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Motivated by experiments, we study the sign of the Coulomb drag voltage in a double layer system in a
strong magnetic field. We show that the commonly used Fermi golden rule approach implicitly assumes a
linear dependence of intralayer conductivity on density, and is thus inadequate in strong magnetic fields.
Going beyond this approach, we show that the drag voltage commonly changes sign with density differ-
ence between the layers. We find that, in the quantum Hall regime, the Hall and longitudinal drag resis-
tivities may be comparable. Our results are also relevant for pumping and acoustoelectric experiments.
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Drag experiments in coupled two-dimensional electron
systems provide information on the response of a system
at finite frequency and wave vector and are thus comple-
mentary to standard dc transport measurements [1,2]. In a
typical drag experiment, a current is applied to the active
layer of a double-layer system and the voltage VD induced
in the other passive layer is measured, with no current al-
lowed to flow in that layer. In a simple picture of drag the
current in the active layer leads —via interlayer Coulomb
or phonon interaction —to a net transfer of momentum to
the carriers in the passive layer. At conditions of zero cur-
rent in the passive layer, this momentum transfer is coun-
teracted by the buildup of the drag voltage VD . In the cases
of two electron layers or two hole layers, the drag voltage
points opposite to the voltage drop in the active layer. This
is defined as positive drag. Negative drag occurs in sys-
tems with one electron layer and one hole layer [2,3].

Prior theoretical work on drag [2,4,5] was often based on
or reduced to a Fermi golden rule analysis (see, e.g., Zheng
and MacDonald [1]). In this analysis, the sign of drag does
not vary with magnetic field B, temperature T , or differ-
ence in Landau level (LL) filling factor n between the two
layers. By contrast, recent experiments at large perpen-
dicular B [6–8] observe that the sign of drag changes with
all of these parameters in systems of two coupled electron
layers —specifically in the Shubnikov–de-Haas (SdH) and
integer quantum Hall (IQH) regimes. Feng et al. [6] find
positive drag whenever the topmost partially filled LLs in
both layers are either less than half filled or more than half
filled. Negative drag is observed when the topmost LL is
less than half filled in one layer and more than half filled
in the other. Even more surprisingly, Lok et al. [7] main-
tained that the sign of drag was sensitive to the relative
orientation of the majority spins of the two layers at the
Fermi energy.

In this paper, we show that the use of the Fermi golden
rule approach is inappropriate in the SdH and IQH regimes
and that a more careful analysis opens different routes to
drag with changing sign. Remarkably, we find that Hall
drag can be of the same magnitude as longitudinal drag in
0031-9007�01�87(10)�106803(4)$15.00
these regimes. We emphasize that a naive rationale for the
experimental results of Feng et al.—which points to the
similarity between a less (more) than half-filled Landau
level and an electron(hole)-like band—leaves out essen-
tial physics of the problem. Finally, we compare our re-
sults to the existing measurements [6,7] and propose some
interesting experiments. We note that the sign changes
discussed in this paper apply for macroscopic samples in
contrast to those emerging as a result of mesoscopic fluc-
tuations, cf. Ref. [9].

We start from a general linear-response expression [2,9]
which relates the drag conductivity ŝD to the rectification
coefficients G�q, v� of the active and passive layers,

sD
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Z dv
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The drag conductivity gives the current response Jp in
the passive (dragged) layer via J

p
i � s

D
ij Ea

j to an applied
electric field Ea in the active layer. Its relation to the
commonly measured drag resistivity is clarified below. In
Eq. (1), U�q, v� is the screened interlayer (Coulomb or
phonon-mediated) interaction and the rectification coeffi-
cient G�q, v� is defined by [10]

Jdc �
X
q,v

G�q, v� jef�q,v�j2. (2)

In Eq. (2), Jdc is the dc current induced in quadratic re-
sponse to the driving force exerted by a screened potential
f�q, v� of wave vector q and frequency v.

The physical interpretation of the drag expression
Eq. (1) is that the voltage in the active layer creates an
asymmetry (between q and 2q) in the thermal density
fluctuations in that layer. These fluctuations are trans-
ferred to the passive layer —via Coulomb or phonon
interaction —where they are rectified to create a current.
In experiment, usually the drag resistivity r̂D is mea-
sured, which gives the electric field response Ep in the
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passive layer to a current Ja driven in the active layer
via E

p
i � r

D
ij Ja

j . For weak drag, it is related to the drag
conductivity by

r̂D � r̂pŝDr̂a, (3)

where r̂p�a� is the resistivity tensor of the passive (active)
layer.

A simple but instructive approach to rectification con-
siders situations in which current and field are locally
related, J�r, t� � 2ŝ�n�r, t��=f�r, t�, and the conductiv-
ity depends on position and time only through the lo-
cal density n�r, t� [11]. In addition to the current, the
perturbation f�q, v� also induces a density perturbation
dn�q, v� � 2P�q, v�ef�q,v� due to the polarizability
P�q, v�. Up to quadratic order in the applied potential,

J�r, t� � 2

∑
ŝ�n0� 1

dŝ

dn
dn�r, t�

∏
=f�r, t� . (4)

Taking the time and space average of the second term then
yields a dc contribution to the current given by

Jdc � 2
X
q,v

µ
dŝ

dn

∂
�P�q, v�ef�q,v�iqf�2q, 2v�� ,

(5)

or, equivalently, the rectification coefficient is given by

G�q, v� �
dŝ

d�en�
? q ImP�q, v� . (6)

At zero magnetic field, the conductivity is local when con-
sidering scales large compared to the mean free path �el,
implying that Eq. (6) holds in the diffusive regime defined
by q�el ø 1 [12]. At finite B, and for short-range disorder,
Eq. (6) is still valid in the diffusive regime vt, Dq2t ø

1, where D and t denote the appropriate diffusion con-
stant and scattering time. Indeed, we have checked this
[13] by an explicit diagrammatic calculation in the self-
consistent Born approximation (SCBA) [14]. Specifically,
once the magnetic field is strong enough such that the cy-
clotron radius Rc � h̄kF��eB� is small compared to �el and
for short-range correlated disorder, the conductivity is lo-
cal on scales larger than Rc, and Eq. (6) holds for qRc ø 1
[12]. Since Rc ø �el even for very small magnetic fields,
and since the diffusion constant decreases rapidly with the
application of a magnetic field, Eq. (6) is expected to be
applicable for a significant part of the wave-vector range
of the integration in (1) for typical experiments.

Using Eq. (6) in the general drag expressions, Eqs. (1)
and (3), one readily finds that, up to an overall positive
prefactor, the drag resistivity tensor becomes

r̂D � r̂p dŝp

d�en�
dŝa

d�en�
r̂a. (7)

This expression easily reproduces some standard results.
In the absence of a magnetic field, the tensor structure
is trivial. Observing that the conductivity increases (de-
creases) with increasing electron density for electron (hole)
layers, we recover that coupled layers with the same type
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of charge carriers exhibit positive drag, while coupled elec-
tron-hole layers have a negative drag resistivity. If the sys-
tem is strictly electron-hole symmetric, the derivative of
the conductivity with respect to density vanishes and, con-
sequently, there is no drag. Treating the conductivity in the
presence of a magnetic field in a simple Drude-type pic-
ture, ŝ depends linearly on the density en (so long as the
scattering time is taken to be density independent). Equa-
tion (6) then reproduces results of previous works [1,2,5]
that calculate drag in a Fermi golden rule or scattering time
approximation. In particular, in this approximation it is
immediately found from Eq. (7) that the drag resistivity is
diagonal and Hall drag vanishes identically. Finite Hall
drag can appear even in a Drude-type approximation once
the scattering time is taken to be energy and thus density
dependent [15].

Interesting new effects appear in the presence of a strong
magnetic field, in the SdH and IQH regimes, where the
derivative of sxx changes sign as the magnetic field or
Fermi energy is varied. While this is superficially quite
reminiscent of the experimental results of Refs. [6,7], the
details can be involved due to the many terms that con-
tribute, once the tensor products in Eq. (7) are multiplied
out. In the experimental samples, typically rxy ¿ rxx al-
ready at very small magnetic fields. Thus, up to an overall
positive prefactor,
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xx � rp

xy

Ω
ds

p
yy

d�en�
dsa

yy

d�en�
1

ds
p
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d�en�
dsa

xy

d�en�

æ
ra
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Generally, the derivative of the longitudinal conductivity
sxx changes sign in the SdH and IQH regimes, being
positive for less than half filling of the topmost LL and
negative for more than half filling. By contrast, the Hall
conductivity generally increases monotonically with n, and
its derivative is therefore positive.

It is not clear, a priori, which of the two terms in the
curly brackets of Eq. (8) dominates. We obtain an oscil-
latory sign of drag, similar to the experimental results in
Ref. [6] when dsxx�d�en� dominates over dsxy�d�en�.
However, if that were the case, drag would be negative for
equal filling of the two layers (because rxy � 2ryx), in
contrast to the experimental observations. Positive drag
for equal filling is obtained only when dsxy�d�en� ¿
dsxx�d�en�. Were that the case, however, there would
presumably be no sign changes of the drag resistivity. In
fact, in the IQH regime the derivatives of both components
of the conductivity tensor are experimentally of the same
order (both change by approximately e2�h in the region
of the plateau transition). While neither of the two limits
is therefore realized in experiment, it is clear that Eq. (8)
makes it difficult to obtain both positive drag for equal
densities and a drag sign that oscillates with the difference
in densities.

A striking consequence of Eq. (7) is that under con-
ditions where dsxx�d�en� and dsxy�d�en� are of com-
parable magnitude as expected in the integer-quantum-Hall
106803-2
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regime, the Hall drag is of the same order as longitudinal
drag. In fact, we have

rD
xy � rp

xy

Ω
ds
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d�en�
dsa
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d�en�
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d�en�
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æ
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Moreover, Hall drag generally changes sign with filling
factor difference between the two layers.

Although the experimental disorder potential is long
ranged, it is instructive to consider also the case of
short-range disorder, for which the SCBA [14] becomes
exactin the limit of high LLs [16]. Assuming that the dis-
order broadening is small compared to the LL spacing, the
conductivity tensor ŝ becomes [14] sxx � �e2�p2h̄� 3

N �1 2 ��EF 2 EN ��2g�2� and sxy � 2�en�B� 1 �e2�
p2h̄� �2g�h̄vc�N �1 2 ��EF 2 EN ��2g�2�3�2, where g

denotes the LL broadening, and the Fermi energy EF

is assumed to lie within the N th LL [of energy EN �
�N 1 1�2�h̄vc in the clean case]. Thus jdsxx�d�en�j ¿
jdsxy�d�en�j and dsxx�d�en� changes sign as a function
of filling—being positive for less than half-filled LLs and
negative for more than half-filled LLs. Neglecting the
derivatives of the Hall conductivity, one obtains for the
diagonal drag resistivity of an isotropic system,

rD
xx � Cxx�B, T�

ds
p
xx

d�en�
dsa

xx

d�en�
� rp

xxra
xx 2 rp

xyra
xy� ,

(10)

with Cxx a positive function. Thus, we again find the sur-
prising result that drag is negative for equal densities in the
two layers (since jrxy�rxxj $ p� . More generally, drag
oscillates with difference in density between the layers. It
is negative whenever the topmost occupied LLs in the two
layers are both less than half filled or both more than half
filled. It is positive if the topmost LL is less than half filled
in one layer and more than half filled in the other. More-
over, the Hall drag resistivity is comparable to the diagonal
drag resistivity also in this model situation. In fact, one has

rD
xy � Cxy�B, T�

ds
p
xx

d�en�
dsa

xx

d�en�
� rp

xyra
xx 1 rp

xxra
xy� ,

(11)

with Cxy � Cxx . Unlike before, this result is now a
consequence of the fact that rxx and rxy are of similar
magnitudes.

When the LL broadening is comparable to but exceeds
the LL spacing (vct , 1), we find [13] from a numerical
evaluation of the SCBA equations that, by contrast, the
derivative of sxy dominates over that of sxx while still
changing sign as a function of filling (for Ng�h̄vc ¿

1). However, in this limit, sxx dominates over sxy (and,
hence, rxx over rxy) so that, again, we find negative drag
for equal filling of both layers.

Experiments do not necessarily satisfy the condition
Dq2t ø 1 for the diffusive regime. Thus, we now turn to
a discussion of drag in the ballistic regime where Dq2t ¿

1. At zero B, Eq. (6) holds also in the ballistic regime [2].
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Indeed, Eq. (6) with ŝ given by the Drude expression is
also derivable within a Boltzmann approach which should
be valid for q�kF, v�EF ø 1 and at fields low enough that
SdH oscillations are absent [13]. Surprisingly, we find that
this is not generally true for higher magnetic fields. While
we have not succeeded in deriving a general expression,
analogous to Eq. (6), in this regime, we computed the rec-
tification explicitly in the high-magnetic field limit intro-
duced above.

Our calculation starts from the diagrammatic expression
for the rectification coefficient [2],

G�q, v� �
v

2pi
Tr�IG2eiqr�G2 2 G1�e2iqrG1� .

(12)

Here, G6 denotes the impurity-averaged Green function
in the SCBA, I is the current operator, and Tr the trace
over the single-particle states. The calculation is simplified
by the fact that vertex corrections can be neglected in the
ballistic limit.

Using standard results for the matrix elements of the
current and density operators between LL wave functions
and exploiting the small parameter g�h̄vc ø 1, we obtain
for the longitudinal rectification

Gk �

µ
2vRc

N

∂
J0�qRc�J1�qRc�

µ
dn
dm

∂2 dsxx

d�en�
, (13)

with Ji the ith Bessel function and N the LL number.
A similar calculation for the transverse rectification gives
G� � �1�vct�Gk or

G� �
2
3

µ
2vRc

N

∂
J0�qRc�J1�qRc�

µ
dn

dm

∂2 dsxy

d�en�
.

(14)

While both Gk and G� still include factors that can be
written as derivatives of the corresponding conductivity,
similar to the diffusive regime, the prefactors are no longer
equal to one another and cannot be expressed in terms
of the polarization operator P�q, v�. Remarkably, the
rectification in the ballistic limit also changes sign with
qRc due to the matrix elements of the density, in addition
to the sign changes of dŝ�d�en� discussed above. Note
that such behavior would be impossible in Eq. (6) since
the sign of ImP, being fixed by the sign of v, does not
change with q.

It is not obvious whether these additional sign changes
are reflected in the drag since the oscillating Bessel
functions depend on q which needs to be integrated
over to obtain ŝD [cf. Eq. (1)]. For Coulomb drag, the
screened interlayer interaction can be approximated by the
Thomas-Fermi result U�q, v� � pe2q��kakp sinhqd�
with ka�kp� denoting the Thomas-Fermi momenta of
the active (passive) layer and d the interlayer distance.
Thus, the v and q integrations in Eq. (1) factorize. One
observes that the q integration is not dominated by the
upper limit in the relevant region 1�Rc ø q ø 1�d, and
106803-3
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thus there are no additional oscillations from the matrix
elements in Coulomb drag. This result is also confirmed
by numerical evaluation.

For phonon drag, the situation is slightly different. Us-
ing a qualitative approximation [5], jU�q, v�j2 	 Kq3 3

d�v 2 qy� with y the sound velocity, the integrals in
Eq. (1) yield an additional factor T4�g�qT jRa

c 2 R
p
c j� 1

g�qT jRa
c 1 R

p
c j��, where qT � �T�TB�kF with TB �

2h̄ykF the Bloch-Grüneisen temperature (for typical
samples TB 	 10 K). Here, g�x� is a smooth func-
tion (which can be calculated analytically) that starts
with g�0� � 1 and decreases for small x crossing zero at
x 	 0.04, then reaching a minimum of g�0.075� 	 20.37,
then increasing monotonically and exponentially towards
zero. For all but the lowest temperatures, the term
involving jRa

c 2 R
p
c j dominates, and thus the overall

sign of the drag changes when qT jRa
c 2 R

p
c j � jna 2

np jT�TB 	 0.04.
In passing, we note that, while the sign changes of

G�q, v� with qRc in the ballistic limit seem to have only
minor consequences for drag, they should be observable in
other experiments of recent interest, namely, in pumping
[17] and in acoustoelectric experiments [11], which also
measure the rectification coefficient G�q, v� [18]. In
pumping experiments, a potential f�r, t� is applied to the
system which is typically made up of the sum of two poten-
tials oscillating out of phase f�r, t� � f1�r� cos�vt� 1

f2�r� cos�vt 1 d�. Because of the symmetries of G�q,
v�, the pumping current density is given by Jdc �
sin�d�

P
q G�q, v� Im�f1�q�f2�2q��. In acoustoelectric

experiments, acoustic waves sent through a (piezo-
electric) crystal apply an “external” electric potential
fext�q,v� to the electrons in the system with v � cq
and c the wave velocity. The driven electric current is
given precisely by Eq. (2), where f�q,v� � fext�q,v��
�1 2 y�q�P�q, v�� is the screened potential associated
with fext [y�q� denotes the bare Coulomb interaction].
We note that the acoustoelectric experiments of Ref. [11]
have been successfully analyzed using Eq. (6).

For the cases considered here, an oscillating sign of
drag is always accompanied by negative drag for equal fill-
ings. This apparent conflict with the experimental results
of Feng et al. might be resolved in one of the following
ways: (i) For long-range disorder and h̄vc comparable
to the LL broadening, the Hall conductivity might become
nonmonotonous, cf. Eq. (7) and the SCBA results. (ii) In
measurements, the large Hall drag resistivity might mix
into the measured drag response. On the other hand, a
simple-minded extension of our results to include the two
spin directions definitely fails to account for the apparent
spin dependence observed in Ref. [7]. We take this fail-
ure as an indication that the observations of Ref. [7] can-
not be explained by theories where correlations induced by
Coulomb interactions are neglected.
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In conclusion, we have considered drag in high LLs with
an emphasis on the sign of the effect. Remarkably, we find
that, both in the ballistic and the diffusive regimes, drag
in high LLs cannot be described by a widely used Fermi
golden rule expression [1]. Our analysis naturally opens
the possibility of sign changes of the drag resistivity as a
function of the filling factor difference between the two
layers. Moreover, it implies that Hall drag can be of the
same order as longitudinal drag in high LLs. Surprisingly,
we find that the sign of drag can be quite different from
naive expectations. In particular, in several regimes drag is
negative for two identical electron layers. We believe that
it would be particularly interesting to check experimentally
our predictions that Hall drag can be of the same order
as longitudinal drag and that the acoustoelectric current
in the ballistic regime changes sign as a function of the
wave vector.
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