of the BdG equations, we obtain the
useful result

S†S= 1 −
1

2o
j
U wj

s0d

fwj
s0dg* LK wj

s0d

fwj
s0dg* U , sB6d

with S a Hermitian operatorS=S†.
For different vortices,i Þ j , the orthogonality follows

again from the locality properties of thew’s. Thus, we focus
on states from the same vortex,i = j , and drop the subscript
labeling the vortex in the remainder of this appendix. In each
iterative stepk of the construction of thew’s, we need to
prove that

kwslduuwskdl = 0 sB7d

for all l ,k. Since this amounts to a proof by induction, we
may exploit that two statesw with indices smaller thank are
orthogonal.

Starting withl =0, we have

2Rekwskduuws0dl =K wskd

fwskdg* UU ws0d

fws0dg* L = 0 sB8d

since by construction, the spinorZk has zero overlap with
zero-energy spinors. Furthermore,

− 2 Imkwskduuws0dl =K wskd

fwskdg* UU iws0d

− ifws0dg* L
= − iK wk−1

fwk−1g* UUszSszU ws0d

fws0dg* L
= iK wk−1

fwk−1g* UszU ws1d

fws1dg* L = 0. sB9d

For l =1,2, . . . ,k−2, we obtain

2Rekwskduuwsldl =K wskd

fwskdg* UU wsld

fwsldg* L
=K wsk−1d

fwsk−1dg* Us− Sszd†s− SszdU wsl−1d

fwsl−1dg* L
=K wsk−1d

fwsk−1dg* UU wsl−1d

fwsl−1dg* L
−

1

2
K wsk−1d

fwsk−1dg* UszU ws0d

fws0dg* L
3K ws0d

fws0dg* UszU wsl−1d

fwsl−1dg* L = 0 sB10d

and

− 2 Imkwskduuwsldl =K wskd

fwskdg* UU iwsld

− ifwsldg* L
= − iK wsk−1d

fwsk−1dg* UszSszU wsld

fwsldg* L
= iK wsk−1d

fwsk−1dg* UszU wsl+1d

fwsl+1dg* L
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=K wsk−1d

fwsk−1dg* UU iwsl+1d

− ifwsl+1dg* L = 0. sB11d

Finally, we note for l =k−1 that Rekwskd uwsk−1dl=0 can

be obtained in complete analogy to Eq.(B10)
and Imkwskd uwsk−1dl=0 in analogy with Eq.(B5).24 This
completes the iterative construction of the functions
wj

skd including the proof of the orthogonality relations
Eq. (42).
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