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Coulomb Drag for Strongly Localized Electrons: A Pumping Mechanism
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The mutual influence of two layers with strongly localized electrons is exercised though the random
Coulomb shifts of site energies in one layer caused by electron hops in the other layer. We trace how these
shifts give rise to a voltage drop in the passive layer, when a current is passed through the active layer. We
find that the microscopic origin of drag lies in the time correlations of the occupation numbers of the sites
involved in a hop. These correlations are neglected within the conventional Miller-Abrahams scheme for
calculating the hopping resistance.
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coupling between the contacting strongly localized sys- and "10;20 �U > EF for the passive layer. Because of this
Since the subject was first introduced in pioneering
papers [1,2], Coulomb drag between two parallel elec-
tronic layers has commanded a lot of attention. Stimu-
lated by the early experiments [3,4], the development of
the theory proceeded in two directions: (i) progress on the
formalism for calculating drag between conventional two-
dimensional electron gases [5–11]; (ii) accommodation of
various realizations of interacting layers. These include
electron-hole layers [12–14], layers in the superconducting
state [9], electronic layers with tunneling links [15],
strongly disordered layers at the onset of Anderson local-
ization [16], diffusive layers with correlated disorder [17],
and double-layer systems in a perpendicular magnetic
field. In the latter case, the picture of drag depends on
the magnetic-field regime, namely, classically strong fields
[18], quantizing fields [19,20], the vicinity of the integer
quantum Hall transition [21], and the fractional quantum
Hall regime [22–25].

For all these interacting two-dimensional systems, the
theories of Coulomb drag shared the common scenario of
quasiparticles (electrons, holes, or composite fermions
[22–25]) in two contacting layers scattering off one another
in the course of ballistic motion, diffusion [7] or anomalous
diffusion [21]. This scattering results in a nonzero average
momentum transfer between the active (current-carrying)
and passive (open-circuit) layers. A voltage drop is then
induced across the passive layer to ensure the absense of a
net momentum.

Consider now the deeply insulating regime, where the
localization radius of electronic states is smaller than the
interelectronic distance. Obviously, the momentum is not a
good quantum number in this case, so that the conventional
scenario of Coulomb drag does not apply. In addition, the
picture of long-range time fluctuations of the electron
density, and thus the language of spatially averaged re-
sponse functions, is inadequate in the strongly localized
regime. This is because the electron motion is due to
hopping, which is characterized by an exponentially wide
spread in the local transition frequencies.

Instead of momentum exchange due to collisions, the
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tems is based on random shifts of energy levels in the
passive layer caused by electron hops in the active layer,
and vice versa. In this situation, it is not immediately
obvious how these shifts ‘‘communicate’’ the overall di-
rection of current from the active to the passive layer.

This question is addressed in the present paper. We find
that Coulomb drag in the strongly localized regime is due
to the correlated character of hopping transport. To clarify
this point, consider two neighboring sites, 1 and 2, which
belong to the current-carrying cluster [26]. At nonzero
temperature the time evolution, n1�t� and n2�t�, of the
occupation numbers of sites has the form of telegraph
noise. In equilibrium, the average K12��� � hn1�t�n2�t�
��i is an even function of �. Suppose now that current flows
in the direction 1 ! 2. Then we have K12��� > K12����
for � > 0. This reflects the fact that, as the hops within a
pair of sites occur preferentially from 1 to 2, the occupation
numbers change in a certain sequence. This asymmetry is
the analog of the current-induced asymmetry between
wave vectors q and �q of the thermal density fluctuations
in the metallic regime, and thus, it is responsible for
Coulomb drag between layers with strongly localized
electrons.

Note in passing that conventional theories of hopping
transport neglect the asymmetry in K12���. In both the
noninteracting and the interacting [26,27] cases, the resist-
ance of an elementary hop is usually computed under the
assumption of uncorrelated occupation numbers, i.e.,
hn1�t�n2�t0�i � hn1ihn2i although equal-time correlations
are sometimes taken into account [26,28].

To show how the preferential sequence in the change of
the occupation numbers transforms into drag we consider
the simplest possible model as illustrated in Fig. 1. Within
this model, the active and the passive layer are each
represented by a pair of sites (1 and 2) coupled to metallic
contacts (l and r). Both ‘‘active’’ and ‘‘passive’’ pairs of
sites can be either empty or singly occupied. The corre-
sponding conditions are "1;2 �U > EF � eV for the ac-
tive layer, where U is the Coulomb interaction between
two electrons on sites 1 and 2 and V is the applied voltage,
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FIG. 2. Schematic time evolution of occupations n1�t� and
n2�t� of levels 1 and 2, respectively, in the active layer under
conditions of a finite current.
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FIG. 1. Schematic drawing of (a) active layer with applied
voltage V and two localized states 1 and 2. U indicates the
Coulomb energy by which level 1 (2) is elevated if level 2 (1) is
occupied. (b) The passive layer also involves two localized states
10 and 20, but has no voltage applied.
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condition an electron occupying, say, site 2 elevates the
energy level of site 1 above the Fermi level, thus forbidding
the tunneling process l ! 1 (see Fig. 1). We will treat this
model first in the strongly nonlinear regime, in which the
temperature T is much lower than V. Subsequently, we will
consider the Ohmic regime, where V 
 T.

In the strongly nonlinear regime, we can neglect all
activation processes and thus, only a single sequence of
hops is possible in the active layer. Within this sequence,
the occupation numbers n1 and n2 of sites 1 and 2 undergo
the transformations �1; 0� ! �0; 1� ! �0; 0� ! �1; 0�. With
each repeated cycle of this sequence, an electron is trans-
ferred from the left to the right contact. The time evolution
of n1 and n2 during one cycle is illustrated in Fig. 2. The
strong asymmetry in K12��� is evident. The average current
through the active layer is equal to [29,30] hIai � e=��1 �
�2 � �3�, where �1, �2, and �3 are the average waiting
times for the transitions l ! 1, 1 ! 2, and 2 ! r, respec-
tively. In the strongly nonlinear regime, the current hIai is
independent of the voltage drop, V.

Consider now the response of the passive layer to a
single cycle of �n1�t�; n2�t��. In the configuration n1 � 1,
n2 � 0, the occupied site 1 elevates the level "10 by some
W1, and the level "20 by some W2 � W1 � �<W1.
Conversely, when n1 � 0, n2 � 1, the level "10 is elevated
by W2, while the level "20 is elevated by W1. (We define the
level positions "10 , "20 in the passive layer with respect to
an ‘‘empty’’ active layer, n1 � n2 � 0.) As we will see, the
pair 10, 20 is most ‘‘sensitive’’ when the conditions

EF > "10 �W1 > "20 �W2; (1)

"20 �W1 > EF (2)

are met. Indeed, by virtue of Eq. (1), the passive layer can
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only make the transition 10 ! 20 during the interval t1 <
t < t2 when site 1 in the active layer is occupied. This is
illustrated in Fig. 3(a). If the hop 10 ! 20 does take place,
then two transitions within the passive layer become pos-
sible during the next time interval t2 < t < t3: (i) the
electron on site 20 goes back to 10; cf. Fig. 3(b). This
transition is energetically favorable due to Eq. (2);
(ii) the electron tunnels from 20 into the right contact, r0,
emptying the passive layer. Since "10 �W2 <EF, this
opens the possibility for the hop l0 ! 10 (see Fig. 3(c)).

In the first case, there is no transfer of charge from the
left to the right contact in the passive layer during the cycle
in the active layer. In the second case, however, provided
that both transitions 20 ! r0 and l0 ! 10 took place during
the interval t2 < t < t3, the cycle in the active layer results
in the transfer of an electron from l0 to r0. This transfer is
nothing but the drag current.

This drag mechanism closely resembles the operation of
a classical electron pump [31–33] where two phase-shifted
rf signals are applied either to the barriers [31] or to the
gate electrodes [32,33] of a single or multiple quantum dot
structure. In contrast to adiabatic quantum pumping
[34,35], classical pumping is due to the Coulomb blockade,
which forces an electron to enter the dot from one contact
and to leave into the other contact during each rf cycle. In
hopping drag, the pulses n1�t� and n2�t� replace the rf
signals, with the phase shift determined by the direction
of current in the active layer.

We now turn to the calculation of the average drag
current, hIdi. Denote with T 1;T 2, and T 3 the waiting
times corresponding to the transitions l0 ! 10, 10 ! 20, and
20 ! r0 in the passive layer. The simple system considered
here mimics drag between two-dimensional hopping layers
when the transitions 1 ! 2 and 10 ! 20 constitute ‘‘bottle-
necks’’ for the transport in active and passive layer, re-
spectively, i.e., �2 and T 2 are the ‘‘long’’ waiting times. In
this limit we have hIai 
 e=�2. The calculation of hIdi is
greatly simplified if the ‘‘short’’ waiting times are related
as follows T 1 
 T 3 
 �3. The latter conditions ensure
that the passive layer returns to the ground state after each
106601-2
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FIG. 3. Variants of evolution of the level occupations in the
passive layer during a single cycle in the active layer.
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cycle in the active layer. Indeed, if the transition 10 ! 20

took place during the time interval t1 < t < t2 (the corre-
sponding probability is equal to p1020 � 1� exp���t2 �
t1�=T 2�, then the probability that, during the subsequent
interval t2 < t < t3, both transitions 20 ! r0 and l0 ! 10

take place is close to 1. This is because the characteristic
duration of this interval �t3 � t2� � �3 is much longer than
T 3 and T 1. In principle, the transition 20 ! r0 opens the
possibility for two followup hops, namely, l0 ! 10 and
r0 ! 20. However, since T 1 
 T 3, tunneling of an elec-
tron from the left contact onto site 10, thereby returning the
passive layer into its ground state, occurs before the back
hop r0 ! 20. Once the transition l0 ! 10 occurred, the
passive layer remains in the ground state until the end of
the cycle in the active layer t � t4 (see Fig. 2). Thus,
calculating the drag current reduces to averaging p1020

which yields

hIdi �
�2

�2 �T 2

hIai �
e

�2 �T 2

: (3)

Remarkably, the drag current is not exponentially small
compared to the current in the active layer. Instead, both
currents are of comparable magnitude. This result differs
clearly from naive predictions based on spatially-averaged
response functions such as a widely used Fermi-golden-
rule-type expression for the drag resisitivity [7].

In principle, hops in the passive layer might, in turn,
affect transport in the active layer. In particular, occupation
of site 20 shifts level 2 upward. As a result, the hop 2 ! 1,
in the direction opposite to the net current, might become
energetically favorable. The condition that such ‘‘feed-
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back’’ does not occur is "1 > "2 ��. As a concluding
remark on our simplified model, we note that for a given
polarity of voltage across the active layer (see Fig. 1) the
activationless drag exists only if "01 < "02.

We now turn to the linear regime V ! 0 where transport
in the active layer becomes more complicated in two
respects. First, charge-transfer processes become possible
in both directions, l ! r and r ! l, with only a small
difference in their frequencies due to the applied voltage.
Second, the dynamics involves ‘‘round-trip’’ processes
such as l ! 1 ! l or l ! 1 ! 2 ! 1 ! l that do not result
in charge-transfer between the contacts.

It is important to note that the traditional description of
hopping transport [26], based on the Miller-Abrahams net-
work, does not capture the realistic occupation dynamics of
the sites 1 and 2. Indeed, in this description, a pair of sites
is considered as an isolated system so that the characteristic
times for the changes in the occupations n1 and n2 are long
( � �2 in our notations). This is indeed the case for the non-
Ohmic regime considered above where an electron has to
spend a time ��2 at site 1 before the transition 1 ! 2 takes
place, since it cannot return to the contact l without acti-
vation. In the Ohmic regime, however, while the waiting
time, �2, is long, the occupation of sites 1 and 2, constitut-
ing a ‘‘bottleneck,’’ changes many times between succes-
sive hops 1 ! 2 (or 2 ! 1). In other words, a typical
charge-transfer process is preceded by many round-trip
processes.

As in the non-Ohmic regime, we restrict our consider-
ations to a particular domain of parameters for which the
analysis of drag is greatly simplified. We assume that
(i) the energies of both sites in the active layer are
above the Fermi level ("1;2 > EF). Thus their average
occupations are small, hn1�t�i; hn2�t�i 
 1, i.e., the states
1 and 2 are empty for long periods before an electron enters
for a time of the order of �1 or �2. In addition, we assume
for the passive layer that (ii) the sites 10 and 20 are sym-
metric in space, so that T 1 
 T 3, and close in energy
(within temperature). As a result, unlike the situation in
Fig. 3(a), the site 10 is also elevated above the Fermi level,
when the site 1 in the active layer is occupied. Finally, we
demand that (iii) the ‘‘long’’ time T 2 in the passive layer is
shorter than the typical time interval during which the
active layer is empty, but longer than the time when one
of sites 1 or 2 are occupied. The latter assumption implies
that an electron in the passive layer hops many times from
10 to 20 and back between successive round-trip processes
in the active layer. We also demand T 1;T 2 
 �1; �2.

In this limit, we find the remarkable result that the drag
current is simply half the current in the active layer. To
understand how this comes about, consider a single charge-
transfer process in the active layer, l ! 1 ! 2 ! r.
Imagine first that the passive layer is in the state n10 � 0,
n20 � 1 when the transition l ! 1 takes place. In this case,
nothing happens in the passive layer until the transition
1 ! 2 takes place, after which the passive layer will
106601-3
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undergo the transition 20 ! r0 in essentially all cases. This
will be immediately followed by l0 ! 10. The transition
2 ! r effectively returns the system to its initial state and
one electron has been transferred in both layers. As the
passive layer has a 50% chance of being in the state n10 �
0, n20 � 1 at the outset, this implies

hIdi �
1

2
hIai: (4)

Equation (4) assumes that there is no comparable drag
current when 10 is initially occupied in the passive layer.
In this case, l ! 1 causes the passive-layer transitions 10 !
l0 and then r0 ! 20, which are reversed after 1 ! 2 in the
active layer. For similar reasons, round-trip processes in
the active layer do not lead to a net drag current.

An actual sample in the deeply localized regime will
consist of a network of transresistors of the type described
above. Hence, we should compute the transresistance of
this network. This is by no means a trivial task, even if the
transresistances between elements of the conducting net-
works in active and passive layer are known. This can be
illustrated by considering the way in which transresistan-
ces combine when connected in sequence or in parallel.
These situations are readily analyzed in terms of
Kirchhoff’s laws. Two transresistors in sequence have a
transresistance equal to the sum of the individual trans-
resistances, R�1�2�

t � R�1�
t � R�2�

t , similar to ordinary resis-
tors. Two transresistances in parallel are less simple. Here,
one can show that

R�1k2�
t �

R1R0
1R

�2�
t � R2R0

2R
�1�
t

�R1 � R2��R0
1 � R0

2�
; (5)

where Ri (R0
i) denote the resistances of the active (passive)

layer of the ith transresistor. These expressions already
allow one to draw an important conclusion about the net
transresistance of the entire network. Even though the
resistances Ri and R0

i are exponentially large, adding trans-
resistances in sequence or in parallel does not lead to
exponential changes in the transresistance. In this sense,
the drag current is of comparable magnitude as the current
in the active layer, even for the entire network.

In conclusion, the analysis of particular realizations of
the active and passive layers, carried out in the present
paper illuminates the physics underlying the strong drag in
the localized regime. The discreteness of the hopping
electrons gives rise to Coulomb blockade, which, in turn,
opens the possibility of classical pumping.
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