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In an ultrahigh mobility 2D electron gas, even a weak nonparabolicity of the electron dispersion, by violat-
ing Kohn’s theorem, can have a drastic effect on dc magnetotransport under ac drive. In this paper, we study
theoretically the manifestation of this effect in the dc response to the combined action oftwo driving ac fields
(bichromatic irradiation). Compared to the case of monochromatic irradiation, which is currently intensively
studied both experimentally and theoretically, the presence of a second microwave source provides additional
insight into the properties of an ac-driven 2D electron gas in weak magnetic field. In particular, we find that
nonparabolicity, being the simplest cause for a violation of Kohn’s theorem, gives rise to new qualitative
effects specific to bichromatic irradiation. Namely, when the frequenciesv1 and v2 are well away from the
cyclotron frequency,vc, our simple classical considerations demonstrate that the system becomes unstable with
respect to fluctuations with frequency1

2sv1+v2d. The most favorable condition for thisparametricinstability
is 1

2sv1+v2d.vc. The saturation level of this instability is also determined by the nonparabolicity. We also
demonstrate that, as an additional effect of nonparabolicity, this parametric instability can manifest itself in the
dc properties of the system. This happens whenv1, v2, andvc are related as 3:1:2, respectively. Even for weak
detuning betweenv1 and v2, the effect of the bichromatic irradiation on the dc response in the presence of
nonparabolicity can differ dramatically from the monochromatic case. In particular, we demonstrate that,
beyond a critical intensity of the two fields, the equations of motion acquiremultistablesolutions. As a result,
the diagonal dc conductivity can assumeseveralstable negative values at thesamemagnetic field.
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I. INTRODUCTION

The cyclotron resonance in a 2D electron gas was first
studied almost 30 years ago.1,2 These studies revealed an
oscillatory magnetoabsorption of microwave radiation with
its principal peak atv=vc, wherevc andv are the cyclotron
and microwave frequencies, respectively, and several subhar-
monics atv=nvc due to the disorder-induced violation of
Kohn’s theorem.

Recently, interest in the properties of microwave-driven
electrons in a magnetic field has been revived,3 especially
after experiments4,5 carried out on samples with extremely
high mobilities, indicated that near the cyclotron resonance
and its harmonics, irradiation results in drastic changes of the
diagonal dc resistivity. In contrast, the Hall resistivity re-
mains practically unchanged by illumination, and retains its
classical value. The experimental observations4,5 were con-
firmed in a number of subsequent studies.6–14 This unusual
behavior of the weak-field magnetoconductivity is currently
accounted for by an instability resulting from a sign reversal
of the diagonal photoconductivity under irradiation.15–17The
developed instability results in dynamical symmetry
breaking,15 i.e., in an inhomogeneous state of the system
characterized by domains of current flowing in opposite di-
rections. Ongoing theoretical studies18–24 concentrate on the
microscopic description of the sign reversal of photoconduc-

tivity. Closely related physics was already discussed theoreti-
cally quite long ago.25,26

Obviously, a complete understanding of the fascinating
properties of ultraclean 2D electron systems under irradiation
requires additional experimental studies. At the same time,
the number of feasible measurements that were not carried
out so far is limited. A promising avenue seems to be to
study the response tobichromatic irradiation. Motivated by
this, in the present paper we calculate this response within
the simple model27 of a cleanclassical28 2D gas, in which
Kohn’s theorem is violated due to nonparabolicity

«spd =
p2

2m
F1 −

p2

2mE0
G , s1d

of the electron dispersion. Herem is the effective mass, and
E0 is an energy of the order of the bandgap. Previous studies
of the effect of bichromatic irradiation on the conductivity
tensor in the presence of a magnetic field29,30 assumed a
parabolic electron dispersion. By contrast, the effects dis-
cussed in this paper are entirely due to the nonparabolicity of
the dispersion, Eq.(1).

Denote byE1 andE2 the amplitudes of two linearly polar-
ized ac fields31 with frequenciesv1 andv2, respectively. In
the presence of a dc fieldEdc, the equation of motion for the

PHYSICAL REVIEW B 70, 235302(2004)

1098-0121/2004/70(23)/235302(9)/$22.50 ©2004 The American Physical Society235302-1



electron momentumP=px+ ipy takes the form

dP
dt

+
P
t

− ivcP +
ivc

mE0
PuPu2 = eEdce

iu +
eE1

2
seiv1t + e−iv1td

+
eE2

2
seiv2t + e−iv2td, s2d

wherevc is the cyclotron frequency,t is the relaxation time,
andu is the orientation of the weak dc field with respect to
the fieldsE1, E2, which we assume to be parallel to each
other. For a monochromatic ac drive,E2=0, it was
demonstrated27 that within a certain interval of magnetic
fields near the cyclotron resonance, Eq.(2) yields negative
diagonal conductivity,sd,0, without significant change of
the Hall conductivity. This sign reversal occurs when the
mobility is high,vct@1, andE1 is sufficiently strong. In the
vicinity of the cyclotron resonance,sD turns negative even
when the irradiation-induced change of the electron mass is
relatively weak. Thus the simple model Eq.(2) exhibits
negative photoconductivity without invoking Landau quanti-
zation. It also predicts bistable hysteretic behavior ofsd as a
function of the detuning from the cyclotron resonance for
large enoughvct.

In the present paper, we extend the consideration of Ref.
27 to the bichromatic case. The most convincing illustration
that the response to irradiation with two ac fields cannot
simply be reduced to the superposition of the responses to
each individual field, is presented in Fig. 1. It is seen in Figs.
1(a) and 1(b) that the individual fields of equal intensity and
frequency ratio 5:3 are unable to reverse the sign of the di-
agonal conductivity at any magnetic field. At the same time,
uponsimultaneousirradiation by the both fields, a domain of
magnetic fields emerges, within which the diagonal conduc-
tivity is negative[see Fig. 1(c)].

In addition, our study reveals the following new features
that are specific to the bichromatic case:

(i) The presence of the second ac field on the right-hand
side(RHS) of Eq. (2) gives rise to a second domain of mag-
netic field, within whichsd is negative. Upon increasing the
intensities of the two ac fields, the two domains of negative
photoconductivity merge into a single domain which broad-
ens much faster with the ac intensity than in the monochro-
matic case.

(ii ) For monochromatic irradiation,sd could assume ei-
ther one or two stable values. By contrast, under bichromatic
irradiation, we find amultistableregime within certain do-
mains of magnetic field.

(iii ) In the vicinity of the conditionssv1+v2d=2vc and
uv1−v2u=2vc, a nonparabolicity-inducedparametric insta-
bility develops in the system. As a result of this instability,
the componentssv1+v2d /2 and uv1−v2u /2 emerge in addi-
tion to the conventional frequenciesv1 and v2 of the mo-
mentum oscillations. These components, in turn, upon mix-
ing with the componentsv1, v2, give rise to components of
P oscillating with frequencies 3v1−v2. Thus, for bichro-
matic irradiation, two high-frequency ac driving fields can
create a low frequency current circulating in the system. In
particular, forv2=3v1<3vc/2 the system exhibits a dc re-
sponse to the ac drive.

The importance of the nonparabolicity in experiment can
be estimated by studying the dimensionless quantity
seEtd2/ smE0d, whereE is the amplitude of the microwave
electric field. Assuming a sample size of 10−2 cm and a mi-
crowave power of 100mW, taken from Ref. 5, the micro-
wave electric field is of the order ofE,1 V/cm. For the
experimental mobilitym=2.53107 cm2/Vs and for a nonpa-
rabolicity parameterE0=1 eV, this yields a value of
seEtd2/ smE0d.0.03. (We note that this estimate may be
too optimistic for the conduction band of GaAs.) In the
monochromatic case, negativesd is achieved for

FIG. 1. Dimensionless diagonal conductivity(in units of the Drude value) plotted from Eq.(14) versus the dimensionless magnetic field,
defined by Eq.(15), for three cases:(a) monochromaticirradiation with frequencyv1 and dimensionless intensityA=14.4; (b) monochro-
matic irradiation with the same intensity as in(a) and frequencyv2=5v1/3; (c) bichromaticcase: response to simultaneous irradiation with
two microwave sources having the same intensities and frequencies as in(a) and(b). The emerging region of negative diagonal conductivity
is shaded. All three plots(a)–(c) are calculated for12sv1+v2dt=20. Full and dashed lines correspond to stable and unstable branches,
respectively.
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seEtd2/ smE0d* svctd−1, which is compatible with the value
vct,50 from Ref. 5. This agreement can be reached in spite
of the smallness of the nonparabolicity, since the latter is
compensated by the long scattering time in the ultrahigh mo-
bility samples studied.4,5 One can also estimate that for the
same parameters, the energys1/2mdseEtd2 absorbed by an
electron during the relaxation timet exceeds the Landau-
level spacing"vc. Under this condition, one expects that a
classical description is reasonable.

The paper is organized as follows. The case of weak de-
tuning from the cyclotron frequency is treated analytically in
Sec. II. In the same section, we present numerical results in
this limit, which exhibit nontrivial multistable behavior. In
Sec. III, we consider the case of strong detuning, where we
find a nonparabolicity-induced parametric resonance. Con-
cluding remarks are presented in Sec. IV.

II. WEAK DETUNING

For monochromatic irradiation, the cyclotron resonance
develops when the microwave frequency is close to the cy-
clotron frequencyvc. In this section, we consider bichro-
matic irradiation when both frequenciesv1 andv2 are close
to vc, uv1−vcu!vc and uv2−vcu!vc, so that the cyclotron
resonances due tov1 andv2 can interfere with one another.

A. Calculation of diagonal conductivity

In analogy to Ref. 27, we search for solutions of Eq.(2) in
the form

Pstd = P0 + P1
+ expsiv1td + P1

− exps− iv1td + P2
+ expsiv2td

+ P2
− exps− iv2td, s3d

whereP0 is a small dc component proportional toEdc. The
componentsP1

− and P2
− are nonresonant and can be found

from the simplified equations

− isv1 + vcdP1
− =

eE1

2
, s4d

− isv2 + vcdP2
− =

eE2

2
, s5d

where we neglect both relaxation and nonlinearity. However,
relaxation and nonlinearity must be taken into account when
calculating the resonant componentsP1

+ andP2
+. Substituting

Eq. (3) into Eq. (2), and taking into account thatuP1
−u , uP2

−u
! uP1

+u , uP2
+u, we arrive at a system of coupled equations for

the resonant momentum components,

Fisv1 − vcd +
1

t
+

ivc

mE0
suP1

+u2 + 2uP2
+u2dGP1

+ =
eE1

2
, s6d

Fisv2 − vcd +
1

t
+

ivc

mE0
s2uP1

+u2 + uP2
+u2dGP2

+ =
eE2

2
. s7d

Despite the inequalitiesuP1
+u! uP1

−u and uP2
+u! uP2

−u, it is cru-
cial to keep the nonresonant componentsP1

− and P2
− when

considering the dc componentP0. This yields

F− ivc +
1

t
+

2ivc

mE0
suP1

+u2 + uP2
+u2dGP0 +

2ivc

mE0
fP1

+P1
−

+ P2
+P2

−gP0
* = eEdce

iu. s8d

Due to the nonlinearity, the microwave intensities induce an
effective shift in the resonance frequencyvc. Thus, it is con-
venient to introduce effective detuningsV1 andV2 by

V1 = v1 − vc +
vc

mE0
suP1

+u2 + 2uP2
+u2d, s9d

V2 = v2 − vc +
vc

mE0
s2uP1

+u2 + uP2
+u2d, s10d

and to present formal solutions of Eqs.(6) and (7) in the
form

P1
+ =

eE1t

2s1 + iV1td
, P2

+ =
eE2t

2s1 + iV2td
. s11d

Note that the detuningsV1 andV2 themselves depend onP1
+

andP2
+, so that Eqs.(9)–(11) should be considered as a sys-

tem of nonlinear equations for the resonant momentum com-
ponentsP1

+ andP2
+. Assuming that the detuningsV1 andV2

are known, the solution of Eq.(8) yields for the dc compo-
nent

P0 =
eEdc

vc
2t
Fs1 + ivctdeiu +

1

4mE0
H seE1td2

1 + iV1t

+
seE2td2

1 + iV2t
Je−iuG . s12d

The diagonal conductivitysd is proportional to ResP0e
−iud.

Thus, the second term in Eq.(12) gives rise to au depen-
dence of the nonparabolicity-induced contribution to the di-
agonal conductivity which is given by sins2u−fd. Here,f
satisfies the equation

tanf =
V1ts1 + V2

2t2dE1
2 + V2ts1 + V1

2t2dE2
2

s1 + V2
2t2dE1

2 + s1 + V1
2t2dE2

2 . s13d

We deduce that the minimal value ofsd is given by

sd
min =

ne2

mvc
2t
H1 −

e2t2

4mE0

3F sE1
2V2t + E2

2V1td2 + sE1
2 + E2

2d2

s1 + V1
2t2ds1 + V2

2t2d
G1/2J . s14d

In the following, we will be particularly interested insd
min,

since the conditionsd
min,0 is sufficient for the formation of

the zero-resistance state.

B. Numerical results: Multistability

As demonstrated in Ref. 27, the diagonal conductivity in
the monochromatic case shows a region of bistability. In the
bichromatic case under study, there can even be multistable
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behavior as will now be shown. We measure the frequency
difference of the ac fields byD=sv1−v2dt and the magnetic
field by

b = Svc −
v1 + v2

2
Dt, s15d

which depends linearly on the magnetic fieldB. Upon sub-
stituting the formal solutionsP1

+ andP2
+ of Eq. (11) into Eqs.

(9) and(10), these can be written as a pair of coupled equa-
tions for the effective detuningsV1t andV2t

V1t =
D

2
− b + AF 1

1 + sV1td2 +
2h2

1 + sV2td2G ,

V2t = −
D

2
− b + AF 2

1 + sV1td2 +
h2

1 + sV2td2G , s16d

whereh andA, given by

h = E2/E1, A = vct
seE1td2

4mE0
, s17d

measure the ratio of the field amplitudes and the ratio of the
absolute field intensities to the nonparabolicity of the elec-
tron spectrum, respectively. As in the monochromatic case,
the strength of the first order correction to the Drude conduc-
tivity is proportional to the microwave intensity and thusA.
At a fixed magnetic fieldb and at fixed ac frequencies and
amplitudes, this coupled system of two third-order equations
can yield up to nine simultaneous solutionssV1t ,V2td for
the effective detunings. Sincesd

min is directly related to these
effective detunings via

sd
min = sDH1 −

A

vct
F 1

1 + sV1td2 +
h4

1 + sV2td2

+
2h2s1 + V1tV2td

„1 + sV1td2
…„1 + sV2td2

…

G1/2J , s18d

where sD=ne2/ svc
2td is the Drude conductivity, there are

thus up to nine individual branches ofsd
min at a givenb. This

multistable behavior occurs in the vicinity of the resonance
and will be studied below for the specific case ofh=1.

We first focus on the dependence ofsd
minsbd on D. For

large D, i.e., markedly different ac frequencies, we expect
two separate regions inb wheresd

min deviates significantly
from the Drude result. These are the regions where the cy-
clotron frequency is in resonance with one of the two ac
frequencies, i.e., eitherv1.vc or v2.vc. Inside these re-
gions, the behavior with respect tob is very similar to the
monochromatic case, except that the irradiation-induced ef-
fective shift ofvc now depends on both external frequencies.
In particular, the emergence of bistable regions inside these
two separate intervals as in the monochromatic case is to be
expected. This can be seen in Fig. 2(a), wheresd

min is shown
as a function of magnetic fieldb for rather largeD. Two dips
in sd

min can be clearly discerned, the inner branches of which
are unstable. Upon reducingD, the two dips move closer
together up to a point where the frequenciesv1 andv2 are so
close that the analogy to the monochromatic case breaks

down and the two dips start to interact to finally from a
single multistable dip in the limitD→0. This behavior is
exemplified in Figs. 2(b) and 2(c). It can be seen that mul-
tiple solutions ofsd

minsbd develop upon reducingD.
Next, we consider the case of negative diagonal conduc-

tivity and study the evolution ofsd
min with magnetic field. As

expected, there is a threshold intensity below which no nega-
tive diagonal conductivity is observed. Upon increasing the
field amplitudes and thusA, the negative first order correc-
tion to the Drude conductivity grows linearly withA/ svctd
as can be seen from Eq.(18). When this correction exceeds
one, negativesd

min is to be expected in some regions of mag-
netic field b. Figure 3 shows theb dependence ofsd

min for
three specific values ofA. It can be seen that at lowA, no

FIG. 2. Evolution of the dimensionless(in units of the Drude
conductivitysD) minimal conductivitysd

min as function of magnetic
field b, defined in Eq.(15), for three different values ofD; (a) D
=20, (b) D=5, and (c) D=1. The curves are calculated for the
values of parametersh=1, A=5 [defined by Eq.(17)], and vct
=25. The distance of the two dips that can be clearly discerned in
(a) is roughlyD. When loweringD, the dips move closer together
(b) and finally merge(c). In addition, multistable regions emerge.
As in Fig. 1, unstable branches are plotted as dashed lines.
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regions inb with negative diagonal conductivity can be ob-
served. At higherA, two regions inb show negativesd

min

branches as is also indicated by the shaded regions in Fig.
3(b). For even higherA, a single large region inb shows
negative diagonal conductivity.

To clarify the evolution of these regions with increasing
field amplitudes, we plotted the extension of the regions inb
as a function ofA. The result is shown in Fig. 4. It is remark-
able that above the threshold value ofA, first a single region
appears that shows negativesd

min. Then, in the immediate
vicinity of the threshold a second, well separated region de-
velops. Upon further increasingA, the width of these regions

grows and, eventually, the two regions merge to form a
single broad region of negative diagonal conductivity. For
comparison, we also show the monochromatic case in the
right-hand panel of Fig. 4.

C. Stability of different branches

The stability of the various branches ofsd
minsbd as shown

by solid and dashed lines in Figs. 1, 2, and 3 can be obtained
from a standard stability analysis. As usual, we find that
stable and unstable branches “meet” at cusps, as clearly seen
at the minima ofsd in Figs. 1 and 2. The transitions from
unstable to stable branches at largerb in these figures are
also accompanied by cusps, although this can not necessarily
be discerned within the resolution of the figures. The number
of branches increases with the irradiation intensity; cf. Figs.
2 and 3. The rule that stable and unstable branches meet in
cusps remains valid, although this statement becomes less
trivial. For example, in Fig. 3(b) stable and unstable
branches intersect at pointP without “noticing each other.”
Accordingly, there is no cusp at this point. At the same time,
there is a cusp atP8 in Fig. 3(b) where the same branches
switch between stable and unstable. Figures 2(c) and 3(c)
illustrate how new branches and multistability emerge with
increasing irradiation intensity. The emergence of new stable
and unstable branches occurs in pairs which meet at addi-
tional cusps. In both Figs. 2(c) and 3(c), there are regions in
magnetic field with three coexisting stable solutions(trista-
bility ). Further increase ofA would lead to up to eight cusps
in Fig. 3(c), each of which is a meeting point of stable and
unstable branches. Thus, the tristability situation illustrated
in Fig. 3(c) will evolve into a magnetic field domain with
“four-stability.”

III. STRONG DETUNING

In this section, we consider the case when both frequen-
ciesv1 andv2 are tuned away fromvc. This implies that the
system(6) and(7) decouples and acquires the obvious solu-
tions

FIG. 3. The dimensionless minimal diagonal conductivity,
sd

minsbd, defined by Eq.(18), is plotted for three different values of
the dimensionless intensityA of the two ac fields;(a) A=20, (b)
A=30, and(c) A=32. The domains of magnetic fieldb with nega-
tive sd

min are shaded. The dotted line indicates the boundary be-
tween positive and negativesd

min. Unstable branches are dashed as
in Fig. 1. The curves are calculated for the values of the parameters
h=1, D=sv1−v2dt=25 andvct=25. In (b), the pointP is a point
where a continuous stable and a continuous unstable branch inter-
sect without “noticing” each other, while the pointP8 is a cusp
which separates a stable from an unstable branch.

FIG. 4. Evolution of the regions of negativesd
min with irradia-

tion intensity,A. Shown are the bichromatic case(left panel) and
the monochromatic case(right panel). In both cases, only the domi-
nant (stable) branches are shown to avoid confusion. The param-
eters are the same as in Fig. 3.
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P1
+ =

eE1t

2f1 + isv1 − vcdtg
, P2

+ =
eE2t

2f1 + isv2 − vcdtg
.

s19d

The conditioneE1, eE2!vcsmE0d1/2 for decoupling follows
from Eqs. (6) and (7), assuming thatuv1−vcu, uv2−vcu
,vc@1/t. Interestingly, even under this condition, the so-
lutions are unstable for certain relations between the frequen-
ciesv1, v2. The mechanism for this instability relies on mix-
ing of the two external drive frequencies by the
nonparabolicity which results in a modulation of the effec-
tive cyclotron frequency. This modulation, in turn, can lead
to parametricresonance.

To perform the stability analysis of the solutions Eq.(19),
we introduce a small deviationP→P+dP and linearize Eq.
(2) with respect todP. The linearized equation(2) has the
form

d

dt
sdPd + S1

t
− ivc +

2ivc

mE0
uPu2DdP +

ivc

mE0
P2sdPd * = 0.

s20d

This equation couplesdP to sdPd* via the nonparabolicity of
the electron spectrum. The corresponding equation fordP*
reads

d

dt
sdP * d + S1

t
+ ivc −

2ivc

mE0
uPu2DdP * −

ivc

mE0
sP * d2dP = 0.

s21d

The coupling coefficient,P2, as seen from Eq.(3), contains
the harmonics ±2v1, ±2v2, ±sv1+v2d, and ±sv1−v2d. This
suggests thatdPstd also contains a number of harmonics,
namely, ±v1, ±v2, ±sv1+v2d /2, and ±sv1−v2d /2. An insta-
bility might develop when one of these frequencies is close
to vc. Thus, in the monochromatic case, the instability de-
velops only in the vicinity of the cyclotron resonancev1
<vc. The branches, shown with dashed lines, in Figs. 1(a)
and 1(b), are unstable due to this instability. By contrast, the
bichromatic case offers two additional options for an insta-
bility to develop, even if the frequenciesv1, v2 are nonreso-
nant, namelyvc<sv1+v2d /2 and vc<usv1−v2du /2. The
considerations of both cases are analogous to each other.
Therefore, we focus on the first case below.

A. Parametric instability at „v1+v2…É2vc

Upon substituting the ansatz

dPstd = C expHFG +
isv1 + v2d

2
GtJ ,

dPstd * = C * expHFG −
isv1 + v2d

2
GtJ s22d

into Eqs.(20) and(21) and keeping only resonant terms, we
obtain the following system of algebraic equations forC and
C*:

FG +
1

t
+

isv1 + v2 − 2vcd
2

+
2ivc

mE0
suP1

+u2 + uP2
+u2dGC

= −
2ivc

mE0
P1

+P2
+C * , s23d

FG +
1

t
−

isv1 + v2 − 2vcd
2

−
2ivc

mE0
suP1

+u2 + uP2
+u2dGC *

=
2ivc

mE0
sP1

+P2
+d * C. s24d

Thus, the most favorable condition for instability is deter-
mined by the following relation betweenv1 andv2

v1 + v2 = 2vcF1 −
2

mE0
suP1

+u2 + uP2
+u2dG

< 2vcH1 −
e2

2mE0
F E1

2

sv1 − vcd2 +
E2

2

sv2 − vcd2GJ
< 2vcF1 −

2e2sE1
2 + E2

2d
mE0sv1 − v2d2G , s25d

where Eq.(19) has been used. In this case, the incrementG is
maximal and given by

Gmax= −
1

t
+ S 2vc

mE0
DuP1

+P2
+u

< −
1

t
+ U e2vcE1E2

mE0sv1 − vcdsv2 − vcd
U

< −
1

t
+

e2sv1 + v2duE1E2u
mE0sv1 − v2d2 . s26d

The parametric instability develops ifGmax is positive. It is
important to note that the conditionGmax.0 is consistent
with the condition of strong detuning when the simplified
expressions Eq.(19) are valid. Indeed, assuminguv1−vcu
,uv2−vcu,vc, the two conditions can be presented as
vcsmE0d1/2@eE1, eE2@t−1smE0d1/2. Therefore, forvct@1,
there exists an interval of the amplitudes of theac fields
within which both conditions are met. Note also, that para-
metric resonance does not develop exactly atvc=sv1

+v2d /2, i.e., atb=0 [in dimensionless units, see Eq.(15)]. In
fact, from Eqs. (25) and (26) it can be concluded that
Gmax.0 corresponds tob*1. In experimental situations,
whenv1 andv2 are fixed, Eq.(25) can also be viewed as an
expression for the magnetic fieldvc=vc

opt, at which the para-
metric instability is most pronounced. The interval ofvc
aroundvc

opt, within which the increment is positive can be
found from the dependenceGsvcd
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Gsvcd = −
1

t
+ÎSGmax+

1

t
D2

− svc − vc
optd2

< −
1

t
+ÎFe2sv1 + v2duE1E2u

mE0sv1 − v2d2 G2

− svc − vc
optd2.

s27d

Upon settingGsvcd=0 in the LHS of Eq.(27), we find the
width of the interval to be

uvc − vc
optu ø HF e2vcuE1E2u

2mE0sv1 − vcd2G2

−
1

t2J1/2

<HFe2sv1 + v2duE1E2u
mE0sv1 − v2d2 G2

−
1

t2J1/2

. s28d

It is instructive to reformulate the condition for the para-
metric instability in a different way. Assume for simplicity
thatE1=E2. Then the combinatione2uE1E2u /2mE0sv1−vcd2 is
equal todm/m, wheredm/m is the relative correction to the
electron effective mass due to irradiation.27 From Eq.(26) it
follows that the conditionGmax.0 can be presented as
svctdsdm/md.1. With vct@1 this condition can be satis-
fied even fordm!m. Note, that in the case of weak detun-
ing, the same condition is required for the dc conductivity to
assume negative values near the cyclotron resonance.

Summarizing, we arrive at the following scenario. In the
case of strong detuning, there is no mutual influence of the
responses to the ac fieldsE1 andE2 as long as they are weak.
However, as the productuE1E2u increases and reaches a criti-
cal valueuE1E2uc, the threshold,Gmax=0, whereGmax is given
by Eq.(26), is exceeded at the magnetic fieldvc=vc

opt deter-
mined by Eq.(25). Above the threshold, fluctuations with
frequencies close tosv1+v2d /2 are amplified. This effect of
parametric instability is solely due to nonparabolicity. Then
the natural question arises: At what level does the component
of momentum with frequencysv1+v2d /2 saturate above
threshold? This question is addressed in the next subsection.

B. Parametric instability at zv1−v2zÉ2vc

We now briefly discuss parametric instability at weak
magnetic field,vc<usv1−v2d /2u. Assume for concreteness,
thatv1.v2. In this case, the optimal magnetic field,ṽc

opt, is
lower and reads

v1 − v2 < 2ṽc
optH1 −

e2

2mE0
F E1

2

sv1 − ṽc
optd2 +

E2
2

sv2 − ṽc
optd2GJ

< 2ṽc
optH1 −

2e2

mE0
F E1

2

sv1 + v2d2 +
E2

2

s3v2 − v1d2GJ .

s29d

At vc=ṽc
opt, the threshold condition for parametric instabil-

ity, analogous to Eq.(26), has the form

G̃max< −
1

t
+

e2sv1 − v2duE1E2u
mE0sv1 + v2du3v2 − v1u

. 0. s30d

There is no real divergence in Eqs.(29) and(30) in the limit
v1→3v2, since these are derived under the assumption that
the differenceu3v2−v1u is *1/t.

C. Saturation of parametric resonance

As the threshold for parametric resonance is exceeded, the
harmonics with frequencysv1+v2d /2 can no longer be con-
sidered as a perturbation, but rather have to be included into
the equation of motion. In other words, we must search for a
solution of Eq.(2) in the form

P = P1
+ expsiv1td + P2

+ expsiv2td + P3stdexpFiSv1 + v2

2
DtG ,

s31d

whereP3std is a slowly varying function of time. Upon sub-
stituting this form into Eq.(2), we obtain the following
coupled equations forP3std andP3

*std

dP3

dt
+ F1

t
+

isv1 + v2 − 2vcd
2

+
ivc

mE0
s2uP1

+u2 + 2uP2
+u2

+ uP3u2dGP3 = −
2ivc

mE0
P1

+P2
+P3

* , s32d

dP3
*

dt
+ F1

t
−

isv1 + v2 − 2vcd
2

−
ivc

mE0
s2uP1

+u2 + 2uP2
+u2

+ uP3u2dGP3
* =

2ivc

mE0
sP1

+P2
+d * P3. s33d

Saturated parametric instability is described by setting
dP3/dt=0 anddP3

* /dt=0 in Eqs.(32) and(33), respectively.
The result forP3 has the simplest form for the optimal mag-
netic fieldvc=vc

opt

uP3svc
optdu = FuP1

+P2
+u2 −

4m2E0
2

sv1 + v2d2t2G1/4

. s34d

From Eq.(34) we conclude that, in the vicinity of the thresh-
old, uP3u increases assuE1E2u− uE1E2ucd1/4~Gmax

1/4 Well above
the threshold it approaches the valueÎuP1

+P2
+u. From here we

conclude that, even upon saturation, the magnitude of the
nonparabolicity-induced harmonics with frequencysv1

+v2d /2 does not have a “back” effect on the magnitudes Eq.
(19) of the responses to the ac fields.

For magnetic fields in the vicinity ofvc
opt the saturation

value, uP3svcdu, is given by

uP3svcdu = HFuP1
+P2

+u2 −
4m2E0

2

sv1 + v2d2t2G1/2

−
2mE0uvc − vc

optu
sv1 + v2d J1/2

. FuP3svc
optdu2 −

2mE0uvc − vc
optu

sv1 + v2d G1/2

. s35d
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In contrast touP3svc
optdu, the threshold behavior ofuP3svcdu is

slower, namely uP3svcdu~ suE1E2u− uE1E2ucd1/2. In principle,
one has to verify that the solutions Eqs.(34) and (35), that
describe the saturated parametric resonance, are stable. This
can be done with the use of the system Eqs.(32) and(33), by
perturbing it around the saturated solution. The outcome of
this consideration is that the corresponding perturbations do
indeed decay.

D. Implications for dc transport

As we demonstrated in the previous subsection, the para-
metric instability that develops in the case of two ac fields
above a certain threshold, results in the component of the
momentum, P3 expfisv1+v2dt /2g, which well above the
threshold has the magnitudeuP3u.ÎuP1uuP2u. The important
consequence of the developed parametric resonance is, that
the componentP3 rise to new harmonics in the term~uPu2P
in the equation of motion Eq.(2). Of particular interest are
the P3-induced terms

fP1
2P3

* + P1P2
*P3gexpFi

3v1 − v2

2
tG . s36d

It is easy to see that, under the conditionv2<3v1, these
terms act as an effective dc field, and thus generate low-
frequencycircular current even without dc drive. If the rela-
tion between the frequencies is precisely 1:3, then the mag-
netic field, at which the developed parametric instability
would give rise to a quasistationary circular current distribu-
tion, can be determined from Eq.(25)

vc . 2v1F1 +
2e2sE1

2 + E2
2d

mE0sv1 − v2d2G . s37d

If the ratiov2/v1 is close, but not exactly 1:3, there is still a
certain allowance, determined by Eq.(28) for the formation
of the quasistationary current. The above effect of spontane-
ous formation of dc-like currents under irradiation is distinc-
tively different from the formation of current domains when
sd turns negative under irradiation. First, the effect is spe-
cific to bichromatic irradiation. Secondly, it requires rather
strict commensurability between the two frequencies, and fi-
nally, it develops within a very narrow interval around a
certain magnetic field.

IV. CONCLUSIONS

In the present paper we have considered the problem of
single electron motion in a magnetic field under irradiation
by two monochromatic fields. When the frequenciesv1 and
v2 differ only slightly, uv1−v2u,1/t, the effect of a weak
nonparabolicity of the electron spectrum on the diagonal
conductivity is qualitatively the same for monochromatic27

and bichromatic irradiation.
The prime qualitative effect which distinguishes the

bichromatic case is the emergence of a parametric resonance

at magnetic fieldsvc=sv1+v2d /2 andvc= uv1−v2u /2 when
the detuning is strong(of the order of the cyclotron fre-
quency). It is instructive to compare this effect with the para-
metric resonance of electrons in a magnetic field due to a
weak time modulation of the field amplitude.32–34 The latter
effect, considered more than 20 years ago, has a transparent
explanation. The modulation of the magnitude of a dc field
with frequency 2vc translates into a corresponding modula-
tion of the cyclotron frequency, so that the equation of mo-
tion of the electron reduces to that for a harmonic oscillator
with a weakly time-modulated eigenfrequency. The solution
of this equation is unstable, if the modulation frequency is
close to 2vc. As a natural stabilizing mechanism of the para-
metric resonance, the authors of Ref. 32 considered the non-
parabolicity Eq.(1) of the electron dispersion. For a charac-
teristic magnetic field ofB=0.1 T, the cyclotron frequency is
vc=3.631011 Hz, i.e., in the microwave range so that con-
ventional modulation ofB with a frequency 2vc is techni-
cally impossible. To bypass this obstacle, it was proposed in
Ref. 34 to use microwave illumination with frequency 2vc to
create a parametric resonance. The idea was that themag-
netic fieldcomponent of the pumping electromagnetic wave
would provide the necessary oscillatory correction to the ex-
ternal dc magnetic field. In the present paper, we have dem-
onstrated that two nonresonant ac sources canenforcea para-
metric resonance of the type considered in Refs. 32–34,
without any time modulation of the dc magnetic field. Re-
markably, this bichromatic-radiation-induced cyclotron reso-
nance emerges due to the same nonparabolicity Eq.(1) that
played the role of a stabilizing factor in Refs. 32–34.
Roughly, the time modulation ofvc in the dc field required
in Refs. 32–34 for parametric resonance emerges from the
“beatings” of the responses to the two ac signals. The non-
parabolicity transforms these beatings into a modulation of
the cyclotron frequency. Although the increment,G, for para-
metric resonance, induced by bichromatic microwave irra-
diation, is proportional to the productE1E2 of the amplitudes
of the two sources, while in Ref. 34 it was proportional to the
first power of the magnetic component of the ac field, the
“bichromatic” increment is much bigger. As demonstrated
above, the bichromatic increment isG,vcsmc2/
E0dsE1E2/B2d, which should be compared to the increment
G,vcsE /Bd of Ref. 34. The ratio contains a small factor
sE /Bd which is offset by the huge factorsmc2/E0d.
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