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Liquid antiferromagnets in two dimensions
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It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-
dimensional liquid crystals and even isotropic liquids of pointlike particles, in contradiction to what common
sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational
and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid
crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The
critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.
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Ferrofluids, i.e., suspensions of small ferromagnetic p
ticles in a carrier liquid, have been studied quite extensiv
@1#. These materials are really liquid superparamagnets w
out long-range magnetic order in the absence of an app
magnetic field. However, there is no fundamental reason w
true ferromagnetism should not exist in a liquid. The stro
short-range exchange interactions are not strongly affe
by the absence of crystalline order, as shown by the existe
of amorphous ferromagnets@2#.

The present paper addresses the question of whethean-
tiferromagnetic liquids, which one could call ‘‘antiferroflu-
ids,’’ are also possible. On first sight, the answer seems to
no. Common sense tells us that the huge frustration i
liquid destroys antiferromagnetic order. To construct an
tiferromagnetic liquid one would thus look for liquids th
partially retain structural order, i.e., liquid crystals. In fa
antiferroelectric liquid crystals have been studied extensiv
@3#. These materials consist of long, polar molecules so
antiferroelectric order appears rather naturally in their sm
tic phases.

The question we want to discuss here is whether liqu
~including liquid crystals! consisting ofspherical particles
with a spin degree of freedom can sustain antiferromagn
order. At least in two dimensions this is possible, as we sh
below. We consider two-dimensional~2D! systems, since in
two dimensions the theory of melting is much further dev
oped than in three. The relevance for three-dimensional
tems is briefly discussed afterwards. We introduce spin
isotropy to obtain a finite-temperature phase transiti
Specifically, we think of the antiferromagnetic order para
eter having eitherXY or Ising symmetry. In the first cas
there is a Berezinkii-Kosterlitz-Thouless~BKT! transition
@4# and the low-temperature phase has quasi-long-range
der. In the second case there is an Ising-type transition@5# to
a long-range-ordered phase.

Our arguments employ the theory of 2D melting dev
oped by Nelson, Halperin, and Young@6#, which is based on
the BKT renormalization group theory@4,7#. We first briefly
review this theory. Then we discuss melting of a lattice w
antiferromagnetic order for the normal case that antifer
magnetism is strongly frustrated by melting@8#. This sets the
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stage for the discussion of the possibility of antiferroma
netism in the liquid crystal formed upon melting. Surpri
ingly, for certain lattices melting can even produce anisotro-
pic liquid that retains antiferromagnetic order.

The Nelson-Halperin-Young theory@6,9# predicts two dis-
tinct melting transitions. The one at the lower temperat
separates a 2D solid with quasi-long-range translational
der from a liquid crystal with short-range translational b
quasi-long-range orientational order@10#. This transition is
due to the unbinding of pairs of dislocations. Dislocatio
are pointlike in 2D and can be thermally created in pairs
multiplets of vanishing total Burgers vector. Pairs of disloc
tions with opposite Burgers vector have an attractive lo
rithmic interaction, similar to vortex-antivortex pairs in th
2D XY model. The resulting BKT-type transition is chara
terized by a jump of Young’s modulus~the stiffness agains
tension!, which is finite and universal just below the trans
tion and zero above. In the liquid-crystal phase bound p
of disclinationsexist, which are defects of the orientation
order. This order is destroyed at a higher transition tempe
ture where disclination pairs unbind. Since their interact
is logarithmic in the presence of free dislocations, the tr
sition is also of BKT type. Note that one or both transitio
maybe replaced by a first-order transition.

What happens if the particles carry a spin with a tende
to order antiferromagnetically? We restrict ourselves to
partite lattices. Then the spins show Ne´el order in the clas-
sical ground state, if frustrating longer-range interactions
not too strong. For most simple lattices such as the squ
lattice elementary dislocations@11# frustrate the magnetic or
der, as illustrated by Fig. 1. There is a line of maxima
frustrated bonds ending at the dislocation. This line co
end at another dislocation of opposite Burgers vector. T
energy of such a pair islinear in their separation and the pa
is confined. This is indeed the case for Ising spins@12#. On
the other hand, for two-component (XY) spins Fig. 1 does
not show the lowest-energy configuration. Rather, the sp
relax to spread the frustration more evenly. In effect,
dislocation dresses withhalf a vortex~or antivortex! in the
Néel order@8#. The dislocation interaction is now again log
rithmic, but with a contribution from the half vortices. Th
interplay of dislocation-unbinding and magnetic transitio
in this case has been studied in Ref.@8#. It is obvious that
magnetic order cannot survive the dislocation unbindi
©2002 The American Physical Society03-1
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since free dislocations carry~fractional! vorticity and act like
free vortices@4,8#. Of course, the magnetic transitionmay
take place at alower temperature than the dislocation u
binding.

However, antiferromagnetism need not be destroyed a
lower melting temperature, if dislocations do not frustrate
magnetic order. One example is the honeycomb lattice.
elementary dislocation@11# does not frustrate the antiferro
magnet, as shown in Fig. 2. Since all possible dislocati
are superposition of elementary ones, none of them frustr
the order. Consequently, free dislocations above the lo
melting temperature do not carry vorticity and thus the ex
tence of free dislocations does not preclude antiferrom
netic ~long-range or quasi-long-range! order @13#.

When do dislocations not frustrate the magnetic ord
This is the case if their Burgers vectors connect two s
with the same spin direction, i.e., on the same sublattice.
Burgers vector can be any lattice vector of the lattice with
spins. Hence, all dislocations do not frustrate if any trans
tion by a lattice vector leaves the spins invariant. Or, in ot
words, if magnetic ordering does not reduce the set of tra
lational symmetry operations of the lattice. This is the ca

FIG. 1. Square lattice antiferromagnet with an elementary
location. The magnetic order is maximally frustrated along
heavy dashed line. ForXY spins this configuration is unfavorabl
and the spins will relax to spread out the frustration@8#. As the
result, the dislocation dresses with half a vortex.

FIG. 2. Honeycomb lattice antiferromagnet with an element
dislocation. Evidently the defect does not frustrate the magn
order and, consequently, does not dress with fractional vorticity
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for the honeycomb lattice, which already has a two-site
sis. On the other hand, for the square lattice the order red
the set of translations and dislocations exist that frustrate
magnetic order.

We now turn to the upper, disclination-unbinding tran
tion. For the honeycomb lattice, disclinations are charac
ized by the angle modulo 2p by which the bond angle
changes if one goes around the defect@9,14#. The elementary
disclinations@11# of the honeycomb lattice and the corr
sponding liquid crystal are62p/6 disclinations centered at
hexagonal plaquette. Thus, the defects have a five- or se
sided plaquette at their core, which obviously frustrates
magnetic order. Furthermore, there are paths of arbitra
large length around the defect that consist of an odd num
of bonds. For theXY model, the spins again relax to reduc
the energy and the disclinations dress with half vortic
Consequently, the magnetic transition temperature canno
above the disclination-unbinding temperature.

The next question is whether there are lattices for wh
neither dislocations nor disclinations frustrate the magn
order. The lattice in Fig. 3 satisfies the criterion for no
frustrating dislocations. Furthermore, elementary discli
tions with a change of the bond angle by62p/3 do not
frustrate either, as illustrated by Fig. 4. If the appearance
magnetic order does not reduce theorientationalsymmetry,
i.e., does not remove rotation axes or reduce their multip
ity, all disclinations are compatible with antiferromagne
order. In this case antiferromagnetic ordercan exist in the
isotropic liquid above the upper melting transition. There
another way to express the condition for the existence
non-frustrating dislocations and disclinations for bipart
lattices: Magnetic order in the isotropic liquid is possible
the corresponding lattice does havetwo nonequivalent sub
lattices, i.e., one cannot be mapped onto the other by a
translation or rotation or combination thereof. Then antif
romagnetic ordering does not reduce the lattice symmetry
higher temperatures the liquid should eventually loose
hidden order that is expressed by the nonequivalence of
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FIG. 3. A more complicated lattice. Here neither dislocatio
nor disclinations frustrate the magnetic order.
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subsystems. Note, however, that this cannot happen thro
disclination unbinding, but will probably take place at a firs
order transition.

Even if dislocations~or disclinations! do not dress with
vorticity, their energies depend on the magnetic order, si
part of the interaction is of magnetic origin. Conversely, d
to frustration of the magnetic interaction at larger distan
structural order affects the vortex energies. We now ar
why this subdominant coupling leaves the principal pictu
unchanged, focusing on dislocations and vortices. The in
action energy of dislocations is proportional to Young
modulus, which we expect to be a continuous function of
vortex density. Since the vortex density itself is a continuo
function of temperature through the vortex-unbinding tran
tion @4,15#, the parameters entering in the BKT theory
dislocation unbinding are continuous through the magn
transition. A similar argument can be made for the change
the vortex energy due to dislocations. If one tunes
strength of magnetic vs nonmagnetic interactions,
dislocation-unbinding and vortex-unbinding transitions th
cross in a tetracritical point and both the structural and
magnetic order show a universal BKT jump at this poi
This is drastically different from the normal case of, e.g.,
square lattice, where for strong magnetic interactions the
transitions merge into a single one, at which only one or
parameters shows auniversaljump @8#.

Next, we briefly commend on the low-energy collecti
excitations of liquids with antiferromagnetic quasi-lon
range order. First, there is the usual longitudinal acou
phonon branch. The liquid crystal phases differ from the i
tropic liquid in that they have massive topological exci
tions, i.e., the disclinations. In addition, forXY spins there is
a linearly dispersing spin wave mode in all liquid phases.
presence is one main characteristic of an antiferromagn

FIG. 4. The core of a12p/3 disclination for the lattice shown
in Fig. 3. The defect does not frustrate the magnetic order.
es
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liquid. This mode leads to the characteristic behavior of
magnetic susceptibility of an antiferromagnet@16#.

How can these considerations be applied to thr
dimensional systems? In three dimensions melting typic
proceeds by a first-order transition directly to the isotro
liquid. Nevertheless a dislocation-unbinding mechanism m
apply @14,17–19#. To obtain an isotropic liquid, disclination
also have to unbind@14#. They usually do so at the sam
temperature, but this does not invalidate our criterion
antiferromagnetic fluids. Note also that our arguments ne
took advantage of the two dimensionality. Thus it may
inferred that also in three dimensions antiferromagnetic
uids can exist if the underlying lattice hastwo inequivalent
sublattices.

Finally, we turn to possible experimental realizations.
soft 2D XY antiferromagnet is the Skyrmion crystal in th
quantum Hall system close to filling factorn51 @8,20–22#.
Skyrmions are topological excitations of the ferromagne
quantum Hall state, which carry a quantized electric char
Upon changing the filling factor away fromn51, the extra
charge appears in the form of Skyrmions. The in-plane m
netization of a Skyrmion has a vortexlike structure. Its dire
tion can be characterized by a singleXY angle u, which
couples antiferromagnetically@23,24#. The classical ground
states of the Skyrmion system are various lattice ty
@8,25#. One is a honeycomb lattice, albeit probably outside
the realistic parameter range.

A straightforward realization of an Ising pseudosp
model is a binary alloy~in 2D or three dimensional 3D!.
Another example is a system of vortices and antivortic
which are prevented from annihilating, e.g., by an additio
Coulomb repulsion. The vorticity then constitutes the Isi
degree of freedom. It has been suggested that such a vo
system is formed when holes are doped into the antife
magnetic cuprates@26,27#. These charged vortices migh
form a strongly anisotropic~stripe! crystal at low tempera-
tures@28,29,27#. It should be interesting to apply the ideas
the present paper to its melting@29#.

To conclude, we have shown that there is no fundame
reason why 2D, and possibly 3D, antiferromagnetic liqu
shouldnot exist. Their existence is determined by the stru
ture of the underlying lattice: If dislocations do not frustra
the antiferromagnetic order, antiferromagnetic liquid-crys
phases are possible. One example is the honeycomb la
If, in addition, disclinations also do not frustrate the ma
netic order, it can even survive in isotropic liquids. The cry
tal phase must have two inequivalent sublattices for this
be possible. The resulting ‘‘antiferrofluids’’ would suppo
spin waves with linear dispersion besides longitudin
phonons. It would be worthwhile to search for experimen
realizations of this new phase of matter.
ki,
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