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Universal spectral statistics of Andreev billiards: Semiclassical approach
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The symmetry classification of complex quantum systems has recently been extended beyond the Wigner-
Dyson classes. Several of the novel symmetry classes can be discussed naturally in the context of
superconducting-normal hybrid systems such as Andreev billiards and graphs. In this paper, we give a semi-
classical interpretation of their universal spectral form factors in the ergodic limit.
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I. INTRODUCTION

Based on early work of Wigner@1#, Dyson@2# proposed a
classification of complex quantum systems according to t
behavior under time reversal and spin rotations. The ergo
limits of the proposed symmetry classes are described by
Gaussian orthogonal, unitary, and symplectic ensem
~GOE, GUE, and GSE! of random-matrix theory. These wer
initially motivated by atomic nuclei and have since been
plied successfully to a large variety of systems, most nota
chaotic and disordered quantum systems@3#. More recently,
an additional seven symmetry classes have been ident
@4#, which are naturally realized in part by Dirac fermions
random gauge fields~chiral classes! @5# and in part by quasi-
particles in disordered mesoscopic superconductors@6# or
superconducting-normalconducting~SN! hybrid systems@7#.
The common feature of the new symmetry classes is a m
symmetry in the spectrum: ifE is in the spectrum, so is
2E. The corresponding Gaussian random-matrix ensem
differ from the Wigner-Dyson ensembles in so far as th
spectral statistics, while still universal, is no longer statio
ary under shifts of the energy due to additional discrete s
metries.

Much insight into the range of validity of the Wigne
Dyson random-matrix ensembles has been gained from
semiclassical approach to the spectral statistics of cha
quantum systems, based on Gutzwiller’s trace formula@8#. In
a seminal paper@9#, Berry gave a semiclassical derivation
the spectral form factor of chaotic quantum systems for
Wigner-Dyson ensembles, partially reproducing the res
of random-matrix theory and clarifying its limitations. In th
paper we provide such a semiclassical interpretation, ba
on Andreev systems, of a generalized form factor for
Gaussian random-matrix ensembles associated with the
symmetry classes termedC and CI ~the pertinent Gaussia
ensembles will be referred to asC-GE andCI-GE!.

There have been several attempts to apply semiclas
theory to SN hybrid systems@10–12#. Melsen et al. @10#
pointed out that the gap induced by the proximity effect in
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billiard coupled to a superconducting lead@Andreev billiard,
cf. Fig. 1~b!# is sensitive to whether the classical dynamics
the ~normal! billiard is integrable or chaotic. These autho
showed that the proximity-induced hard gap in the chao
case isnot fully reproduced by semiclassical theory, the re
sons for which have been discussed further in Ref.@11#. All
these systems have in common that due to the presenc
the superconductor the combined electron-hole dynamic
no longer chaotic even if the corresponding normal~nonsu-
perconducting! billiard is chaotic@13#. By contrast, we focus
here on a semiclassical approach to SN hybrid syste
where the combined electron-hole dynamics remains cha
even in the presence of the superconductor. Such sys
exhibit the universal spectral statistics of the Gaussia
random-matrix ensembles for the new symmetry classes.
identify the class of periodic orbits contributing to univers
features in the density of states near the Fermi energy
show that in this case, semiclassics reproduces the spe
statistics predicted by random-matrix theory.

II. UNIVERSAL SPECTRAL STATISTICS

We briefly summarize the pertinent random-matrix resu
for the Gaussian ensembles corresponding to the new s

FIG. 1. ~a! Andreev scattering with a perpendicular magne
field. ~b! Andreev billiard—a part of the boundary is connected to
superconductor where Andreev reflection~retroflection! takes place.
An example of a self-dual orbit is shown—the SN interface is
three times by an incoming electron and three times by an incom
hole. Each part of the trajectory is traversed twice in the sa
direction—once as an electron and once as a hole. The singly
versed orbit without electron-hole labels is a periodic orbit of t
virtual billiard and hits the SN interface three times.
©2003 The American Physical Society25-1



an
nl
th

m
ag
er
tr

lu

,

of

ed

h
th

sin
e
r

e
er
re
th
a

he
ing
or,

t
ior

of
n-

t-
ic
y

u-
is
ntu-
dic
he
ha-

that
all

the

ic

en
ag-
d
ng

in
s
pe
the

GNUTZMANN et al. PHYSICAL REVIEW E 67, 046225 ~2003!
metry classes. For the Wigner-Dyson ensembles~GUE,
GOE, GSE!, the average density of states is nonuniversal
random-matrix theory makes universal predictions o
about spectral fluctuations in the ergodic limit such as
correlation function

C~e!5^dr~E!dr~E1e!& ~1!

of the deviationsdr(E) of the density of statesr(E) from its
mean valuê r(E)&. A central quantity is the spectral form
factor

KWD~ t !5
1

^r&E2`

`

de e2 i et/\C~e!. ~2!

The ergodic limit of the new symmetry classes differs fro
the Wigner-Dyson case by the fact that even the aver
density of states has universal features close to the F
energym. Thus, in this case, we define a generalized spec
form factor by the Fourier transform of the expectation va
of the ~oscillating part of the! density of states:

K~ t !52E
2`

`

dE^dr~E!&e2 iEt/\, ~3!

where E is the energy~measured relative tom). For the
ensembleC-GE ~classC is invariant under spin rotations
while time-reversal symmetry is broken!, this form factor is
@7#

KC~ t !52uS 12
utu
tH

D . ~4!

Here,tH52p\rav is the Heisenberg time defined in terms
the mean density of statesrav sufficiently far from the Fermi
energy@the oscillating part of the density of states is defin
as dr(E)5r(E)2rav]. Semiclassicallyrav corresponds to
Weyl’s law. For the ensembleCI-GE ~classCI differs fromC
by invariance under time reversal!, the short-time expansion
is @7#

KCI~ t !5211
utu
2tH

1O~ utu2!. ~5!

Wigner-Dyson statistics can be applied even to a single c
otic system by exploiting a spectral average. By contrast,
new symmetry classes require an ensemble average
they have universal features in the vicinity of special en
gies ~Fermi energym). For billiards one may average ove
shapes.

Before entering into the semiclassical analysis for the n
symmetry classes, we briefly review the semiclassical d
vation of the usual spectral form factor of the GUE. The
one starts from the Gutzwiller trace formula that relates
oscillatory contributiondr(E) to the density of states to
sum over periodic orbitsp,

dr~E!5
1

p\
Re(

p
tpApeiSp /\. ~6!
04622
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Here,Sp denotes the classical action of the orbit,Ap denotes
its stability amplitude, andtp is the primitive orbit traversal
time. The explicit factortp arises because the traversal of t
periodic orbit can start anywhere along the orbit. Insert
this expression into the definition of the spectral form fact
and employing the diagonal approximation, one finds

KWD,diag~ t !5(
p

tp
2

tH
uApu2d~ t2tp!. ~7!

Finally, averaging over some time intervalDt and
using the Hannay–Ozorio-de-Almeida sum rule@14#

(p
tpP@ t,t1Dt#uApu25Dt/t one obtains the result

KWD,diag~ t !5
t

tH
~8!

valid for t0!t!tH , where t0 is the period of the shortes
periodic orbit. This result agrees with the short-time behav
of the spectral form factor predicted by the GUE.

III. SEMICLASSICAL APPROACH TO MAGNETIC
ANDREEV BILLIARDS

We now turn to Andreev billiards—the central theme
this paper. The novel element in SN hybrid systems is A
dreev reflection converting electrons into holes~and vice
versa! at the interface to the superconductor@see Fig. 1~a!#.
In this process, the incoming electron~hole! acquires a phase
2 ie2 ia (2 ieia), wherea is the phase of the superconduc
ing order parameterD @15#. In the absence of a magnet
field, electrons~holes! sufficiently close to the Fermi energ
(E!uDu!m) are reflected as holes~electrons!, which then
retrace the electron~hole! trajectory backwards~retroflec-
tion!. In chaotic billiards, essentially all trajectories event
ally hit any given part of the boundary. Thus, if the billiard
then coupled to a superconductor any quasiparticle eve
ally hits the superconducting interface, leading to a perio
orbit bouncing back and forth between two points on t
superconducting interface. It follows that a conventional c
otic billiard ~without magnetic field! that is coupled to a
superconductor has a combined electron-hole dynamics
is no longer chaotic. Instead, the resulting trajectories are
periodic, leading to nonuniversal behavior such as
proximity-induced hard gap@10,11# for time-reversal invari-
ant systems.

One expects to recover universal spectral statisticsonly if
thecombinedelectron-hole dynamics is chaotic and period
orbits are isolated as in conventional chaotic~hyperbolic!
systems. In Andreev billiards this occurs naturally wh
time-reversal symmetry is broken by a perpendicular m
netic field ~symmetry classC). In this case the retroflecte
hole~electron! does not retrace the trajectory of the incomi
electron~hole!, as electron and hole trajectories are curved
the same direction@cf. Fig. 1~a!#. This allows one to expres
the density of states semiclassically by a Gutzwiller-ty
trace formula as a sum over the isolated periodic orbits of
combinedelectron-hole dynamics of the Andreev billiard,
5-2
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dr~E!5
1

p\
Re(

p
tpApeiSp(E)/\1 ix. ~9!

The orbit amplitudesAp are products of electron and ho
contributions,

Ap5Ap
(e)Ap

(h) , ~10!

while the orbit actions are sums of electron and hole actio

Sp~E!5Sp
(e)~E!1Sp

(h)~E!. ~11!

The factortp again reflects the arbitrary starting point of th
orbit andx denotes the accumulated Andreev phases.

Coherent contributions to the form the factor can be
pected from periodic orbits that retrace the same trajector
the same direction with the roles of electrons and holes
terchanged. Suchself-dual orbits are invariant unde
electron-hole conjugation and the dynamical contributions
their action largely cancel due to the relationSp

(e)(E)5

2Sp
(h)(2E), so thatSp(E).Etp . Moreover, the amplitudes

of electron and hole are just complex conjugates of one
other, givingAp5uAp

(e)u2. The accumulated Andreev phase
(2 i )2s521 with s an odd integer. Keeping only the sel
dual periodic orbits—theself-dual approximation—we find

dr~E!sd52
1

p\
Re(

p
tpuAp

(e)u2eiEtp /\. ~12!

For the generalized form factor, this leads to

K~ t !sd522(
p:sd

tpuAp
(e)u2d~ t2tp!. ~13!

This expression reveals the similarity to the diagonal
proximation for the Wigner-Dyson form factors. Howeve
only one factor tp arises.

The Hannay–Ozorio-de-Almeida sum rule does not ap
directly to the sum over self-dual orbits~being a sum over
amplitudes of a subclass of periodic orbits!. To deal with this
difficulty, we introduce avirtual billiard with the same dy-
namics as the Andreev billiard except that there isno
particle-hole conversion at the SN interface. Thus, the virt
billiard is an ordinary chaotic billiard with unusual reflectio
conditions at the SN interface~retroflections!. Primitive pe-
riodic orbits of the virtual billiard involve either even or od
numbers of retroflections. Reintroducing electron-hole c
version, one observes that even orbits lead to non-self-
periodic orbits in the Andreev billiard. By contrast, twofo
traversals of odd orbits are periodic and self-dual in the A
dreev billiard as the roles of electron and hole are int
changed in the second traversal@see Fig. 1~b!#. We can now
interpret the sum over self-dual orbits in Eq.~13! as a sum
over odd orbits of the virtual billiard. Since on average h
of its orbits are odd, the Hannay–Ozorio-de-Almeida s
rule for the virtual billiard gives

(
p:sd

tpP[ t,t1Dt]

uAp
(e)u25

Dt

2t
. ~14!
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Thus

K~ t !sd521 ~15!

in agreement with the random-matrix result predicted
C-GE ~4! for short times. The self-dual approximation
expected to hold fort0 ,tA!t!tH where t0 is the traversal
time of the shortest periodic orbit andtA the Andreev time
~typical time until electron-hole conversion takes place!.

IV. SPECTRAL STATISTICS FOR ANDREEV GRAPHS

The semiclassical calculation of the form factor becom
particularly transparent and explicit for quantum grap
which were recently introduced@16# as simple quantum cha
otic systems. Introducing Andreev reflection as a new ing
dient, we showsemiclassicallythat the form factor of the
resulting Andreev graphtakes on the universal result. A
quantum graph consists of vertices connected by bond
particle ~electron/hole! propagates freely on a bond and
scattered at a vertex according to a prescribed scattering
trix. For definiteness, we discuss star graphs withN bonds of
equal lengthL. These have onecentralvertex andN periph-
eral vertices. Each bond connects the central vertex to
peripheral vertex~cf. Fig. 2!.

Andreev~star! graphs are obtained by introducing~com-
plete! electron-hole conversions at the peripheral vertic
while the central vertex preserves the particle type. T
quantization condition is

det„S~k!21…50, ~16!

with the unitaryN3N matrix

S~k!5SCLD2LSC* LD1L. ~17!

HereSC (SC* ) is the central scattering matrix for an electro
~hole!. For definiteness, we choose@17#

SC,kl5
1

AN
e2p ikl /N, ~18!

whereSC by itself does not break time-reversal symmet
The matrix

L5eikL1 ~19!

contains the phases accumulated when the quasipar
propagates along the bonds (k is the wave number measure
from the Fermi wave number!. Finally,

FIG. 2. Star graph with five peripheral vertices connected
superconductors.
5-3
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D652 i diag~e7 ia i ! ~20!

contains theAndreev phasesaccumulated at the vertices
where a i denotes the order-parameter phase at periph
vertex i. Time-reversal symmetry is obeyed if all Andree
phases are eithera i50 or a i5p, but is broken otherwise
Accordingly, we build ensembles corresponding to the sy
metry classesC ~uncorrelated Andreev phasesa i with uni-
form distributions in the interval@0,2p)) and CI ~uncorre-
lated Andreev phases taking valuesa i50 or a i5p with
equal probability!. Numerically computed ensemble ave
ages are in excellent agreement with random-matrix res
from C-GE andCI-GE, as shown in Fig. 3.

Following previous work on quantum graphs@16#, we
write the density of states ink space as

r~k!5rav1dr~k!, ~21!

with rav52NL/p and obtain the exact trace formula

dr~k!5
1

p
Re(

p
tpApeiSp1 ix ~22!

as a semiclassical sum over periodic orbitsp of the graph.
Here, periodic orbits are defined as a sequencei 1 ,i 2 , . . . ,i l
of peripheral vertices, with cyclic permutations identifie

FIG. 3. Form factors for classC ~top! and CI ~bottom! calcu-
lated numerically for a star graph~full lines! with N5100 bonds
~averaged over 50 000 realizations and a short-time intervalDt
!tH) and as obtained from the Gaussian random-matrix ensem
C-GE andCI-GE ~dashed lines! in dimensionless timet5t/tH .
The insets give the coefficientsKm as a function of ‘‘time’’m/N.
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Since the particle type changes at the peripheral vertices
sequences must have even lengthl 52m. The primitive tra-
versal ‘‘time’’ @18# of a periodic orbit istp54mL/r ~wherer
is the repetition number!, the stability amplitude isAp
51/Nm, and the action is

Sp54mkL1(
j 51

2m

~21! j 112p
i j i j 11

N
. ~23!

The accumulated Andreev phase is

x52mp2(
j 51

2m

~21! j 11a i j
. ~24!

Then, the form factor becomes

K~ t !52E
2`

`

dke2 ikt^dr~k!&5
tH

N (
m51

`

KmdS t2
m

N
tHD ,

~25!

with the Heisenberg timetH54LN. (^•& denotes the averag
over Andreev phases.! The coefficients can be written as
sum over periodic orbitspm with 2m Andreev reflections:

Km52(
pm

m

r
^ApeiSp(k50)1 ix&. ~26!

Km can be viewed as a form factor in discrete timem/N.
For graphs in classC, only those periodic orbits survive

the average over Andreev phases that visit each periph
vertex an even number of times—half as incoming elect
and half as incoming hole. In the self-dual approximatio
only those orbits contribute whose total phase due to
scattering matrix of the central vertex vanishes. As the ph
factors due to scattering between bondsi and j for electrons
and holes are complex conjugates of one another, this
quires that the periodic orbits contain equal numbers of s
terings from i to j as electron and hole. This leads to th
orbits sketched in Fig. 4: Anodd number of peripheral ver-
tices are visited twice, once as an electron and once as a
First, the peripheral vertices are visited once, alternating
tween electrons and holes, and subsequently the vertice
visited again in the same order but with the roles of electr

les

FIG. 4. Periodic orbits contributing in the self-dual approxim
tion ~atm55). The vertices in the diagram correspond to periphe
vertices of the original star graph, full and dashed lines repres
electron and hole propagation. In classC, only the left diagram
contributes. In classCI, the right diagram givesm additional con-
tributions as the turning point can be any of them vertices.
5-4
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and holes interchanged. Thus, these orbits have the s
structure as the self-dual orbits discussed above for the
dreev billiard. We haveAp51/Nm, Sp54mkL, and x
5mp. The number of such orbits of length 2m is Nm/m,
where the denominatorm reflects the identification of cyclic
permutations of peripheral vertices. With these ingredie
we find the short-time result

Km,sd
C 5211~21!m⇒K̄sd

C ~ t !521, ~27!

whereK̄(t) is the time-averaged form factor. This reproduc
the result predicted byC-GE.

For classCI, the average over the Andreev phases
quires only an even number of visits to each vertex. In
self-dual approximation, this leads to additional orbits~see
Fig. 4! and to the result

Km,sd
CI 5211~21!m~2m11!⇒K̄sd

CI~ t !521, ~28!

the leading order term for short times predicted by the c
responding random-matrix ensembleCI-GE.

V. ANDREEV BILLIARDS WITHOUT MAGNETIC FIELD

Finally, we come back to Andreev billiards without ma
netic field~classCI). As explained above~in Sec. III!, holes
necessarily retrace the electron trajectory, thus leading
nonisolated periodic orbits and nonuniversal spectral sta
tics ~hard gap!. Universal spectral statistics ofCI can, how-
ever, be found in such Andreev billiards withN one-channel
leads. The reason for this is that Andreev billiards withN
leads containing one channel each can be mapped to
graphs. The quantization condition for Andreev billiards w
N leads is@12#

det„S~E!21…50. ~29!

HereS(E) is theN3N Andreev billiard scattering matrix

S~E!5SNC~E!D2SNC* ~2E!D1 , ~30!

with SNC(E) the scattering matrix describing the coupling
the N channels by the normal region. The matricesD6 de-
scribing Andreev scattering in the leads are diagonal,D65
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2i diag(e7 ia i), with a specific Andreev phasea i for each
lead. Time-reversal invariance demandsa i50 or a i5p.
Then a detailed correspondence between billiard and
graph is obtained by substitutingLSCL→SNC(E) and
LSC* L→SNC* (2E) ~with a more general central scatterin
matrix!. Thus, the form factor of these billiards can be o
tained in the self-dual approximation in complete analo
with the star graph.

VI. CONCLUSIONS

We considered the universal spectral statistics for ergo
SN hybrid systems belonging to the new symmetry class
in the semiclassical approximation. While it was known th
semiclassics has problems in some types of Andreev sys
@10,11#, we showed both for billiards and for quantum grap
that the universal spectral statistics of the random-matrix
semblesC-GE andCI-GE as reflected by the appropriate
generalized form factor is correctly reproduced by semicl
sical theory. An important condition for finding the univers
spectral statistics is that thecombinedelectron-hole dynam-
ics of the Andreev system is classically chaotic. In particu
this requires that the hole does not retrace the trajector
the incoming electron. In classC, this is naturally the case in
magnetic Andreev billiards. We related the universal featu
in the density of states to self-dual periodic orbits, which a
invariant under electron-hole exchange. Our results cla
under which conditions to expect spectral statistics descri
by the novel random-matrix ensembles.

The results presented can be extended to the symm
classesD, DIII, and the chiral classes. We also note that o
results for Andreev graphs remain valid for a rather lar
class of central scattering matricesSC . Finally, by going
beyond the self-dual approximation in Andreev graphs, i
possible to extract the orbits contributing to the form fac
to linear order int ~weak localization corrections!. These
extensions will be discussed elsewhere@19#.
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