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Conductivity Tensor of Striped Quantum Hall Phases
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We study the transport properties of pinned striped quantum Hall phases. We show that, under quite
general assumptions, the macroscopic conductivity tensor satisfies a semicircle law. In particular, this
result is valid for both smectic and nematic stripe phases, independent of the presence of topological and
orientational defects such as dislocations and grain boundaries. As a special case, our results explain
the experimental validity of a product rule for the dissipative part of the resistivity tensor, which was
previously derived by MacDonald and Fisher (cond-mat/9907278) for a perfect stripe structure.

PACS numbers: 73.40.Hm, 72.10.–d, 73.20.Dx
Recent experiments [1,2] have revealed strikingly
anisotropic dc transport properties of very clean two-
dimensional (2D) electron systems when the Landau level
filling factor is close to n � N 1 1�2 and N $ 4 is an
integer. It is believed that this is related to previous theo-
retical proposals [3,4] that Coulomb interactions would
lead to an instability towards charge-density-wave (CDW)
formation in high, spin resolved, Landau levels (LL).
Specifically, formation of a striped phase of the upper-
most Landau level was predicted when it is close to half
filling, while a “bubble phase” should be favorable farther
away from half filling. The striped phase consists of one-
dimensional stripes alternating between the integer filling
factors N and N 1 1 with period of order of the cyclotron
radius Rc. In the bubble phase, clusters of minority filling
factor with size Rc order in a triangular lattice. These
predictions, obtained within the Hartree-Fock (HF) ap-
proximation, have also been supported by numerical exact
diagonalization studies [5].

At finite temperature and/or in the presence of disorder,
the perfect stripe ordering predicted by HF calculations
will presumably be destroyed. The unidirectional CDW
shares the symmetries of 2D smectic liquid crystals [6].
This implies that if there is no external force tending to
align the stripes, then a dislocation will cost only a finite
amount of energy and thus there will be a finite density
of dislocations at nonzero temperatures. This is expected
to destroy translational long-range order, except at zero
temperature, but preserve quasi-long-range orientational
order of the remaining stripe segments, characteristic of
a 2D nematic phase. The orientational order would be
effectively locked in by any small added anisotropy. As
the temperature becomes large enough, there will be a
Kosterlitz-Thouless transition to an isotropic state in which
the stripe segments lose their orientational order. Short-
range stripe order should disappear completely only around
the presumably much higher HF transition temperature.

Transport properties of the striped phases should be af-
fected by even small amounts of disorder on the substrate,
which will pin the stripe positions at low temperatures.
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Disorder should also lead to a finite density of disloca-
tions, even at zero temperature. Moreover, since the forces
aligning the stripes are believed to be very weak, steps or
other large-scale features of the GaAs-AlGaAs interface
may lead to large regions where the stripes are oriented
differently from the average preferred direction.

In the present paper, we focus on the transport proper-
ties of general striped quantum Hall phases, allowing in
particular for the presence of topological defects such as
dislocations and grain boundaries. Assuming that the de-
fects are pinned by disorder, we find under quite general
assumptions (specified below) that the macroscopic con-
ductivity tensor ŝ� satisfies the semicircle law
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metric matrix with eigenvalues s
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of (1) uses results obtained by Shimshoni and Auerbach
[7] for a model of a “quantized Hall insulator.”

Following Refs. [3,4] we assume that the system is made
up of regions (stripes or stripe segments) of filling factors
N and N 1 1, whose positions are fixed in space. The
N completely filled Landau levels contribute to the con-
ductivity tensor the pure Hall response N�e2�h�ê. The
contribution of the �N 1 1�th LL is due to the chiral edge
modes at the boundaries of each electron stripe (stripe of
filling factor N 1 1): transport occurs by motion along
the edge modes and by impurity scattering between them.
We assume that scattering occurs predominantly between
nearest-neighbor edges, at rates 1�te and 1�th across elec-
tron and hole stripes, respectively. Recently, MacDonald
and Fisher (MF) [8] have studied the transport proper-
ties of such a system, assuming a uniform, topologically
perfect stripe structure, with scattering rates te and th

that may depend on temperature, but are independent of
position. Neglecting quantum interference effects and tak-
ing the stripes along the y direction, they find for the
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conductivity tensor [8]
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with a the period of the CDW and yF the velocity of
propagation along the edge channels. MF noticed [8] that
at the symmetric point, where te � th, this leads to the
parameter-free predictions

sxxsyy � �e2�2h�2, (3)

sxy �
e2

h
�N 1 1�2� , (4)

independent of the period, Fermi velocity, or scattering
rate. If one assumes particle-hole symmetry in the partially
full LL, then the symmetric point will occur when the total
filling factor is N 1 1�2. The relation (3) seems to be in
reasonable agreement with the experiment [9].

In fact, the conductivity tensor (2) satisfies the more gen-
eral semicircle relation (1), which is valid also away from
the symmetric point. In the homogeneous case discussed
by MF, the macroscopic conductivity tensor is identical to
the local conductivity tensor, and we may write s

�
1 � sxx ,

s
�
2 � syy , and s

�
h � sxy .

Since, as argued above, the real samples are likely to
be quite far from the perfect stripe structure, it may be
surprising that the product formula (3) compares so favor-
ably with experiment. Moreover, we deduce from Eq. (2)
that for a perfect stripe structure the anisotropy at the sym-
metric point is syy�sxx � �yFte�a�2. The experimental
anisotropy in the conductivity is about five [1,10], which
would imply that the electrons hop between edges after
traveling only a distance of a few cyclotron radii along the
edge. For such a situation, quantum interference effects
should be important, particularly in view of the fact that
the experiments are performed at extremely low tempera-
tures, which could lead to deviations from the product rule
(3) and the semicircle law (1) [11].

In the following, we show in two different ways that the
semicircle and product rules embodied in (1) are in fact
valid for much more general stripe structures. This makes
the experimental results consistent with a picture where
electrons hop between edges much more rarely, while the
anisotropy is reduced by the presence of defects such as
dislocations and grain boundaries, which cause the local
orientation of the stripes to vary from one place to another.
In such a picture, neglecting quantum interference may
indeed be justified.

Consider a general stripe structure such as that shown in
Fig. 1. In this figure, shaded and unshaded regions repre-
sent incompressible states with filling factors N 1 1 and
N , respectively. The N filled Landau levels are pure Hall
2938
FIG. 1. Small sample of striped phase containing a disloca-
tion (A) and a large angle grain boundary (B-B0). Shaded and
unshaded regions are incompressible strips with filling factors
N 1 1 and N , respectively; arrows show direction of electron
flow on edge states, for positive magnetic field. Dashed lines
represent locations of scattering centers which cause electrons
to tunnel between adjacent edge states. Points x, x0, y, and y0

are contacts at the edge of the sample.

conductors carrying current in parallel to the �N 1 1�th
LL. We can then focus on the role of the uppermost LL by
interpreting the shaded regions in the figure as an incom-
pressible state with n � 1, while the unshaded regions are
insulators, with n � 0. At the end, we add the Hall con-
ductance Ne2�h of the filled levels.

For the uppermost LL, we now consider a situation
where a current I is passed between the contacts at x and
x0 and the voltage V is measured between contacts y and
y0. In general, V has contributions from both the Hall
and the dissipative resistivities.

The local current i along a stripe edge is related to
the local chemical potential m (measured relative to the
uniform equilibrium chemical potential) by

i � m sgn�B�e2�h . (5)

Neglecting quantum interference effects, each scattering
center between two adjacent electron stripes, indicated by
dashed lines in Fig. 1, can be characterized by a scattering
probability p. The currents entering and leaving a scat-
tering center (cf. Fig. 2a) are related by current conser-
vation i1 1 i2 � i3 1 i4 and by i3 � �1 2 p�i1 1 pi2
or i4 � �1 2 p�i2 1 pi1. Equivalently, by using (5) we
can characterize the scattering center by its resistance r �
�h�e2� �1 2 p��p, relating the voltage y � m2 2 m3 �
m4 2 m1 between edges to the current j � i3 2 i1 across.
In terms of the quantities j, y, and r , stripe structures such
as that shown in Fig. 1 can be viewed as a type of classical
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FIG. 2. Labeling of the current vertices of (a) a scattering cen-
ter across a hole stripe and (b) across an electron stripe, for
B . 0. The resistances of the scattering centers are denoted by
r. Any scattering center across an electron stripe as shown in
(b) can be replaced by the equivalent dual representation shown
in (c) in terms of a scattering center across a hole region with
resistance r 0. The resistances of the two junctions are related by
r 0 � �h�e2�2�r.

resistor network subject to Kirchhoff’s laws and Eq. (5)
relating currents and voltages on the edges.

We can “eliminate” the scattering events across elec-
tron stripes from the resistor network by using the follow-
ing dual representation. As indicated in Figs. 2b and 2c,
a scattering center across an electron stripe described by
j, y, r is equivalent to a scattering center between elec-
tron stripes described by j0, y0, r 0, where j0 � i4 2 i1,
y0 � m2 2 m4, and r 0 � y0�j0. This is equivalent to
the direct relations j0 � �e2�h�y, y0 � �h�e2�j, and r 0 �
�h�e2�2�r between unprimed and primed parameters. The
relation between r and r 0 can be simply understood by
noting that Fig. 2b maps onto Fig. 2c when p is replaced
by 1 2 p.

With this dual representation, the network is defined by
a set of puddles (of filling factor n � 1) each of which is
encircled by one chiral edge mode. Electrons can scatter
only between adjacent puddles as described by resistors
connecting the puddles. The network is planar in the sense
that there are no crossing resistor links between puddles.
The Hall voltage VH is even under simultaneous reversal
of magnetic field B and current I so that it can be dis-
tinguished from the longitudinal voltage by the definition
VH � �V �B, I� 1 V �2B, 2I���2. By the definition of the
network, the effect of changing the sign of B is to reverse
the directions of the arrows in the figure, thus changing
the sign in (5), while leaving unchanged the values of the
resistors r and r 0. This is consistent with the time-reversal
properties of the underlying microscopic Hamiltonian.

This resistor network (puddle model) has been studied
in the context of the quantized Hall insulator by Shimshoni
and Auerbach [7]. These authors prove that when quan-
tum interference between interpuddle hopping events is ne-
glected the Hall resistance RH � VH�I � h�e2. Then, if
the network is statistically homogeneous, but not isotropic,
and the sample is large compared to any correlation length
for fluctuations, we may adapt this result to our problem
and define macroscopic conductivity and resistivity ten-
sors for the uppermost LL, ŝu and r̂u. Let us choose
the sample to have a Hall-bar geometry, aligned with the
principal axes of r̂u. Then, using the Onsager symmetry
relations, we find

ru
yx�B� � 2ru

xy�B� � 2ru
yx�2B� � h�e2. (6)

This implies that det�ŝu� � su
xye2�h, and the components

of ŝu satisfy the semicircle law (1), with s
0
h � e2�2h.

Finally, if we add the parallel conductivity of the filled
Landau levels, the dissipative conductivity is unchanged,
but the Hall conductivity is shifted by Ne2�h, leading
to Eq. (1).

We emphasize that the essential assumptions entering
the proof are (a) the neglect of quantum interference [11]
and (b) the assumption that the network is planar. The
importance of the latter assumption can already be un-
derstood in the context of the perfect stripe structure. If
we violate the assumption by including hopping to next-
nearest-neighbor stripes, we find that this enhances the
conductivity in the x direction while leaving the diffusion
constant in the y direction unchanged. Thus, hopping to
next-nearest-neighbor stripes leads to deviations from, e.g.,
the product rule (3). Also, the rule will be invalid if the
temperature is so high that dislocations are unpinned, and
the stripe pattern itself can drift in the presence of an ap-
plied electric field. On the other hand, as in the analysis of
Shimshoni and Auerbach [7], it is not necessary to assume
that the resistances r and r 0 are Ohmic, i.e., independent
of the magnitude of the current. What is essential is that
the voltage across a resistor is reversed when the current
and the magnetic field are reversed.

It is possible to give an alternate (continuum) argument
for the validity of the semicircle law (1) for ŝ�. For this
argument, we assume that the most important role of de-
fects is to change both the local orientation of the CDW
and the local scattering rates between stripe edges. If the
defect density is not too high, these changes occur only
on scales large compared to the cyclotron radius and we
can describe the system by a local conductivity tensor
ŝ�r� whose principal axes and diagonal conductivities are
functions of position but which locally satisfies the semi-
circle law:

s1s2 1 �sh 2 s0
h�2 � �e2�2h�2. (7)

We now show, by an argument employing a duality
transformation introduced by Dykhne and Ruzin [12], that
the resulting macroscopic conductivity tensor satisfies the
semicircle law (1).

The microscopic current distribution J�r� is determined
by the equations

J�r� � ŝ�r�E�r� ,

= ? J�r� � 0 ,

= 3 E�r� � 0 .

(8)

Then the dual system J0, E0, ŝ0, defined by the trans-
formation

J � aJ0 2 bêE0, (9)

E � cE0 2 dêJ0 (10)
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with a, b, c, d arbitrary constants, satisfies the same set of
equations with ŝ0 � �a 1 dŝê�21�cŝ 1 bê�. The same
relation must hold for the corresponding macroscopic con-
ductivities ŝ� and ŝ�0, because the macroscopic currents
and voltages are just spatial averages of the microscopic
currents and voltages.

Following Dykhne and Ruzin [12], we now choose the
primed system as the time reverse of the unprimed sys-
tem, s

0
ij � sji , and solve for a, b, c, d in terms of ŝ.

Choosing d � 1 without loss of generality, one finds af-
ter some tedious but straightforward algebra that c � a
and b � s1s2 1 s

2
h 2 2ash with a remaining arbitrary.

This defines an allowed duality transformation if a, b, c, d
are constants, independent of position. Exploiting the
semicircle law (7), we choose a � c � s

0
h, so that b �

�e2�2h�2 2 �s0
h�2, independent of position. We can now

combine the duality relation between ŝ� and ŝ�0 with
the fact that the two systems are related by time rever-
sal, s

�0
ij � s

�
ji , and find that the macroscopic conductivity

tensor ŝ� satisfies the semicircle law (1).
It is an interesting question whether the experimental

validity of the product rule is specific to the CDW model
involving local stripe ordering with period comparable to
the cyclotron radius. For example, one might hypothesize
that close to half filling the system phase separates, on a
scale much larger than the cyclotron radius, into quantized
Hall regions with n � N and n � N 1 1, with only thin
boundaries between the regions. If the shapes of the re-
gions are elongated, with a preference for one particular
direction in space, one would find an anisotropic macro-
scopic conductivity tensor which would obey the semi-
circle law (1) under appropriate conditions. In such a
model, however, one obtains very small values of s

�
1 and

s
�
2 , except very close to the percolation threshold for the

two phases. Thus one would expect the transition between
Hall plateaus corresponding to n � N and n � N 1 1 to
occur in a very narrow interval of magnetic field, which
is contrary to experimental observations in the samples of
interest [1,2].

In order to interpret experimental results in terms of
an effective macroscopic conductivity tensor ŝ�, which is
anisotropic but spatially uniform, it is important that there
be reasonable equilibration between the edge states of the
filled LL and the electrons of the partially filled LL, at all
points on the sample boundary. If the density profile at the
sample edge is sufficiently gradual, however, the spatial
separation of the edge states may cause this equilibration
to fail at low temperatures. The use of an effective con-
ductivity tensor can be checked, in principle, by compar-
ing samples with different aspect ratios or different contact
locations.

The theory presented here does not address a number of
issues raised by the experimental observations [1,2]. The
mechanism which causes the stripes to line up preferen-
tially with a particular axis of the GaAs substrate is not
well understood. There is currently no explanation for the
2940
observation that the resistance anisotropy has a prominent
dependence on whether the Fermi energy is in the lower
or upper spin component of a LL. An explanation for
the observed nonlinearity in the resistivities has been pro-
posed by MF [8], involving quantum fluctuations of the
Luttinger-liquid type; however, there are not yet detailed
predictions for the full temperature and current depen-
dences which might be compared with experiment.

In summary, we have studied the transport properties of
general striped quantum Hall phases. Assuming that the
stripes are pinned by disorder and that scattering between
stripes can be considered classically, we have established
rather generally the validity of a semicircle law (1) for the
macroscopic conductivity tensor. Our results provide an
explanation for the experimental validity of the product
rule (3) which is a special case of (1). It would be very
interesting to check if the more general semicircle law (1)
is also obeyed in experiment.
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