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Motivated by the recently discovered microwave-induced “zero-resistance” states in two-dimensional elec-
tron systems, we study the microwave photoconductivity of a two-dimensional electron gass2DEGd subject to
a unidirectional static periodic potential. The combination of this potential, the classically strong magnetic
field, and the microwave radiation may result in an anisotropic negative conductivity of the 2DEG. Similar to
the case of a smooth random potential, two mechanisms contribute to the negative photoconductivity. The
displacement mechanism arises from electron transitions due to disorder-assisted microwave absorption and
emission. The distribution-function mechanism arises from microwave-induced changes in the electron distri-
bution. However, the replacement of a smooth random potential by the unidirectional one, leads to different
relative strengths of the two contributions to the photoconductivity. The distribution function mechanism
dominates the photoconductivity in the direction of the static potential modulation, while both mechanisms
contribute equally strongly to the photoconductivity in the perpendicular direction. Moreover, the functional
dependence of the negative photoconductivity on the microwave frequency is different for the two mecha-
nisms, which may help to distinguish between them. In another marked difference from the case of smooth
disorder, the unidirectionality of the static potential simplifies greatly the evaluation of the photoconductivities,
which follow directly from Fermi’s golden rule.
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I. INTRODUCTION

Recent experiments1–5 on a two-dimensional electron gas
s2DEGd in weak magnetic fields under microwave irradiation
have led to the unexpected discovery of regions in magnetic
field where the longitudinal resistance is very close to zero.
Unlike for quantized Hall states, the Hall resistance remains
essentially classical and nonquantized for these novel “zero-
resistance states.” These states occur near magnetic fields
where, up to an additive constant, the microwave frequency
v is an integer multiple of the cyclotron frequencyvc.

This discovery initiated a flurry of theoretical activity
from which the following basic picture emerges. It has been
argued6,7 that under microwave irradiation, the microscopic
diagonal conductivity can become negative. This would lead
to a smacroscopicd instability towards a current carrying
state. Macroscopic resistance measurements on this state
show zero resistance because current can be made to flow
through the sample by a rearrangement of large current do-
mains. Different microscopic mechanisms for a negative
contribution to the microwave-induced photoconductivity
have been proposed. One mechanism relies on disorder-

assisted absorption and emission of microwaves8–11 ssee also
Ref. 12d. Depending on the detuningDv=vc−v, the dis-
placement in real space associated with these processes is
preferentially in or against the direction of the applied dc
electric field. In an alternative mechanism, microwave ab-
sorption leads to a change in the electron distribution func-
tion, which can result in a negative photoconductivity.4,13,14

Detailed calculations within the self-consistent Born ap-
proximation suggest that the latter mechanism is larger by a
factortin /ts

* , wheretin is the inelastic relaxation time andts
*

denotes the single-particle elastic scattering time in a mag-
netic field.

In the present paper, we study the microwave-induced
photoconductivity within a model in which the 2DEG is sub-
jected to a unidirectional and static periodic potential.15 Our
motivation for doing so is twofold. First, the study of peri-
odically modulated 2DEGs in a perpendicular magnetic field
has led to the discovery of a number of interesting effects
such as transport anisotropies16 and commensurability effects
such as the Weiss oscillations of the conductivity.17–20Thus,
investigating the effects of a static periodic potentialswhich
is not present in the experiments performed to dated in the
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regime of microwave-induced zero-resistance states may
shed light on the underlying physics. In addition, the periodic
potential lifts the Landau levelsLL d degeneracy. This allows
one to exploit the familiar relation between momentum
transfer and distance in real space in high magnetic fields to
compute the current by applying Fermi’s golden rule. In this
way, one finds in the absence of microwaves that scattering
from the disorder potentialU leads to a current

jx =
pe

LxLy
o
nn8

o
kk8

sk8 − kdlB
2ukn8k8uUunklu2ffnk

0 − fn8k8
0 g

3dsenk − en8k8d s1d

for an applied dc electric field in thex direction.22 Here, f nk
0

is the Fermi-Dirac distribution function of the Landau level
statesunkl which remain approximate eigenstates even in the
presence of the periodic potentialsn is the LL indexd. Thed
function involves the energiesenk of these states including
the effect of both periodic potential and dc electric field.

It is evident from Eq.s1d that the microwaves will affect
the current in two ways.sid The joint effect of disorder and
microwaves can give additional contributions to the transi-
tion matrix elements. This is the origin of the displacement
photocurrent which relies on the displacements in real space
associated with disorder-assisted absorption and emission of
microwaves. In more conventional terms, this contribution
can be associated with the effect of the microwaves on the
collision integral in a kinetic equation.sii d The microwaves
will also result in a redistribution of electrons, changing the
electron distribution functionfnk away from its equilibrium
form fnk

0 . This distribution-function contribution to the pho-
tocurrent will be important if inelastic relaxation is suffi-
ciently slow. Our model allows us to compute the various
contributions to the photocurrent straight-forwardly within
Fermi’s golden rule.

For the parallel photocurrentsi.e., parallel to the wave
vector of the static periodic modulationd we find that the
distribution-function mechanism gives a larger contribution
than the displacement mechanism, by a factortin /ts

* . In ad-
dition, we find in this case that our results, with suitable
identifications, are parametrically consistent with earlier re-
sults for disorder broadened Landau levels in the self-
consistent Born approximation.11,14 By contrast, we find a
strong enhancement of the displacement mechanism for the
perpendicular photocurrent so that in this case, both contri-
butions are of the same order.

For readers not interested in the details of the derivation,
we include a guide to our main results. In Sec. II, we intro-
duce the model and collect the relevant background material.
In Sec. III, we compute the dark conductivity. The condcuc-
tivity along the modulation direction is given in Eqs.s30d
ands31d. The conductivity across the modulation direction is
presented in Eqs.s36d ands37d. In both cases, an interpreta-
tion of the result is given in the following pararaph. The
displacement mechanism for the photocurrent is discussed in
Sec. IV. Our main results are in Eqs.s51d ands52d along the
modulation direction and in Eqs.s57d and s58d across the
modulation direction. Estimates interpreting these results are
again given in the paragraphs following the equations. The

distribution-function mechanism is worked out in Sec. V
with the main results in Eqs.s66d and s68d along the modu-
lation direction and Eqs.s70d ands72d across the modulation
direction. Section V also contains a discussion of the Weiss
oscillations of the photocurrent. The polarization dependence
is considered in Sec. VI. We summarize in Sec. VII. Some
technical details are given in a number of appendices. In the
remainder of this paper, we set"=1.

II. THE MODEL

A. Basics

In this section, we specify our model and review some
relevant background material. We consider a two-
dimensional electron gass2DEGd subject to a perpendicular
magnetic fieldB and a unidirectional static periodic potential

Vsr d = Ṽ cossQxd s2d

with perioda=2p /Q. The periodic potential which lifts the
Landau level degeneracy, is assumed to be stronger than the
residual disorder potentialUsr d. The disorder potential is
characterized by zero average and variance

kUsr dUsr 8dl = Wsr − r 8d. s3d

For white-noise disorder,Wsr −r 8d=s1/2pntddsr −r 8d with

Fourier transformW̃sqd=1/2pnt. Here,n denotes the den-
sity of states at the Fermi energy in zero magnetic field andt
is the zero-field elastic scattering time. For smooth disorder
potentials, the correlatorWsr d falls off isotropically on the
scale of the correlation lengthj of the disorder potential
sj@lF for smooth disorder;lF denotes the zero-field Fermi
wavelengthd. We also note that the impurity average of the
disorder matrix element between oscillator statesunkl for
electrons in a magnetic field in the Landau gauge is

uknk8uUunklu2 =E d2q

s2pd2dqy,k8−ke
−q2lB

2/2FLnSq2lB
2

2
DG2

W̃sqd.

s4d

Here,n denotes the LL quantum number andk the momen-
tum in they direction. Lnsxd denotes the Laguerre polyno-
mial andlB=s" /eBd1/2 the magnetic length.

In this paper, we focus on the regime of high Landau
levels so thatlF! lB!Rc. sHere, Rc denotes the cyclotron
radius.d We assume that the perioda of the modulation sat-
isfies the condition

lF ! a ! Rc. s5d

This is essentially a technical condition, which simplifies
some of the calculations. For smooth disorder, we assume, in
addition, that the correlation lengthj of the disorder poten-
tial satisfies the inequality

lF ! j ! lB
2/a. s6d

Here, the first inequality reflects the fact that the disorder is
smooth, while the second inequality ensures that the typical
jump in real space of lengthlB

2 /j associated with a disorder
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scattering event is large compared to the perioda of the
periodic modulation.

The 2DEG is irradiated by microwaves described by the
electric potential

fsr ,td = −
e

2
r sE*eivt + Ee−ivtd = f+e−ivt + f−eivt, s7d

wheref+=ff−g* =−eE ·r /2. The complex vectorE contains
both strength and polarization of the microwaves.

In the absence of disorder and microwaves, and for suffi-
ciently weak periodic potential, the single-particle spectrum
of the electrons can be obtained by treating the periodic po-
tential perturbatively. Starting with the oscillator statesunkl,
one obtains

enk
0 . vcSn +

1

2
D + Vn cossQklB

2d. s8d

The amplitudeVn is given by

Vn = Ṽe−Q2lB
2/4LnsQ2lB

2/2d. s9d

In the limit of high Landau levels,Vn can be approximated as

Vn. ṼJ0sQRcd and thus exhibits slow oscillations with pe-
riod kFa@1 as a function of LL indexn. sThe LL index n
enters via the cyclotron radius.d This also implies oscillations
of Vn as function of the magnetic field. It is these oscillations
of Vn which are responsible for the Weiss oscillations18 of the
conductivity.

If in addition, a dc electric fieldEdc is applied in thex
direction, the eigenenergies take the form

enk . enk
0 − eEdcklB

2 . s10d

It is useful to define the density of statessDOSd of a periodic
potential broadenend LL by

n*sed = n* ñ*sed s11d

with the density of states at the band center

n* =
1

2plB
2

1

pVn
s12d

and the normalized density of states

ñ*sed =
1

Î1 − fse − End/Vng2
. s13d

Here, n and e satisfy ue−Enu,Vn fwith the LL energy
En=vcsn+1/2dg. Note that the DOS can also be expressed as
n* ,nsvc/Vnd, reflecting the increased density of states due
to the Landau quantization.

B. Kinetic equation

We now turn to setting up the kinetic equation for the
nonequilibrium electronic distribution functionfnk which de-
scribes the occupation of the LL oscillator eigenstatesunkl.21

These occupations change due to disorder scattering,
disorder-assisted microwave absorption and emission, as
well as inelastic relaxation which we include within the

relaxation-time approximation. Note that, in principle, this
distribution function also depends on the spatial coordinate
y. However, it will be sufficient throughout this work to con-
sider distribution functions which are uniform in they direc-
tion. sThe dependence onx, on the other hand, is included, as
the momentumk also plays the role of a position in thex
direction.d

If the dc electric field points in thex direction, the kinetic
equation takes the form

]fnk

]t
= S ]fnk

]t
D

dis
+ S ]fnk

]t
D

mw
−

fnk − f nk
0

tin
. s14d

In principle, there should also be a term which describes the
drift in the y direction induced by the dc electric field. How-
ever, this term has no consequences when considering distri-
bution functions which are independent ofy. In the last term
on the right-hand side,f nk

0 denotes the equilibrium Fermi-
Dirac distribution andtin denotes a phenomenological inelas-
tic relaxation rate. The collision integral for disorder scatter-
ing is explicitly given by

S ]fnk

]t
D

dis
= o

n8k8

2pukn8k8uUunklu2ffn8k8 − fnkgdsenk − en8k8d.

s15d

The collision integral for disorder-assisted microwave ab-
sorption and emission is

S ]fnk

]t
D

mw
= o

n8k8
o
s=±

2pukn8k8uTsunklu2ffn8k8 − fnkg

3dsenk − en8k8 + svd. s16d

The precise nature of the operatorTs will be given in Eq.
s42d below. Note that these collision integrals involve the
electron energies including the effects of the dc electric field.

If the dc electric field points along they direction, we can
no longer include it in the eigenenergies. Instead, it enters the
kinetic equation through an additional term describing the
associated drift in thex direction,

]fnk

]t
= − eEdc

]fnk

]k
+ S ]fnk

]t
D

dis
+ S ]fnk

]t
D

mw
−

fnk − f nk
0

tin
.

s17d

The collision integrals are given by the expressions in Eqs.
s15d ands16d with the energies in thed functions taken in the
absence of the dc electric field.

We close this section with a calculation of the elastic scat-
tering rate 1/t* in high magnetic fields. The motivation for
doing this is twofold. First,t* is a natural parameter in terms
of which to write our final results for the conductivity. On a
more technical note, computingt* gives us the opportunity
to introduce a convenient way of dealing with integrals in-
volving Laguerre polynomials, which will be used repeatedly
throughout this paper. From the collision integral for elastic
disorder scattering, we obtain
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1

t*sed
= o

n8k8

2pukn8k8uUunklu2dse − en8k8d s18d

with e=enk. Noting thatn=n8 and inserting the expression
s4d for the matrix element, we obtain

1

t*sed
= 2pE d2q

s2pd2e−q2lB
2/2FLnSq2lB

2

2
DG2

W̃sqddse − enk+qy
d.

s19d

The Laguerre-polynomial factor arising from the matrix ele-
ments of the disorder potential decays as a function ofqlB

2 on
the scale of the cyclotron radiusRc, in addition to fast oscil-
lations on the scale of the zero-field Fermi wavelengthlF.
On the other hand, the argument of thed-function changes
with klB

2 on the scale of the perioda of the periodic potential.
Thus, for white-noise disorder and in the limitlF!a!Rc,
we can average thed function separately overqy. Using the
identity

kdse − enk8
0 dlk8 = 2plB

2n*sed s20d

and performing the remaining integral over the Laguerre
polynomial

E d2q

s2pd2e−q2lB
2/2FLnSq2lB

2

2
DG2

=
1

2plB
2 , s21d

we find the result

1

t*sed
=

1

t

n*sed
n

. s22d

In the following, we will also use the notationt* =t*se
=End, i.e.,

t* = t
pVn

vc
. s23d

This result reflects the increased density of final states in the
limit of well-separated Landau levels.

For smooth disorder, we need to distinguish between the
single-particle scattering time and the transport scattering
time. Their zero-field valuests andttr are related to the finite
field values ts

*sed and ttr
* sed in analogy to Eq.s22d, i.e.,

ts
*sed=tsn /n*sed and ttr

* sed=ttrn /n*sed. Some details of the
calculation are given in Appendix A.

III. DARK CONDUCTIVITY

A. Conductivity sxx along the modulation direction

In this section, we compute the dark conductivity, i.e., the
conductivity in the absence of microwaves. We start with the
situation in which the dc electric field is applied in thex
direction, i.e., parallel to the wave vector of the static peri-
odic modulation. We assume that the dc electric field is suf-
ficiently weak so that heating effects can be ignored. In this
case, the distribution function remains in equilibrium
fnk= f nk

0 , and the system responds to the dc electric field with
a current in thex direction.

This current can be expressed by counting the number of
disorder scattering events that take an electron from a statek,
localized in thex direction atklB

2 to the left of an imaginary
line x0 parallel to they axis, to a statek8, localized atk8lB

2 to
the right of this imaginary line, and vice versa. Due to cur-
rent conservation, the current is independent of the particular
choice ofx0 and it turns out to be useful to average over all
possiblex0. This results in the expression

jx =
e

Ly
E

−Lx/2

Lx/2 dx0

Lx
o
nn8

o
k,x0/lB

2
o

k8.x0/lB
2

2pukn8k8uUunklu2

3ff nk
0 − f n8k8

0 gdsenk − en8k8d s24d

for the current in thex direction. Performing the integral over
x0 gives

jx =
pe

LxLy
o
nn8

o
kk8

sk8 − kdlB
2ukn8k8uUunklu2ff nk

0 − f n8k8
0 g

3dsenk − en8k8d. s25d

Inserting the explicit expressions4d for the disorder-averaged
matrix element and performing the sum overk8, one obtains

jx =
pe

LxLy
o
nk
E d2q

s2pd2qylB
2e−q2lB

2/2FLnSq2lB
2

2
DG2

W̃sqd

3ff nk
0 − f nk+qy

0 gdsenk
0 − enk+qy

0 + eEdcqylB
2d. s26d

Expanding to linear order in the dc electric field, one obtains
for the conductivity

sxx =
pe2

LxLy
o
nk
S−

]fnk
0

]enk
0 D

3E d2q

s2pd2sqylB
2d2e−q2lB

2/2FLnSq2lB
2

2
DG2

W̃sqd

3dsenk
0 − enk+qy

0 d. s27d

For white-noise disorder andlF!a!Rc, the Laguerre-
polynomial integral can be computed in analogy with the
evaluation of Eq.s19d above. Using

E d2q

s2pd2sqylB
2d2e−q2lB

2/2FLnSq2lB
2

2
DG2

=
N

p
, s28d

this yields

sxx =
e2N

LxLy

1

2pnt
o
nk
S−

]f nk
0

]enk
0 D2plB

2n*sek
0d. s29d

Expressing the sum by an integral involving the density of
states, we can cast this result in the final form

sxx =E deS−
]fsed

]e
Dsxxsed s30d

in terms of

DIETEL et al. PHYSICAL REVIEW B 71, 045329s2005d

045329-4



sxxsed = e2S Rc
2

2ttr
* sed

Dn*sed. s31d

This equation is written such that it includes both types of
disorder. For white-noise disorderttr

* =ts
* =t* , while for

smooth disorderttr
* Þts

* . The derivation of the result for
smooth disorder is sketched in Appendix A.

This result for the dark conductivity can be interpreted as
follows. The bare rate for disorder scattering is 1/ts

* , where
each scattering event is associated with a momentum transfer
1/j. This momentum transfer translates into a jump of mag-
nitudelB

2 /j in real space so that the electron diffuses in thex
direction with a diffusion constantDxx,slB

2 /jd2/ts
* . Alterna-

tively, this diffusion constant can be written in terms of the
transport time asDxx=Rc

2/2ttr
* fusing that ttr

* /ts
* ,skFjd2g.

By the Einstein relation, this diffusion constant translates
into the conductivity given in Eq.s31d. The conductivitys31d
can also be expressed in terms of the zero-B conductivity
sxxsB=0d as sxx=sxxsB=0d / svcttr

* d2. We also note that
sxx,1/Vn

2 so that the oscillations ofV with magnetic fieldB
fsee Eq.s9d aboveg lead to Weiss oscillations of the conduc-
tivity, in agreement with previous results.18

The energy integral in Eq.s30d is formally logarithmically
divergent due to the square-root singularity of the density of
statesn*sed at the band edge. This singularity is cut off by
smearing of the band edge by disorder or by the applied dc
electric field, when the latter is kept beyond linear order.

B. Conductivity syy perpendicular to the modulation
direction

An applied dc electric field in they direction leads to a
nonequilibrium distribution functionfnk due to the drift term
in the kinetic equations17d. In the absence of microwaves,
linearizing the stationary kinetic equation in the applied dc
electric field yields

eEdc
]f nk

0

]k
= 2pE d2q

s2pd2e−q2lB
2/2FLnSq2lB

2

2
DG2

W̃sqd

3fdfnk+qy
− dfnkgdsenk

0 − enk+qy

0 d. s32d

Here,dfnk= fnk− f nk
0 denotes the deviation from the equilib-

rium distribution function, and we have neglected inelastic
processes relative to elastic disorder scattering. Due to the
periodicity in thex direction,dfnk=dfnk+a/lB

2. Moreover, if k
and k+qy are two momenta with the same energyenk

0 , but
opposite signs of the derivative]enk

0 /]k, thendfnk=−dfnk+qy
.

Using that for white-noise disorder andlF!a!Rc, we can
split the q integration as in the evaluation of Eq.s19d and
obtain

dfnk = − eEdct
*senk

0 d
]f nk

0

]k
. s33d

In terms of the distribution function, the current in they
direction is given by

j y = e
1

LxLy
o
nk

]enk
0

]k
dfnk. s34d

Inserting the expression for the distribution function gives
for the conductivity

syy = −
e2

LxLy
o
nk
S ]enk

0

]k
D2

t*senk
0 d

]f nk
0

]enk
0 . s35d

Expressing the sum overnk as an energy integral involving
the DOS, we obtain

syy =E deS−
]f 0sed

]e
Dsyysed s36d

with

syysed = e2sfvysedg2ts
*seddn*sed. s37d

As above forsxx, this result is written such that it includes
both the case of white-noise and of smooth disorder. The
derivation for the case of smooth disorder is sketched in
Appendix A. We have defined the drift velocity

uvysedu = U ]enk
0

]k
U =

1

pan*sed
s38d

in the y direction, induced by the periodic modulation.
The results37d can be interpreted as follows. With respect

to the motion in they direction, a partially filled LL consists
effectively of a set of two “internal edge channels” parallel to
the y axis per perioda. Neighboring channels flow in oppo-
site directions so that disorder scattering randomizes the di-
rection of the motion in they direction after timets

* . The
factorDyy=vy

2ts
* can thus be interpreted as the diffusion con-

stant of the resulting diffusion process. We note that unlike
sxxsed, the conductivitysyysed remains finite at the band
edge. The anisotropysyy/sxx of the dark conductivity is thus
of ordersvyts

* /Rcd2skFjd2, where both factors are larger than
unity. The dark conductivitysyy depends on the modulation-
induced LL broadening assxx,Vn

2, so that the Weiss oscil-
lations in syy are phase shifted byp relative to the oscilla-
tions in sxx, in agreement with standard results.18

The dc electric field also leads to heating of the electron
system. The characteristic fieldEdc

* where this becomes
relevant, can be estimated as follows. The dc electric
field causes a drift in thex direction with drift velocity
sEdc/Bd, changing the potential energy of the electron by
sV/adsEdc/Bdts

* . This gives rise to a diffusion constant in
energy ofDe,sV/ad2sEdc/Bd2ts

* . Heating can be neglected
as long as the typical energy changesDetind1/2 is small com-
pared toV. This gives the condition

Edc ! Edc
* =

Ba

2pÎtints
*

s39d

for the dc electric field. It is only for these electric fields that
the results37d is valid. A more formal derivation of this
result is given in Appendix B.
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For larger dc electric fieldsEdc@Edc
* , the effect of heating

needs to be taken into account. Following the arguments
given in Appendix B, one expects that the conductivity is
suppressed by heating effects and behaves in magnitude as

syy , SEdc
*

Edc
D2

e2Dyyn
* . s40d

The reason for this suppression is that heating reduces thek
dependence of the distribution function.

IV. DISPLACEMENT PHOTOCURRENT

A. t-matrix elements

The microwaves lead to additional contributions to the
transition matrix element between LL oscillator states which
enters into the current expressions1d. Direct microwave ab-
sorption or emission does not contribute to the current, be-
cause the microwaves do not transfer momentum to the elec-
trons so that such processes are not associated with
displacements in real space. In addition, such processes oc-
cur only for v=vc. On the other hand, disorder-assisted mi-
crowave absorption and emission is associated with displace-
ments in real space of the order ofRc slB

2 /j for smooth
disorderd. This process is allowed for microwave frequencies
away fromvc. In this section, we compute the contribution
of this displacement mechanism to the photoconductivity
within our model.

The transition rate between LL oscillator states involves
the t matrix

T = sU + fd + sU + fdG0sU + fd + ¯ , s41d

whereG0 denotes the retarded Green function of the unper-
turbed system. The dark conductivity, computed in the pre-
vious section, follows in the approximationT.U. Disorder-
assisted microwave absorptionT+ and emissionT− is given
by

T± = fUG0f± + f±G0Ug. s42d

Note thatT+ andT− contribute incoherently. Assuming thatv
couples only neighboring LLs and that the microwaves are
linearly polarized in thex direction, the corresponding matrix
elements between LL oscillator states are

kn ± 1k8uT±unkl = ± SeERc

4Dv
Dfkn ± 1k8uUun ± 1kl

− knk8uUunklg, s43d

where we used

G0,n±1ksenk ± vd =
1

enk ± v − en±1k
= 7

1

Dv
,

G0,nk8senkd =
1

enk − enk8
= ±

1

Dv
. s44d

Using the disorder matrix elements and neglecting correc-
tions of order 1/n, one finds

ukn ± 1k8uT±unklu2 . SeERc

4Dv
D2E d2q

s2pd2dqy,k8−ke
−q2lB

2/2

3FLn+1Sq2lB
2

2
D − LnSq2lB

2

2
DG2

W̃sqd.

s45d

Thus in this approximation, the matrix elements are identical
for absorption and emission and depend only on the absolute
value of k−k8. It is worthwhile to point out that the differ-
ence between the two Laguerre polynomials reflects the fact
that disorder-assisted microwave absorption involves a co-
herent sum of two processes: In one process, a microwave
photon is first absorbed, resulting in a transition from thenth
to the sn+1dth LL, with disorder subsequently inducing a
transition between states in thesn+1dth LL. In the second
process, disorder first leads to a transition between states in
the nth LL with a subsequent absorption of a microwave
photon. The divergence of the matrix element forDv→0 is
an artefact of low-order perturbation theory in the disorder
potential U. In a more accurate treatment, this divergence
would be removed by disorder broadening.

B. Displacement photocurrent jx along the modulation
direction

In this section, we compute the displacement contribution
to the photocurrent in the modulation direction. The current
in the x direction can now be computed in terms of Fermi’s
golden rule in the same manner as for the dark current in
Sec. III. In this way, one obtains

jx
photoI=

2pe

LxLy
o
n

o
kk8

sk8 − kdlB
2ukn + 1k8uT+unklu2

3ff nk
0 − f n+1k8

0 gdsenk − en+1k8 + vd. s46d

Here, we assume that the microwaves frequencyv.0 is
such that it couples neighboring LLs.

In order not to complicate the calculations unnecessarily,
we will consider temperaturesT@V. In this regime, the tem-
perature smearing is over an energy range large compared to
the LL width and the distribution function depends only on
the LL index n, but not on the momentumk. Inserting the
explicit expressions45d for the t-matrix element, we obtain

jx
photo I=

2plB
2e

LxLy
SeERc

4Dv
D2

o
n

ffn − fn+1g

3 o
k
E d2q

s2pd2qye
−q2lB

2/2FLn+1Sq2lB
2

2
D

− LnSq2lB
2

2
DG2

W̃sqddsen+1k − enk+qy
− vd. s47d

The k summation gives
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o
k

dsen+1k − enk+qy
− vd

=
LxLy

2plB
22pVn

1

Fsin2 Qqy

2
− S Dṽ

2Vn
D2G1/2, s48d

where we introducedDṽ=Dv−eEdcqylB
2. Thus, we obtain for

the current

jx
photo I=

e

2plB
2SeERc

4Dv
D2

o
n

ffn − fn+1g

3E d2q

s2pd2qylB
2e−q2lB

2/2FLn+1Sq2lB
2

2
D

− LnSq2lB
2

2
DG2 W̃sqd

VnFsin2 Qqy

2
− S Dṽ

2Vn
D2G1/2,

s49d

where the integral is only over the region where the square
root in the denominator is real. It is useful to interpret the
various factors in this expression. It consists of a charge
density per LLe/2plB

2, and a ratesper LLd for jumps in the
x direction with lengths betweenqylB

2 and sqy+dqydlB
2, mul-

tiplied by the jump lengthsqylB
2 Finally, the expression is

integrated over all jump lengthsqy and summed over all LLs.
The sum over LLsn is trivial and for white-noise

disorder, the integral overq can again be decoupled for
lF!a!Rc. Expanding to linear order in the dc electric field
and using the integral

E d2q

s2pd2sqylB
2d2e−q2lB

2/2FLn+1Sq2lB
2

2
D − LnSq2lB

2

2
DG2

=
3n

p
,

s50d

we obtain the linear-response conductivity

s xx
photo I= fe2Dxxn

*g
ts

*

ttr
* SeERc

4Dv
D2

A1sDv/2VNd s51d

with the functionssee Fig. 1d

A1sxd = −
3

p2

]

]x
KsÎ1 − x2d, s52d

expressed in terms of the complete elliptic functionK. Note
that the first factor in Eq.s51d is just the dark conductivity
sxx fsee Eq.s31dg and that the result includes the case of
smooth disorder.sStrictly speaking, the result for smooth dis-
order is valid only up to a numerical prefactor that depends
on the precise nature of the smooth disorder potential, see
Appendix A for details.d The behavior of this displacement
photocurrent forDv!2VN and Dv,2VN follows from the
asymptotic expressions

KsÎ1 − sDv/2VNd2d

. 5 − lnsuDvu/8VNd, uDv/2VNu ! 1,

p

4
S1 +

a

4
D , a = 1 −S Dv

2VN
D2

! 1.6 . s53d

This implies thatA1sDv /2VNd remains finite foruDv /2VNu
→1 ssee Fig. 2d and is proportional to 1/Dv for small
uDv /2VNu. The sign of the displacement photocurrent is
given by sgnsvc−vd, similar to previous work on disorder-
broadenend LLs.8,11

The magnitude of the displacement contributions51d to
the photoconductivity can be understood as follows. The
bare rate of disorder-induced microwave absorption is
s1/ts

*dseERc/Dvd2, where the second factor is the dipole
coupling of the microwave field for Landau states divided by
the relevant energy denominator of the intermediate state.
Each of these scattering events is associated with a jump in
real space of the order oflB

2 /j, resulting in an effective dif-
fusion constantDxxseERc/Dvd2. An additional factorsts

* /ttr
* d

arises because of the partially destructive interference of the

FIG. 1. The functions A1sDv /2VNd sfull lined and
B1sDv /2VNd / lnsVN/Dd sdashed lined, describing the dependence of
the parallel photoconductivity on the microwave frequency, see
Eqs.s52d and s68d.

FIG. 2. Illustration of disorder-assisted microwave absorption
for Dv.2VN. In the x direction, the Landau levels are modulated
by the periodic potential and tilted by the dc field. The square-root
singularity of the Landau level DOSs13d at the band edge leads to
the singular behavior of the photocurrent for these detuningsDv,
see Fig. 1.
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two contributions which were discussed below Eq.s45d. This
interference leads to the difference of Laguerre polynomials
in Eq. s49d which introduces an additional factorsq/kFd2 into
the integral. This factor is of order 1/skFjd2,sts

* /ttr
* d.

C. Displacement photocurrentjy perpendicular to the
modulation direction

The current in they direction can also be computed in a
semiclassical approach. If a dc electric field is applied in the
y direction, the equipotential lines of energyE are “meander”
lines defined byE=Vn cossQxd−eEdcy. This gives

y =
1

eEdc
fVn cossQxd − Eg s54d

with an averagey valueȳ=−E /eEdc. Quantum mechanically,
we can think of these equipotential lines as states. This
relation as well as the calculation sketched in this section
is worked out more formally in Appendix C. Scattering
between such meander states that differ in energy by
Dv=vc−v signoring the LL energyd involves jumping a dis-
tanceDv /eEdc in the y direction. Thus, we can again com-
pute the current by Fermi’s golden rule. It is important to
observe that the direction of the jumps is fixed by the sign of
the energy difference. Below, we will comment on the limits
of validity of this approach.

The current expression involves the rate of jumps. IfEdc
is sufficiently weak, the amplitude of the meander line is
very large compared to the scaleRc over which jumps occur.
On the scale of the jump, the meander lines are therefore
essentially indistinguishable from the equipotential lines in
the absence of the dc field. This allows us to employ the rate
of jumps which we obtained from the calculation of the cur-
rent in thex direction.fWe have to setEdc=0 in the formulas
obtained there, see Eq.s49d.g In this way, we obtain for the
displacement photocurrent in they direction

j y
photo I=

e

2plB
2SeERc

4Dv
D2

o
n

ffn − fn+1g

3
Dv

eEdc
E d2q

s2pd2e−q2lB
2/2FLn+1Sq2lB

2

2
D

− LnSq2lB
2

2
DG2 W̃sqd

VnFsin2 Qqy

2
− S Dv

2Vn
D2G1/2.

s55d

As mentioned above, we derive this expression more for-
mally in Appendix C. Computing the integral for white-noise
disorder, we obtain the result

j y
photo I=

8Dv

s2pd3VNlB
4Edc

SeERc

4Dv
D2 1

2pnt
KsÎ1 − sDv/2VNd2d,

s56d

valid for lF!a!Rc andT@VN. Note that the current isnot
linear in the applied dc electric field but rather diverges as as
1/Edc. This anomalous behavior is associated with the fact

that the length of the jumps diverges with decreasing dc elec-
tric field and that the direction of all jumps is the same, fixed
by the sign ofDv. Rewriting the result in terms of a conduc-
tivity, we obtain

syy
photo I= fe2Dyyn

*gSaB/pÎts
*ttr

*

Edc
D2SeERc

4Dv
D2

A2sDv/2VNd.

s57d

Note that the first factor is just the dark conductivitysyy. The
derivation of the result for smooth disorder is sketched in
Appendix A. The functionA2sxd is defined by

A2sxd = 2xKsÎ1 − x2d s58d

and plotted in Fig. 3. The sign of the photocurrent is given by
sgnsvc−vd, as in the case ofsxx

photoI.
The magnitude ofs yy

photo can be understood as follows.
Since all jumps are in the same direction, we estimate the
current density directly. Effectively one LL contributes
so that the relevant density of electrons is 1/2plB

2. The
step length isDv /eEdc and the rate of jumps is given
by s1/ts

*dseERc/Dvd2sts
* /ttr

* d where the first two factors
are the bare rate and the last factor again reflects the partially
destructive interference between the two contributions
to disorder-assisted microwave absorption. Thus, we
find a current of orderj y

photoI,se/2plB
2dsDv /eEdcds1/ts

*d
3seERc/Dvd2sts

* /ttr
* d, in agreement with Eq.s57d.

The limits of validity of this result are most naturally
discussed in terms of a semiclassical picture. Semiclassically,
the individual scattering events such as disorder-assisted mi-
crowave absorption leave they coordinate of the electron
essentially unchangedsto an accuracy ofRcd. The full jump
by Dv /eEdc is realized only if the electron remains in the
meander state it scattered into for sufficiently long times to
explore its entirey range. Under the conditionts

* !tin, the
electron will diffuse on the meander line before equilibrating
by inelastic processes. The typical diffusion distanceÎDyytin
in the y direction should be larger than the amplitude

FIG. 3. The functionsA2sDv /2VNd sfull lined andB2sDv /2VNd
sdashed lined describing the dependence of the perpendicular pho-
toconductivity on the microwave frequency, see Eqs.s58d ands71d.
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VN/eEdc of the meander line. Thus, we find that the condition
for the validity of the expressions57d is

Edc @ Edc
* =

aB

2pÎt*tin

. s59d

Note that this is just the opposite of the range of validity of
the dark conductivitysyy computed in Eq.s37d.

For smaller dc electric fields, the jumps are no longer all
in the same direction and we can estimate the displacement
photoconductivity as follows. The disorder-induced micro-
wave absorption excites the electrons to a meandersequipo-
tentiald line which is shifted in they direction byDv /eEdc
relative to the initial state. For definiteness, assume that this
shift is in the positivey direction. Since quasiclassically, the
jump itself leaves they coordinate of the electrons un-
changedsto an accuracy ofRcd, the electrons will initially
populate only those parts of the excited meander line, which
are at least a distanceDv /eEdc from its top sin the y direc-
tiond. After the excitation, the electrons begin to diffuse on
the equipotential line due to disorder scattering, typically a
distanceÎDyytin before they relax back. Thus, after timetin,
the population of the excited meander line will extend further
in the positivey direction by a distanceÎDyytin, and the
average positive drift per electron is
fÎDyytin / sVN/eEdcdgÎDyytin. These arguments lead to a dis-
placement photoconductivity of

s yy
photo I, fe2Dyyn

*gSeERc

Dv
D2S tin

ttr
* D s60d

valid for Edc!Edc
* . Note that this result matches with Eq.

s57d for Edc=Edc
* . It is interesting to note that even the linear-

response displacement photoconductivity involves the inelas-
tic relaxation timetin.

V. THE EFFECT OF A NONEQUILIBRIUM ELECTRON
DISTRIBUTION ON THE PHOTOCURRENT

A. Distribution function

For nonzero inelastic relaxation timetin, the microwave
irradiation changes the electron distribution function, away
from the equilibrium Fermi-Dirac distribution. In this sec-
tion, we consider the contribution to the photocurrent arising
from this change infnk.

The microwave-induced change in the distribution func-
tion can be computed from the stationary kinetic equation in
the absence of the dc electric field. Elastic disorder scattering
contributes only when states of the same energy have differ-
ent occupations. Since this is not the case forEdc=0, we can
ignore elastic disorder scattering when computing the
microwave-induced change infnk. Thus, the kinetic equation
reduces to a balance between the microwave-induced colli-
sion integral and inelastic relaxation which yields to linear
order in the microwave intensity

dfnk = fnk − f nk
0 = tino

n8k8
o
s=±

2pukn8k8uTsunklu2ff n8k8
0 − f nk

0 g

3dsenk
0 − en8k8

0 + svd. s61d

As before, we restrict attention to temperaturesT@V so that
f nk

0 . f n
0, independent ofk. Inserting the explicit expression

s45d for the t-matrix element for white-noise disorder and
using the decoupling of theq integration forlF!a!Rc, we
obtain for the change in the distribution function

dfnk = 2SeERc

4Dv
D2

o
s=±

ff n+s
0 − f n

0g
tin

ttr
* senk

0 − sDvd

3usV − uenk
0 − sDvud. s62d

Note thatk enters this expression only throughenk
0 . Strictly

speaking, this expression breaks down whenenk
0 −sDv ap-

proaches the band edge. In this limit, it is no longer sufficient
to treat the microwave field to linear order in the intensity.
Effectively, this divergence is cut off whendfnk becomes of
order unity, i.e., for distancesDe from the band edge satis-
fying

De ! VFSeERc

Dv
D2S tin

ttr
* DG2

. s63d

Here, we used that the DOS has a square-root divergence at
the band edge. We also note that our linear approximation in
the microwave intensity breaks down completely beyond mi-
crowave intensities given byseERc/Dvd2stin /ttr

* d,1.
In the estimate

dfnk , s1/ts
*dseERc/Dvd2sts

* /ttr
* dtin s64d

for the magnitude ofdfnk, the first three factors are the rate
for disorder-assisted microwave absorption and emission.
The last factortin represents the time interval during which
electrons are excited. The expressions62d will form the basis
of our calculation of the distribution-function mechanism for
the photocurrent to which we now turn.

B. Distribution-function contribution to the photoconductivity
along the modulation direction

Going through the same steps as in the derivation of the
dark current in thex direction, one finds that Eq.s29d for sxx
remains valid even for a nonequilibrium distribution func-
tion, as long as it depends onk throughenk

0 only. Thus, we
find for the distribution-function contribution to the photo-
conductivity

s xx
photo II =

e2N

LxLy
2plB

2 1

2pnt
o
nk
S−

]dfsenk
0 d

]enk
0 Dn*sek

0d. s65d

Insertingdfnk from Eq.s62d, performing the sum over the LL
index n, and rewriting the sum overk as an energy integral
involving the density of states, we obtain our result

s xx
photo II = 4S tin

ttr
* DSeERc

4Dv
D2

fe2Dxxn
*gB1sDv/2VNd s66d

for the distribution-function contribution to the photoconduc-
tivity. The function
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B1sDv/2VNd = −
]

]Dv
E

−VN

VN−uDvu

deñ*se + uDvudfñ*sedg2.

s67d

is of order unity forDv,VN. This result shows that for the
parallel photocurrent, the distribution-function contribution
is larger than the displacement contributions51d by a large
parametertin /ts

* . This result is consistent with earlier results
for disorder-broadened Landau levels.11,14

The integral s67d has a logarithmic singularity at the
lower limit, which has the same origin as the divergence of
the dark conductivitysxx in Eq. s31d. Thus, the singularity is
cut off in the same way as for the dark conductivity.fFor
small Dv, one may seemingly have a more serious singular-
ity. However, we should remember that the DOS arising
from df never really becomes singular, see the discussion
above around Eq.s63d.g Since the logarithmic singularity
dominates the integrals67d, we can replacee by the lower
limit in the DOS ñ*se+ uDvud. In this way, we obtain the
result ssee Fig. 1d

B1sxd =
1

16

1 − 2uxu
suxu − uxu2d3/2 ln

VN

D
sgnx. s68d

Here, D denotes an effective broadening in energy of the
band edge, either due to disorder or a finite dc electric
field, which cuts off the logarithmic singularity. Interestingly,
this shows that the sign of the photocurrent is given by
sgnsvc−vd for uDvu,VN only. For uDvu=VN, we find addi-
tional sign changes which are associated with the singular
nature of the DOS at the Landau level edge, see Eq.s13d.

C. Distribution function contribution to the photocurrent
perpendicular to the modulation direction

To compute the distribution-function contribution to the
photoconductivitysyy, we note that Eq.s35d remains valid
for nonequilibrium distribution functions which depend onk
throughenk

0 , only. Thus, our starting point is

s yy
photo II = −

e2

2p
s2pntd

1

LxLy
o
nk
S ]enk

0

]k
D2 1

n*senk
0 d

]dfnk

]enk
.

s69d

Insertingdfnk from Eq.s62d and rewriting the sum overnk as
an integral, we obtain the final result

s yy
photo II = 4S tin

ttr
* DSeERc

4Dv
D2

fe2Dyyn
*gB2sDv/2VNd. s70d

The expressions70d is given in terms of the function

B2sDv/2VNd = −
]

]Dv
E

−VN+uDvu

VN

de
1

fñ*sedg2ñ*se − uDvud.

s71d

This integral is elementary and we obtainssee Fig. 3d

B2sxd = F8uxuSarcsins1 − 2uxud +
p

2
D − 8Îuxu − uxu2Gsgnx.

s72d

Asymptotically, this function behaves as

B2sxd . H − 8Îuxusgnx, uxu ! 1,

4Î1 − uxusgnx, 1 − uxu ! 1.
J s73d

Interestingly,B2sxd has different signs in these two limits,
implying that the functionB2sxd must have a node between
the argumentsx=0 andx=1. This node is approximately at
uDvu<2VN/p 2<0.2V. As a result, the distribution-function
contribution to the photoconductivitys yy

photo II has the same
sign ass yy

photo I only in the rangeuDvu*0.2VN. Again, we
associate this behavior with the anomalous behavior of the
DOS.

The magnitude is, apart from a function ofDv /VN, of
ordersyydf. Remarkably, in this case the magnitude is of the
same order as the displacement contribution in Eq.s60d. The
reason for this is that the displacement mechanism exhibits a
singular, non-Ohmic dependence on the dc electric field
which is cut off at small fields by inelastic processes only. A
more detailed analysis beyond this order of magnitude com-
parison would require an accurate calculation of the displace-
ment contribution to the photocurrent in the linear-response
regime. Such a calculation is beyond the scope of this paper
and the result may in any case be sensitive to details of the
model for inelastic relaxation.

We remark that our approach can be extended to
higher harmonicsv,nvc swith n.1d of the cyclotron reso-
nance. In this case, one needs to include disorder matrix
elements coupling different Landau levels. We find that
parametrically, all photoconductivities considered here are
suppressed with the harmonic indexn in the same manner.
Indeed, on a naive level one expects that higher harmonics
are suppressed relative to the cyclotron resonance by
sDv /nvcd2n,sDv /vcd2s1/nd. Note that one factor ofn
arises from the fact thatn Landau levels contribute for the
nth harmonic. However, it turns out that there are cancella-
tions in the matrix elements, leading to an actual suppression
by sDv /vcd2n−3. We note that in particular, the displacement
and distribution-function contributions to the photoconduc-
tivity perpendicular to the modulation direction remain of the
same order even in this situation. Detailed results on higher
harmonics will be presented elsewhere.23

D. Weiss oscillations of the photocurrent

The Weiss oscillations arising from the oscillatory behav-
ior of theVn as function of LL indexn or magnetic field have
two effects on the photocurrent. First, they lead to a modu-
lation of the amplitude of the photocurrent. This amplitude
modulation is similar to that of the dark conductivity as the
photoconductivity is proportional to the dark conductivity. A
difference may arise from the additional prefactortin /ttr

* en-
tering the photocurrents, see Eqs.s66d ands70d. Specifically,
if the ineleastic relaxation ratetin depends in a different way
on the LL DOSn* compared to the transport timettr, there
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may be a distinct difference between the Weiss oscillations in
the dark and the photoconductivity. Depending on whether
the Weiss oscillations in the photoconductivity are more or
less pronounced than those in the dark conductivity, this may
help or impede reaching negative conductivities and hence
observing the zero-resistance state.

A second effect of the Weiss oscillations is associated
with the modulation of the LL widthVn. The expressions for
the photocurrents66d and s70d involve a factor which de-
pends on the ratio of the detuningDv and the LL widthVN at
the Fermi energy. This implies that in the limit of well-
separated LLs considered here, the range in the detuning
over which there is a significant photocondictivity also oscil-
lates with magnetic field or Fermi energy.

In the photoconductivity, the 1/B-periodic Weiss oscilla-
tions are superimposed on the microwave-induced oscilla-
tions which are also periodic in 1/B. The periods in 1/B of
these oscillations areea/mvF ande/mv, respectively, which
can be of comparable magnitude.

VI. POLARIZATION DEPENDENCE OF THE
PHOTOCONDUCTIVITY

In this section, we discuss the dependence of the photo-
conductivity on the polarization of the microwave fieldE.
We begin by calculating the transition matrix elements for a
microwave field polarized in they direction. In this case

f = −
eE

2
yseivt + e−ivtd = f+e−ivt + f−eivt. s74d

The matrix elements of the operatorf± are given by

kn ± mk8uf±unkl = − S1

i

]

]k
dsk8 − kdD

3e−sk − k8d2lB
2/4Hdm,0Ln

0S sk8 − kd2lB
2

2
D

7 dm,±1
sk8 − kdlB

Î2n
Ln

1S sk8 − kd2lB
2

2
DJ

s75d

for mù0. UsingLn
1s0d=1 andLn

1s0d=n+1, we obtain for the
transition matrix elementT± the large-n result

kn ± 1k8uT±unkl = −
1

i
SeERc

4Dv
Dfkn ± 1k8uUun ± 1kl

− knk8uUunklg s76d

valid for Dv!vc. This matrix element differs from the cor-
responding matrix element for polarization in thex direction
by a multiplicative prefactor of unit modulus. As the photo-
conductivity depends only on the modulus of the transition
matrix elements, we find that the photoconductivity is the
same for microwave fields linearly polarized in thex and y
directions. We also find that more generally, the photocon-
ductivity remains unchanged for any linear polarization of
the microwaves.

We now turn to irradiation by circularly polarized micro-
wave fields which are described by

fs±
= −

eE

2Î2
fsx ± iyde−ivt + sx 7 iydeivtg. s77d

Combining the transition matrix elements for microwaves
linearly polarized in thex and y directions, one finds zero
photoconductivity forfs+

. In this case, theE vector rotates
opposite to the circular cyclotron motion of the electrons in
the magnetic field. Forfs−

, bothE and the cyclotron motion
rotate in the same direction and the photoconductivity is
double that for linearly polarized microwave fields. We note
that this dependence on the type of circularly polarized light
is specific to the cyclotron resonancev,vc. For higher har-
monicsv,nvc sn.1d of the cyclotron resonance, no such
dependence exists.23

VII. CONCLUSIONS

We have computed the microwave-induced photocurrent
in the regime of high Landau level filling factors, in a model
in which the Landau levels are broadened into a band due to
a static periodic modulation. We assume that the static modu-
lation is small compared to the spacing between LLs, but
large compared to the Landau-level broadening due to re-
sidual disorder. In this case, the eigenstates are still given to
leading order by the Landau level oscillator states in the
Landau gauge. The localization properties of these states al-
low us to compute the dark conductivity as well as the
microwave-induced photoconductivity using Fermi’s golden
rule. The Fermi’s golden rule expression for the current di-
rectly suggests that there are two distinct mechanisms con-
tributing to the photocurrent, analogous to previous
results11,14 for disorder-broadenend Landau levels.sid The
displacement mechanism relies on the spatial displacements
associated with disorder-assisted microwave absorption and
emission. This contribution can be associated with an addi-
tional, microwave-induced contribution to the transition ma-
trix element in the Fermi’s golden rule expression.sii d The
distribution-function mechanism by contrast, relies on the
microwave-induced change in the electronic distribution
function, again due to disorder-assisted microwave absorp-
tion and emission.

For the photocurrent parallel to the modulation direction,
we find that the distribution-function mechanismfsee Eq.
s66dg dominates by a large factortin /ts

* over the displace-
ment contributionfsee Eq.s51dg, in agreement with earlier
results for disorder broadened Landau levels.11,14The sign of
the photocurrent changes with the sign of the detuning
Dv=vc−v of the microwaves. For the dominant distribution
function mechanism, there are additional sign changes asso-
ciated with the divergence of the density of states at the edge
of the Landau level. Remarkably, the situation is rather dif-
ferent for the transverse photocurrent perpendicular to the
modulation direction. In this case, we find that the displace-
ment mechanism is in some sense singular with the result
that both contributions to the photocurrentfsee Eqs.s57d and
s70dg are of the same order. We find that our results remain
unchanged for any linear microwave polarization. For circu-
lar polarization, we find a nonzero photoconductivity only
when the microwave electric field rotates in the same direc-
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tion as the cyclotron rotation of the electrons in the magnetic
field.
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APPENDIX A: SMOOTH DISORDER POTENTIALS

As opposed to a white-noise potential, theszero-
magnetic-fieldd single particle timets is different from the
transport timettr for a smooth disorder potential. Specifi-
cally, the single-particle time can be expressed in terms of
the correlatorW as

1

ts
= 2po

q
W̃sqdkdsek − ek+qdlFS=

1

pvF
E

0

`

dqW̃sqd,

sA1d

where the average is over the Fermi surface andek denotes
the zero-field dispersion. Likewise, the transport time can be
expressed as

1

ttr
= 2po

q
s1 − cosuqdW̃sqdkdsek − ek+qdlFS

=
1

p vF
E

0

`

dqsq2/2kF
2dW̃sqd, sA2d

where uq denotes the scattering angle. Note that
ttr /ts,skFjd2.

We start by considering the elastic scattering times for
smooth disorder. Forts

* , we need to reconsider theq integra-
tion in Eq. s19d,

I0 =E d2q

s2pd2e−q2lB
2/2FLnSq2lB

2

2
DG2

W̃sqddsenk
0 − enk+qy

0 d.

sA3d

In the limit of largeN, the Laguerre polynomial has oscilla-
tions on theq scale oflF / lB

2 and falls off on the scale of
Rc/ lB

2. The correlator falls off on the scale 1/j and finally, the
characteristic scale of the argument of thed function isa/ lB

2.
Thus, unlike for white-noise potential, it is now the cor-

relatorW̃sqd which cuts off the integral at largeq. Under the
condition lF!a! lB

2 /j, we can still factorize theq integra-
tion as

I0 =E d2q

s2pd2e−q2lB
2/2FLnSq2lB

2

2
DG2

W̃sqdkdsenk
0 − enk8

0 dlk8.

sA4d

Since the integral is now cut off at largeq by W, it is suffi-
cient to employ the semiclassical equation

e−q2lB
2/4LnSq2lB

2

2
D .Î 2

pqRc
cossqRc − p/4d sA5d

in the remaining integral.sStrictly speaking, we need a
slightly more accurate approximation. However, this changes
only the argument of the cosine24 which does not affect the
results.d This yields

I0 =
1

2p2Rc
E

0

`

dqW̃sqdkdsenk
0 − enk8

0 dlk8 =
n*sed

n

1

2pts
.

sA6d

The same integral is involved in the computation of the dark
conductivitysyy.

The transport time involves the integral

I2 =E d2q

s2pd2

q2

2kF
2 e−q2lB

2/2FLnSq2lB
2

2
DG2

W̃sqddsenk
0 − enk+qy

0 d,

sA7d

where we used that 1−cosuq.q2/2kF
2 for q!kF. An analo-

gous analysis as forI0 above gives the result

I2 =
n*sed

n

1

2pttr
. sA8d

The same integral appears in the calculation for the dark
conductivitysxx.

A similar integral appears in the calculation for the dis-
placement photocurrents yy

photo I, namely,

J0 =E d2q

s2pd2e−q2lB
2/2FLn+1Sq2lB

2

2
D − LnSq2lB

2

2
DG2

3W̃sqddsenk
0 − enk+qy

0 d. sA9d

For smooth disorder, the difference of Laguerre polynomials
is suppressed relative to a single Laguerre polynomial. Using
that qRc

sn+1d.qRc
snd+q/kF, we find that the difference effec-

tively introduces a small factorq2/kF
2 into the integrand and

thus ssee the calculation forI2 aboved

J0 =
n*sed

n

1

pttr
. sA10d

For the displacement photocurrentsxx
photoI, we need to con-

sider

J2 =E d2q

s2pd2sq2/2kF
2de−q2lB

2/2FLn+1Sq2lB
2

2
D

− LnSq2lB
2

2
DG2

W̃sqddsenk
0 − enk+qy

0 d. sA11d

Again, the difference of Laguerre polynomials introduces a
small factorq2/kF

2 into the integrand. The resulting integral
can no longer be related directly to eitherttr or ts. However,
noting that every factorsq/kFd2 reduces the integral by a
factor of order 1/skFjd2, we can estimate
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J2 ,
n*sed

n

1

pttr

1

skFjd2 ,
1

pttr
*

ts
*

ttr
* . sA12d

The precise numerical prefactor depends on the detailed na-
ture of the smooth potential.

APPENDIX B: DISTRIBUTION FUNCTION FOR LARGE
dc ELECTRIC FIELDS

For large dc electric fields,Edc@Edc
* , Joule heating effects

become important. In this appendix, we study the distribu-
tion function in this limit. We start by decomposing the dis-
tribution functionfnk into symmetric and antisymmetric parts
snk andank underk→−k, i.e.,

fnk = snk + ank. sB1d

sRecall that the electron dispersion is symmetric under this
transformation.d Specifically, we can writesnk=s1/2dffnk

+ fn−kg and ank=s1/2dffnk− fn−kg. Inserting this decomposi-
tion into the kinetic equation in the presence of a dc electric
field in they directionsand without microwavesd, we obtain
the two equations

− eEdc
]ank

]k
=

snk − snk
0

tin
,

− eEdc
]snk

]k
=

ank

ts
*senkd

. sB2d

Here, we have used the inequalitytin@ts
* and the fact that

the disorder collision integral vanishes for the symmetric
part snk. In addition, we have rewritten the collision integral

for the antisymmetric part ass]a /]tddis=−ank/ts
*senkd. Insert-

ing the second of these equations into the first, we obtain

seEdcd2ts
*senkd

]2snk

]k2 =
snk − snk

0

tin
. sB3d

Note that this equation reproduces the estimate of the char-
acteristic electric fieldEdc

* . This follows immediately from
the fact that the characteristic scale of thek dependence is
a/ lB

2.
For Edc!Edc

* , we therefore findsnk.snk
0 . This is the

starting point of the calculation leading to the expression
s37d for the dark conductivitysyy. In the opposite limit
Edc@Edc

* , we writesnk=s̄n+dsnk, wheres̄n is the average of
snk over k. Note thatank which determines the current and
hence the conductivity is directly related todsnk. Then, Eq.
sB3d shows that in magnitudedsnk,sEdc

* /Edcd2snk
0 . As a re-

sult, we expect that heating reduces the dark conductivity
according to Eq.s40d in Sec. III.

APPENDIX C: EXPLICIT CALCULATION OF
DISPLACEMENT PHOTOCURRENT jy

In this appendix, we derive the displacement photocurrent
in they direction more formally. In order to derive the quan-
tum version of the meandering equipotential lines, we con-
sider the Schrödinger equation, including the dc electric field
in the y direction, in LL representation

knkuH0un8k8l = enk
0 dnn8dkk8 − eEdcs− idS ]

]k
dkk8D fnn8sk − k8d

sC1d

with

fnn8sk − k8d =5S
2nn!

2n8n8!
D1/2

sk − k8dn8−ne−sk − k8d2/4Ln
n8−nS sk − k8d2

2
D if n8 ù n,

S2n8n8!

2nn!
D1/2

sk − k8dn−n8e−sk − k8d2/4Ln8
n−n8S sk − k8d2

2
D if n ù n8.6 . sC2d

Neglecting LL mixing, we find the Schrödinger equation in
the quasiclassical limit

enk
0 cnk + eEdcs− id

]

]k
cnk = Ecnk sC3d

with

unEl = o
k

cnkunkl. sC4d

This is readily solved and gives the quasiclassical meander
states

cnk = c0n expH iE
0

k

dk8
E − enk8

0

eEdc
J . sC5d

To count the number of such states, we assume periodic
boundary conditions in thex direction cnk+Lx/lB

2 =cnk, and
thus swith l PZd

El =
2pleEdclB

2

Lx
, sC6d

whereEl is measured relative to the LL energy. As the ener-
giesEl fall into the rangeeEdcLy, the total number of states is
LxLy/2plB

2, in agreement with the LL degeneracy. Requiring
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1=knEl unEll, we find the normalized meander states

cnk = knkunEll =Î2plB
2

LxLy
expH iE

0

k

dk8
E − enk8

0

eEdc
J . sC7d

To verify that these states are indeed the meander states, we
evaluate the expectation value ofy= i] /]k, and find

knEluyunEll =
2plB

2

LxLy
o
k
S−

Enl − enk
0

eEdc
D = −

El

eEdc
sC8d

with Enl=vcsn+1/2d+El, in agreement with the classical ex-
pectation.

Following the same arguments as for the displacement
photocurrent in thex direction, the current in they direction
can now be expressed as

j y
photoI=

e

LxLy
o
nn8

o
El,El8

ugnEl→n8El8

v u2fȳsEl8d − ȳsEldg

3ffsEnld − fsEn8l8dgdsEnl − En8l8 − vd, sC9d

where the transition matrix element is given by

ugnEl→n8El8

v u2 = 2pukn8El8uTsunEllu2. sC10d

By carrying out the summation overn, n8 for vc@T@V we
get

j y
photoI=

e

LxLy

Dv

eEdc
o

El,El8

ugNEl→N+1El8

v u2dsEl − El8 + Dvd.

sC11d

The relevant transition matrix element is

ugNEl→N+1El8

v u2 = 2pSeERc

4Dv
D2

ukNEluUuNEl8l

− kN + 1EluUuN + 1El8lu
2. sC12d

After disorder averaging, the matrix element becomes

ukNEluUuNEl8l − kN + 1EluUuN + 1El8lu
2

=
1

2pnt
E d2q

s2pd2Uo
k

ck+qy

sEld*ck
sEl8deiqxsk+qy/2dU2

3e−q2/2fLN+1sq2/2d − LNsq2/2dg2. sC13d

Inserting this into the expression for the current, we obtain

j y
photoI=

e

LxLy

2pDv

eEdc
SeERc

4Dv
D2 1

2pnt

3E d2q

s2pd2e−q2/2fLN+1sq2/2d − LNsq2/2dg2

3o
El,El8

Uo
k

ck+qy

sEld*ck
sEl8deiqxsk+qy/2dU2

dsEl − El8 + Dvd.

sC14d

Performing the energy sums yields

o
El,El8

Uo
k

ck+qy

sEld*ck
sEl8deiqxsk+qy/2dU2

dsEl − El8 + Dvd

=
Ly

eEdc
UE dk

2p
eisV/eEdcdek

k+qydk̃ cossQk̃d+iDvk/eEdc+iqxsk+qy/2dU2

.

sC15d

The k sum can be turned into an integral which in the limit
Edc→0 can be evaluated in the stationary-phase approxima-
tion. This gives the result

o
El,El8

Uo
k

ck+qy

sEld*ck
sEl8deiqxsk+qy/2dU2

dsEl − El8 + Dvd

=
LxLy

s2pd2VlB
2

1

Fsin2 Qqy

2
− SDv

2V
D2G1/2. sC16d

Note thatEdc drops out of this expression. This can be inter-
preted as follows. The length over which the electron can
jump between meander lines is proportional to 1/Edc. On the
other hand, the electron density along the meander line is
proportional toEdc. Thus, the overall probability to jump is
independent of the dc electric field. In this way, we finally
arrive at

j y
photoI=

Dv

2pVlB
2Edc

SeERc

4Dv
D2 1

2pnt
E d2q

s2pd2e−q2/2fLN+1sq2/2d

− LNsq2/2dg2 1

Fsin2 Qqy

2
− SDv

2V
D2G1/2 sC17d

for the displacement photocurrent in they direction. Up to
the sums over Landau levels, this is just the expression for
the displacement photocurrent in they direction in Eq.s55d.
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