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Doping Dependence of the Néel Temperature in Mott-Hubbard Antiferromagnets:
Effect of Vortices
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The rapid destruction of long-range antiferromagnetic order upon doping of Mott-Hubbard antiferro-
magnetic insulators is studied within a generalized Berezinskii-Kosterlitz-Thouless renormalization group
theory in accordance with recent calculations suggesting that holes dress with vortices. We calculate
the doping-dependent Néel temperature in good agreement with experiments for high-Tc cuprates. In-
terestingly, the critical doping where long-range order vanishes at zero temperature is predicted to be
xc � 0.02, independently of any energy scales of the system.

PACS numbers: 75.50.Ee, 05.10.Cc, 74.62.Dh, 75.70.Ak
The study of lightly doped Mott-Hubbard antiferromag-
netic insulators is of great current interest, since the insulat-
ing parent compounds of cuprate high-Tc superconductors
are of this type. The various parts of the phase diagram
of these compounds are believed to be intimately related.
Therefore it is important to understand the properties of
the antiferromagnetic phase, in particular the rapid destruc-
tion of magnetic order upon doping and the anomalously
small critical doping of xc � 0.02 holes per copper ion [1].
In the present Letter we derive the Néel temperature TN

as a function of doping using a generalized Berezinskii-
Kosterlitz-Thouless (BKT) renormalization group theory
[2,3] for the vortices in the antiferromagnetic state. There
are two types of vortices, thermally created electrically
neutral ones and electrically charged ones, which are cen-
tered at the holes. Both types are nucleated separately (as
vortex-antivortex pairs), but additively screen the vortex
interaction, with a common unbinding temperature TN �x�.
This temperature is indeed strongly reduced upon doping
and vanishes at xc � 0.02 independently of the energy
scales of the system. Our approach is independent of any
particular microscopic model and can thus serve as a guide
for electronic theories.

Our physical picture is the following: The holes
introduced by doping are mainly located at the planar
oxygen sites, where they frustrate the antiferromagnetic
exchange interaction between copper spins due to their
tendency to form copper-oxygen spin singlets [4,5]. This
may lead to ferromagnetic coupling between the two spins
[6]. Since the system is approximately two dimensional,
the staggered magnetization can form a vortex as sketched
in Fig. 1 to evenly distribute the frustration induced by
the hole. On the other hand, neutral vortices without a
hole in their core can be thermally created. Because of the
easy-plane Dzyaloshinskii-Moriya anisotropy [7], the stag-
gered magnetization can be described by a two-component
order parameter at low energies, leading to a logarithmic
size dependence of the single-vortex energy [8,9]. This
implies a logarithmic vortex interaction, making BKT
scaling ideas applicable. To describe the interplay of
charged and neutral vortices, which determines the Néel
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temperature TN , we have to extend the BKT theory to a
system with two kinds of topological defects. One impor-
tant point is that the density of charged vortices is given
by the doping x. The other is that we have to describe the
screening of the vortex interaction due to both types.

Electronic theory supports our picture: Within un-
restricted Hartree-Fock theory, Vergés et al. [8] found
several competing low-energy configurations for a lightly
hole-doped Hubbard model, including spin polarons,
domain walls, and holes dressed with vortices and anti-
vortices. In a spin polaron, the staggered local moments
in the vicinity of the hole are reduced but still collinear,
while in a vortex (antivortex) they rotate through 2p

(22p). Seibold [10] using a slave-boson approach and
Berciu and John [9] within a self-consistent Hartree-Fock
theory found that an even number of holes dress with vor-
tices and antivortices (or merons [9]) in the ground state
for appropriate parameters. Since the energy of a single
vortex diverges (logarithmically [3,8,9]) with system size,
whereas that of a vortex-antivortex pair remains finite,
only pairs are created in infinite systems.

FIG. 1. Schematic representation of a charged vortex induced
by a single hole at an oxygen site (black circle). The hole
frustrates the interaction between copper spins (arrows). The
circles denote oxygen atoms. A neutral vortex would be centered
on the square between four oxygen atoms and not have a hole
in its core.
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An advantage of BKT-type theories is that they include
fluctuations on all length scales, in particular on large ones,
which are crucial close to the phase transition. Previous
studies that included only fluctuating local moments with-
out correlations between them overestimated the critical
doping xc [11]. Similarly, the decrease of TN with x ob-
tained from the fluctuation exchange approximation is also
too slow [12]. By including correlations between neigh-
boring spins into a slave-boson theory for the three-band
Hubbard model, Schmalian et al. [5] obtained a critical
doping of xc � 0.025 in better agreement with experi-
ment. However, this approach takes only fluctuations on
the length scale of the lattice constant into account, but ne-
glects fluctuations on larger length scales.

In BKT theory the interaction of vortices is screened
by the polarization of vortex pairs lying between them
[2,3]. As the temperature is increased, more pairs are
thermally created leading to increased screening. At the
Néel temperature the screening becomes strong enough for
the largest pairs to break up. The resulting free vortices
destroy the magnetic order. The situation here is more
complex: First, we have to take account of the screening
due to both charged and neutral vortices, and, second, the
density of charged vortices is fixed by the doping level x.

Only neutral pairs are thermally created, whereas
charged vortices enter the system only upon doping. In
principle, one could imagine a single hole doped into
the system to form a pair consisting of a charged vortex
and a neutral antivortex or vice versa, but microscopic
calculations [8–10] do not find this configuration at
T � 0. Rather, two holes are needed to produce a
vortex-antivortex pair. For simplicity we assume this to
hold also at finite temperatures. However, even if mixed
pairs are not created upon doping, they are formed when
vortex pairs exchange partners.

The density of neutral vortices is controlled by their
chemical potential mneu or equivalently the vortex core
energy Ecore � 2mneu, which depends on details of the
copper-oxygen and copper-copper interactions and is
treated here as a parameter. The energy of a vortex-
antivortex pair is 2Ecore 1 V with the interaction [13]
V �r� � q2 ln�r�r0�, where q2 � 2pJS2 is the strength
of the interaction, J is the exchange interaction between
nearest neighbors, S � 1�2 is the spin, and r0 is the
small-distance cutoff of BKT theory. r0 can be interpreted
as the smallest possible vortex-antivortex separation
[2,3]. Two charged vortices additionally experience a
Coulomb interaction, which, however, is irrelevant in the
renormalization-group sense, since it falls off faster than
V �r� � lnr .

The probability of creating a neutral or charged vortex in
an area r2

0 is given by its fugacity yneu and ych, respectively.
Since we have assumed that vortices are created only in
neutral or charged pairs, we consider the pair fugacities
y2

neu and y2
ch. For the smallest possible neutral pairs of

size r0,
y2
neu�r0� � C2

neue2bmneu , (1)

where Cneu is a constant of order unity [2] and b is the in-
verse temperature. The constraint on the density of charged
vortices is implemented by choosing y2

ch�r0� in such a way
that their total density equals the hole density; see be-
low. The vortex interaction is screened by the polariza-
tion of smaller vortex pairs, V �r� � q2�e�r� ln�r�r0�. The
screening is described by the spin-wave stiffness K�r� �
bq2�2pe�r�. In the renormalization group, small pairs of
sizes between r and r 1 dr are integrated out and their ef-
fect is approximately incorporated into renormalized quan-
tities K�r�, y2

neu�r�, and y2
ch�r�. Starting from r � r0, this

operation is repeated for larger and larger pairs leading to
the recursion relations [2,14]:

dy2
h�dl � 2�2 2 pK�y2

h , (2)

dK�dl � 24p3� y2
neu 1 y2

ch�K2. (3)

The initial conditions are Eq. (1) and K�r0� � bq2�2p.
Equation (2) determines the fugacities of neutral (h �
neu) and charged (h � ch) pairs of size r � r0el . Two
separate equations for y2

neu and y2
ch are present, since we

assume that vortices are created either as neutral pairs or
as charged pairs with two holes. Both types feel the same
screened interaction V at large distances so that the same
stiffness K appears. Differences at smaller separation are
incorporated into the core energies. Equation (3) describes
the additional screening due to pairs of size r0el . Their to-
tal density is proportional to y2

neu 1 y2
ch.

If the stiffness K vanishes for l ! `, the interaction is
fully screened for large pairs (e ! `), which thus become
unbound, destroying the magnetic order. Since the inter-
action on large length scales is the same for neutral and
charged vortices, this unbinding happens at a single tran-
sition for both types. While solving Eqs. (2) and (3), we
have to simultaneously satisfy the constraint on the density
nch of charged vortex pairs. As shown in Ref. [15], this
density can be expressed in terms of the fugacity,

nch �
Z `

r0

dr 2pr
y2

ch�r�
r4 �

2p

r2
0

Z `

0
dl e22ly2

ch�l� . (4)

The pair density has to equal half the density of holes,
nch � x�2a2, where a is the lattice constant. In practice,
the recursion relations are integrated numerically to find
y2

ch�l�, from which we calculate nch. The initial value
y2

ch�0� is varied until the contraint is satisfied.
The resulting phase diagram is shown in Fig. 2. We

used Cneu � 1, J � 1800 K, and r0 � 2a, and varied
the core energy Ecore. The phase below the Néel tem-
perature TN shows quasi-long-range antiferromagnetic
order, which is made long range by the weak interlayer
exchange. The phase for T . TN or x . xc is charac-
terized by free vortices, which destroy the long-range
order, but leave short-range order on the length scale of
the separation between free vortices intact. Short-range
correlations have indeed been observed in cuprates up to
4995
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FIG. 2. Phase diagram for the antiferromagnetic phase of the
cuprates. The Néel temperature TN is calculated using four
values of the core energy Ecore of thermally created vortices.
Note that the curves for larger Ecore are very close to the one for
Ecore � 2q2. The symbol 3 at zero doping denotes the maximal
possible transition temperature.

much larger dopings. For T ! 0 we find the critical pair
density,

nc
ch � 0.042 73r22

0 . (5)

The numerical factor is universal: Since neutral vortices
do not exist for T ! 0, it cannot depend on Ecore and
Cneu. The remaining energy scale q2 does not enter the
result, since it is multiplied by the diverging b � 1�kBT .
While nc

ch and, thus, the critical doping xc � 2nc
cha2 are

independent of energy scales, they do depend on the non-
universal minimal separation r0 of two vortices which is
of the order of twice the core radius or twice the cor-
relation length. Slave-boson and Hartree-Fock calcula-
tions [9,10] show that the core radius is not significantly
larger than a lattice spacing a. In Fig. 2 we have taken
the core radius to be a so that r0 � 2a, which results
in xc � 0.021, in very good agreement with experiments
on La22xSrxCuO4 [1,16–18]. For Y12zCazBa2Cu3O6 ex-
periments find zc�2 � 0.03 [18], of the same order of
magnitude as our value of 0.021 (the number of holes per
copper atom is z�2 in this double-layer compound). For
YBa2Cu3O72d a critical hole concentration of 0.021 corre-
sponds to dc � 0.68, following Tallon et al. [19], in good
agreement with experiments [20].

In the high-temperature region of the phase diagram the
overall temperature scale is set by the maximal possible
Néel temperature Tmax

N � q2�4 � pJS2�2. For S � 1�2
this gives Tmax

N � 0.393J, compared to the mean-field re-
sult Tmf

N � 0.5J for a Heisenberg antiferromagnet on a
cubic lattice with interlayer exchange J� ø J . The re-
duction of TN is due to fluctuations, which are strong
for quasi-two-dimensional systems. The actual value of
TN �x � 0� and the shape of the curve TN �x� at small dop-
ing are determined by the core energy Ecore. Note, we
obtain the correct temperature scale under the reasonable
4996
assumption that Ecore is not very much smaller than the
interaction strength q2. Experimentally, TN is found to
depend only weakly on doping for small x [17], which re-
quires a small core energy. Then many neutral vortices are
created at a given temperature so that charged vortices be-
come relevant only at higher doping. Conversely, for large
core energy only a few thermal vortices are present even
at Tmax

N . For Ecore * 2q2 the curve TN �x� in Fig. 2 does
not change appreciably with Ecore so that the charged vor-
tices would determine the magnetic properties even at very
small doping.

Quantitative agreement with muon spin resonance
(mSR) and nuclear quadrupole resonance (NQR) experi-
ments on La22xSrxCuO4 by Borsa et al. [17] can be
obtained by appropriate choices of the exchange J, the
core energy Ecore, and the core radius r0; see Fig. 3.
For this plot, J � 2410 K, Ecore � 0.1303q2 � 493 K,
and r0 � 2.052a. Typical experimental values are
J � 1400 K [21]. This discrepancy may be due to the
simplified description of the anisotropic antiferromagnet
by two-component spins or to the neglect of the interlayer
exchange J� and the doping dependence of J .

We now briefly comment on electron-doped cuprates.
While we reproduce the correct critical doping for
hole-doped compounds, our approach would not yield the
much larger critical doping xc,e � 0.14 in electron-doped
cuprates [1]. The reason is that the additional electrons
mainly fill up the copper 3d orbitals and destroy the
magnetic moments at the copper sites. Thus, the main
effect of electron doping is to dilute the antiferromagnet.
There is no spin-singlet formation involved and, hence, no
tendency towards vortex formation. Then differently as in
the case of hole doping TN decreases due to spin dilution.

The validity of our approach is questionable if the
charged vortices become immobile. There is experimental
evidence that this happens below a crossover temperature
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FIG. 3. Comparison of the calculated Néel temperature for
Ecore�q2 � 0.13 (solid line) and results for TN from NQR
and mSR experiments for La22xSrxCuO4 (triangles) [17]. The
dashed line schematically shows the freezing temperature Tf
[18], below which the holes become immobile.
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Tf , which increases with doping and reaches about 16 K
in La22xSrxCuO4 for x � xc and falls off again for
larger x [18,22]. Tf is sketched in Fig. 3. Below this
temperature, the holes (charged vortices) form a glass and
their dynamics strongly slows down. The experimental
Néel temperature in this region should depend strongly on
the time scale of the experiment. On the other hand, the
true phase transition is governed by the behavior in the
limit of infinite time so that the formation of a glass below
Tf should affect it only weakly. The doping dependence
of Tf can be qualitatively understood in our picture: In
the magnetically disordered phase the logarithmic part
of the interaction of charged vortices is screened on the
length scale of the correlation length [2,3,15], which is
still large close to TN . Thus the interaction of charged
vortices (holes) changes smoothly at the transition and
decreases for larger doping, leading to similar behavior of
the freezing temperature Tf .

There are theoretical indications that the holes may form
one-dimensional stripes at low temperatures [23]. Model-
ing stripes by a phenomenological anisotropic Heisenberg
model, Castro Neto and Hone [24] calculated the Néel
temperature TN �x� within a renormalization-group scheme
and found good agreement with experiment. However,
in this theory the critical concentration xc is basically a
free parameter. Note, stripes formed by charged vortices
consist of alternating vortices and antivortices, in order to
lower the interaction energy. These stripes are automati-
cally antiphase domain walls [25], which are observed
experimentally.

In conclusion, by starting from the assumption that holes
doped into the Mott-Hubbard antiferromagnet dress with
vortices and using independently obtained values for the
exchange interaction and the antiferromagnetic correla-
tion length in the ordered phase, we obtain a doping-
temperature phase diagram for the antiferromagnetic phase
in qualitative agreement with experiment. In particular,
the predictions for the critical doping at zero temperature
and the Néel temperature at zero doping are of the ob-
served order of magnitude. Our approach uses a general-
ized BKT theory, which does not depend on any particular
microscopic model. With an appropriate choice of the core
energy of thermally created vortices we can obtain quan-
titative agreement with experiment. The core energy con-
trols the shape of the phase boundary at small doping, but
does not affect the region of higher doping, where the Néel
temperature approaches zero at a critical hole density that
is universal in natural units. Our results show that stripes
are not required to understand the data. The success of this
theory based on vortex fluctuations emphasizes the impor-
tance of two dimensionality for understanding the cuprates.
This should also hold in the more strongly doped supercon-
ducting region. It would be desirable to include the spin re-
arrangement around holes, which is induced by frustration
due to singlet formation, into an electronic theory of un-
derdoped cuprates. For the antiferromagnetic phase such a
theory should yield results similar to the ones shown here.
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