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Universal Spectral Statistics in Quantum Graphs
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We prove that the spectrum of an individual chaotic quantum graph shows universal spectral
correlations, as predicted by random-matrix theory. The stability of these correlations with regard to
nonuniversal corrections is analyzed in terms of the linear operator governing the classical dynamics on
the graph.
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Fluctuations in spectra of individual complex quantum
systems (e.g., classically chaotic systems) are universal
and can be described by the Gaussian ensembles of
random-matrix theory (RMT). This statement, promoted
to a conjecture by Bohigas, Giannoni, and Schmit [1], has
been empirically confirmed in numerous experimental
and numerical analyses [2–4]. However, never so far
has it been possible to demonstrate analytically that spec-
tral fluctuations of individual [5] chaotic systems obey
RMT statistics. Important progress has recently been
made within the framework of periodic-orbit theory:
summing over orbit pairs of nearly identical action it
became possible to prove universality (agreement with
the predictions of RMT) first for a few [7,8] and then all
[9] coefficients of the short time expansion of the spectral
form factor. Unfortunately it is not known how to ad-
vance this semiclassical approach into the regime of
times larger than the Heisenberg time tH � 2� �h

�E (�E is
the mean level spacing).

Here, we apply different theoretical concepts to prove
universality (including the long time regime) for a family
of chaotic quantum systems, the so-called quantum
graphs [10]. Quantum graphs differ from generic Hamil-
tonian systems in that they are semiclassically exact (the
density of states can be represented in terms of an exact
semiclassical trace formula), while they do not possess an
underlying deterministic classical dynamics. Still they
display much of the behavior of generic hyperbolic quan-
tum systems; equally important, they are not quite as
resistant to analytical approaches as these.

In previous work, Berkolaiko et al. [11] developed a
perturbative diagrammatic language to analyze the semi-
classical periodic-orbit representation of spectral corre-
lation functions beyond the leading (‘‘diagonal’’) approx-
imation. In spite of the full knowledge of its building
blocks [11,12] a complete resummation of the perturba-
tion series has so far been elusive (not to mention that
such expansions are subject to the same limitations as the
semiclassical approaches mentioned above). In contrast,
our present approach avoids diagrammatic resummations.
0031-9007=04=93(19)=194101(4)$22.50 
We rather build on two alternative pieces of input, both of
which have been discussed separately before: (i) the exact
equivalence of a spectral average for a quantum graph
with incommensurate bond lengths to an average over a
certain ensemble of unitary matrices [10,13,14] and
(ii) the so-called color-flavor transformation [15], which
is an exact mapping of the phase-averaged spectral cor-
relation function onto a variant of the supersymmetric
� model. A subsequent stationary phase analysis then
leads to the RMT correlation function corresponding to
the symmetry of the graph. Finally, the spectrum of the
‘‘massive’’ fluctuations around the saddle point contains
quantitative information on the stability of RMT spectral
statistics with regard to nonuniversal corrections.
Deferring the discussion of other symmetry classes to a
separate publication [16], we consider graphs which are
invariant under both time reversal and spin rotation.

Let us begin by introducing our basic setting. A quan-
tum graph consists of V vertices j connected by B bonds
b. For the topology of the graph we assume that pairs of
vertices are connected by at most one bond and that no
bond starts and ends at the same vertex [17].We introduce
2B double indices �b; d�, where d � 1; 2 determines the
(arbitrarily defined) direction of propagation along b �
1; . . . ; B. Boundary conditions on the graph are set by the
fixed 2B-dimensional unitary matrix Sbd;b0d0 which de-
scribes the scattering of an incoming wave function on
bond b to an outgoing wave function on bond b0. Of
course, Sbd;b0d0 is nonvanishing only for bonds b and b0

connecting at a common vertex j. Time-reversal invari-
ance (T invariance) implies that ST � �dir

1 S�
dir
1 , where

�dir
i � ��dir

i �dd0 are Pauli matrices in the space of direc-
tional indices. The complete dynamical information on
the graph is carried by the 2B� 2B bond scattering
matrix S�k� � T�k�ST�k�. Here, the diagonal matrices
T�k� contain the dynamical quantum phases picked up
during propagation at fixed wave number k along the
bonds: T�k�bb0;dd0 � �bb0�dd0 expi kLb2 , where Lb is the
length of bond b and the twofold replication in direction
space expresses the independence of the dynamical
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phases on the direction of propagation. The concise for-
mulation of this fact reads as T :S�k� � �dir

1 ST�k��dir
1 .

The prime signature of chaotic dynamics on the graph
are strong non-Poissonian correlations in its discrete
spectrum fkng. The latter is defined by the condition
that S�kn� has a unit eigenvalue or, equivalently, by the
vanishing of ��k� � det	1 
 S�k�� at k � kn. (This con-
dition is equivalent [10] to the existence of an eigenvalue
of the bond Schrödinger operator canonically associated
to the scattering matrix. In this sense the spectrum fkng is
analogous to the discrete energy spectrum of a
Hamiltonian chaotic system.) Below, we explore the
two-point spectral correlation function R2�s� �
�2h��k s����k�ik 
 1, where ��k� �

P
n��k
 kn� is

the spectral density and h� � �ik � limK!1
1
K

R
K
0 dk�� � ��

is an average over the wave number parameter k. (� �
�=B �L is the average level spacing and L �

P
bLb=B is the

mean bond length.)
Universal behavior of the spectral correlation function

(agreement with the prediction RRMT
2 of RMT) can be

expected if the corresponding classical system is chaotic
(hyperbolic). What is the equivalent condition on a quan-
tum graph? An answer has been formulated by Tanner
[14] (see also [18]) in terms of the classical probability
Fbd;b0d0 � jSbd;b0d0 j2 � jS�k�bd;b0d0 j2 to get from �b0; d0� to
�b; d�. This ‘‘classical propagator’’ F has one eigenvalue
�1 � 1, corresponding to equidistribution in bond space.
The dynamics is mixing if, for large times, any initial
probability distribution converges to this distribution; i.e.,
limn!1�Fn�bd;b0d0 �

1
2B . This condition is met if all other

eigenvalues j�2;...;Bj< 1 lie inside the complex unit circle.
However, mixing dynamics alone does not suffice to
guarantee universality of a quantum graph [19]. An addi-
tional condition proposed by Tanner [14] states that in the
limit B!1, the spectral gap �g�maxb2f2;...;Bg�1
j�bj�
is constant or, at least, vanishes slowly enough �g � B
�.
Building on the so-called diagonal approximation (an
approximation that obtains its asymptotics of R2�s� for
large values of p) Tanner conjectured that universal be-
havior should be expected for values of the gap exponent
0 � �< 1.

In the following we show that quantum graphs indeed
show RMT spectral correlations (provided the condition
0 � �< 1=2 is met somewhat stronger than Tanner’s.) We
start out from the representation ��k� � �
1 
 1

� �
d
dk Im ln��k�; k � k i0 of the density of states in
terms of the spectral determinant [10]. Using this for-
mula, it is straightforward to verify that the two-
point function assumes the form R2�s� �

1
8�2 �

d2

djdj

jj�0Reh �j; j
�ik, where

 �j; j
� �
��k  pf�

��k  pb�

�
��k  p
f�

��k  p
b�

�
�

(1)

and p�b � ��s=2 
 j���, p�f � ��s=2  j���.
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Our analysis is based on the assumption that all bond
lengths Lb are rationally independent. It has been shown
[13] that under this condition the average over the pa-
rameter k is strictly equivalent to an average over B
independent phases ei�kLb=2� � ei"b :

hF 	T�k��ik � hF 	T�"��i"; (2)

where F is a smooth function of the bond-diagonal phase
matrix T introduced above.

In order to apply (2) to our present problem, we repre-
sent the fraction of determinants in (1) as a Gaussian
integral,  �

R
d� � ; �exp�
S	 � ; � 8�i�j 
 j
��,

where [20]

S 	 � ; � � � 
1 T�k�
T�k� �ST�

y

� �
 

 � 


1 T�k�y

T�k�y ST


" #
 
: (3)

Here,  � f a;s;x;d;bg is a 16B-dimensional supervector,
where a � � distinguishes between the retarded and the
advanced sector of the theory (determinants involving S
and Sy, respectively), s � f;b refers to complex commut-
ing and anticommuting components (determinants in the
denominator and numerator, respectively), and x � 1; 2 to
the internal structure of the matrix kernel appearing in
(3). Defining �bf

i as the Pauli matrices in superspace, the
matrices T� � T�2p��, i.e., T�, are diagonal matrices in
superspace containing the bond matrices T�2p�;b=f� in
the boson-boson/fermion-fermion sector. Using

��k p�
det	ST�2p��

� det
1 T�k�
T�k� 	ST�2p��y

� �
;

one verifies that the Gaussian integration over all compo-
nents of  indeed yields the determinant  .

As a second step, we subject the phase-averaged
 functional to a duality transformation known as the
color-flavor transformation [15]. In a variant adapted to
the present context [21], the transformation states that

hexp�
S	 � ; ��i" � hexp�
S0	 ��;���iZ; (4)

where h�i �
R
dZd ~Zsdet�1 
 Z ~Z���� and (matrix structure

in advanced/retarded space)

S 0
h

��;�
i
� ��1

1 Z
Z( 1

� �
�1 ��2

�ST�y ~Z(
~Z ST


� �
�2:

(5)

Referring to [21] for a short discussion of the underlying
technicalities, we here briefly explain the notation and the
physical meaning of the transformation (4). In (5), �1;2 �
f��1;2�a;s;t;b;dg are 16B-dimensional independent super-
vectors, where the index t � 1; 2 accounts for the time-
reversal symmetry of the model. Presently, all we need to
know about the variables � and �� is that they contain
elements of  and � as their components and fulfill
��1;2 � �T

1;2(. Here, we introduced the fixed supermatrix
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( � �dir
1 � (0, where (0 � �Ebb�

tr
1 
 iEff�

tr
2 � (�tr=dir

i
are Pauli matrices in the ‘‘time-reversal’’ index t and
direction index d; Ebb=ff are projectors on the bosonic/
fermionic sector of the theory). The newly intro-
duced integration variables Z � bdiag�Z1; . . . ; ZB� are
8B-dimensional block supermatrices with eight-
dimensional entries Zb � fZb;ss0;dd0;tt0 g. Finally, Z( �
(ZT(
1 is, in a generalized way, transposed to Z, while
Z and ~Z are independent.

What is the physical significance of the transformation
(4)? Figure 1 shows a cartoon of the retarded (upper line)
and advanced (lower line) wave function dynamics in the
system. During propagation, both states pick up random
scattering phases T (indicated by vertical dashed lines)
and suffer scattering from one bond to the other
(S matrix). The rapid succession of these events implies
wild fluctuations of the wave function amplitudes. Within
the field theoretical context, this translates to uncontrol-
lable fluctuations of the bilinears � ;s;x;d;be

i"b ;s;x;d;b

appearing in the action (3). In contrast, the field Z enters
the theory as � ��;s;t;d;bZb;ss0;tt0;dd0�
;s0;t0;d0;b, i.e., through
structures that couple retarded and advanced field ampli-
tudes (the ‘‘vertical’’ ovals in the figure). These ampli-
tudes generally interfere to form slowly fluctuating
entities (the basic principle behind the formation of uni-
versal correlations.) This indicates that the Z integral is
comparatively benign and, foreseeably, amenable to sta-
tionary phase approximation schemes. To promote this
expectation to a quantitative level, we integrate out the
�’s, thus arriving at the exact representation h ik �R
dZd ~Z exp�
S	Z; ~Z��,

S 	Z; ~Z� � 
str ln�1 
 ~ZZ�  1
2str ln�1 
 Z(Z�

 1
2str ln	1 
 �ST
�

y ~Z�ST�~Z
(�: (6)

To better understand this expression, let us consider its
quadratic expansion,

S �2�	Z; ~Z� � str�~ZZ
 1
2Z

(Z
 1
2T

y

S

y ~ZST ~Z(�: (7)

Void of nonlinearities [terms of O�Z4�], the action S�2�

describes the uninterrupted propagation of two ampli-
tudes along the same path in configuration space, i.e.,
the level of approximation underlying the diagonal ap-
proximation in semiclassical periodic-orbit theory.

This connection is made quantitative by noting that the
action S�2� possesses a family of approximately [up to
1+

1- 2- 1-

2+ 1+... ...

T T

T T

S

ZZ Z Z

S

FIG. 1 (color online). On the physical interpretation of the
color-flavor transformation. For an explanation, see the text.
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corrections of O�B
1�] ‘‘massless’’ configurations, or
‘‘zero modes’’ identified by �ZS�2� � � ~ZS

�2� � 0. Upon
substitution of the ansatz Zdd0 � �dd0Zd (configurations
not diagonal in direction space do not qualify as solu-
tions; see the discussion of deviations below) these equa-
tions assume the form

~Z � Z(; �1 
 F̂�Z � 0; (8)

where we have set the parameter matrices T� � 1 [22].
Owing to the fact that on a chaotic quantum graph the
classical propagator F̂ has only one eigenvalue 1, Eq. (8)
possesses the unique solution Zb;dd0 � �2B�
1=2�d;d0Y,
proportional to the invariant equidistribution. We define
Y( � (0Y

T(
1
0 , where the matrix (0 differs from ( by the

absence of the (now redundant) matrix �dir
1 . Technically,

the relation ~Y � Y( identifies �Y; ~Y� as generators of the
orthosymplectic algebra osp�4j4�.

To explore the contribution of these modes to the
theory, we set T�;b � 1  iLbp� (provided the bond
length fluctuations are not too large, Lb=L � O�B0�,
higher orders in the expansion may safely be neglected)
do the Gaussian integral over Y and differentiate with
respect to the source parameters j�. As a result we obtain
RGOE;diag

2 � 1=��2s2� which agrees with the s� 1
asymptotics of the RMT correlation function. This is
consistent with the observation that non-Gaussian contri-
butions to the expansion of S	Y� can no longer be ne-
glected once s & 1.

However, before going beyond the level of the Gaussian
approximation, let us briefly consider the role of nonzero
mode fluctuations. A glance at Eq. (7) shows that devia-
tions from the first of the two equations in (8) are penal-
ized by a large action S�2� � O�1�. Upon integration,
these modes produce a factor unity to the spectral deter-
minant. Similarly, due to the absence of multiple con-
nectivities and vertex loops, modes that are off diagonal
in the direction index d can be integrated out to give a
factor unity. To explore the more interesting role played
by deviations from the equation �1 
 F̂�Z � 0, let
us expand a general configuration Zb;dd0 � �dd0 �P2B
m�1 Ym+m;bd in the basis of eigenfunctions +m of the

operator F̂. Here, Ym are four-dimensional supermatrices
obeying the symmetry ~Ym � Y(m and the identification
Y1 � Y is understood. For T� � 1 the action of the 2B


1�B modes Ym>1 is given by 1
2

P
m�1
�m�str ~YmYm�

�g

2

P
mstr ~YmYm. Gaussian integration over these modes

obtains a contribution �
P
m	�=�1 
 �m��

2 � 1=�2
gB to

the spectral function. We conclude that the cumulative
contribution of the massive modes can safely be neglected

provided B�2
g !
B!1

0 [23]. (The same holds true for higher
order correlation functions, provided the order of the
function is smaller than B.)

Going beyond the level of the quadratic approximation,
we note that the saddle point equations �ZS � � ~ZS � 0
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of the full action (6) are still solved by the zero mode
configurations (8). While deviations from the zero modes
continue to be negligible (as long as B�2

g ! 1), the
action of the latter now reads

S	Y� � iBLstr	p

~YY=�1 
 ~YY� 
 pY ~Y=�1 
 Y ~Y��;

where we have rescaled Y ! �2B�1=2Y. To represent this
result in a perhaps more widely recognizable form, let us
define the 8 � 8 matrix

Q �
1 Y
~Y 1

� �
1 0
0 
1

� �
1 Y
~Y 1

� �

1
:

It is then straightforward to verify that the action S	Y�
assumes the form of Efetov’s [6] action for the GOE
correlation function

S 	Q� �
i�
2

str�Q.̂�; (9)

where .̂ � 
diag�p
b ; p


f ; p



b ; p



f �=�.

Summarizing, we have proven Tanner’s conjecture on
universal spectral statistics in large chaotic quantum
graphs. Our analysis was based on the assumption of
(i) incommensurate bond lengths, (ii) the absence of
multiple connectivities, (iii) moderate bond length fluc-
tuations, Lb= �L<O�B�, and (iv) weak scaling of the
spectral gap �g�B

�;0��<1=2 of the classical propa-
gator on the graph (which is stronger than Tanner’s ex-
pectation 0��<1). The conditions (i)–(iv) are met by
various families of graphs [11,14,18].

We have enjoyed fruitful discussions with Fritz Haake,
Sebastian Müller, Stefan Heusler, and Peter Braun. This
work has been supported by SFB/TR12 of the Deutsche
Forschungsgemeinschaft.
19410
*Electronic address: gnutz@physik.fu-berlin.de
†Electronic address: alexal@thp.uni-koeln.de

[1] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev.
Lett. 52, 1 (1984).

[2] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Phys. Rep. 299, 189 (1998).

[3] F. Haake, Quantum Signatures of Chaos (Springer,
Berlin, 2000), 2nd ed.

[4] For a discussion of some prominent exceptions to this
rule, see J. P. Keating, Nonlinearity 4, 309 (1991); E. B.
Bogomolny, B. Georgeot, M. J. Giannoni, and C. Schmit,
Phys. Rep. 291, 219 (1997).

[5] It has been known for some time [6] that ensembles of
disordered systems exhibit RMT statistics upon disorder
averaging.

[6] K. Efetov, Supersymmetry in Disorder and Chaos
(Cambridge University Press, Cambridge, 1997).

[7] M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M.
Sieber, J. Phys. A 35, L613 (2002); see also I. L. Aleiner
and A. I. Larkin, Phys. Rev. B 54, 14 423 (1996).
1-4
[8] S. Müller, Eur. Phys. J. B 34, 305 (2003); D. Spehner,
J. Phys. A 36, 7269 (2003 ); M. Turek and K. Richter,
J. Phys. A 36, L455 ( 2003).

[9] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland,
Phys. Rev. Lett. 93, 014103 (2004).

[10] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794
(1997); Ann. Phys. (N.Y.) 274, 76 (1999).

[11] G. Berkolaiko, H. Schanz, and R. S. Whitney, Phys. Rev.
Lett. 88, 104101 (2002); G. Berkolaiko, H. Schanz, and
R. S. Whitney, J. Phys. A 36, 8373 (2003); G. Berkolaiko,
Waves Random Media 14, S7 (2003).

[12] S. Gnutzmann and B. Seif, Phys. Rev. E 69, 056220
(2004).

[13] F. Barra and P. Gaspard, J. Stat. Phys. 101, 283 (2000).
The heuristics behind the proof is that for incommensu-
rate bond length, k � fexpi kL1

2 ; . . . ; expi kLB2 g defines an
ergodic flow on a B torus. This means that the k average
can be replaced by a configurational average over the
B torus, i.e., an average over B independent phases.

[14] G. Tanner, J. Phys. A 34, 8485 (2001).
[15] M. Zirnbauer, J. Phys. A 29, 7113 (1996); M. Zirnbauer,

in Supersymmetry and Trace Formulae: Chaos and
Disorder, edited by I.V. Lerner, J. P. Keating, and D. E.
Khmelnitskii (Plenum, New York, 1999).

[16] S. Gnutzmann and A. Altland (to be published).
[17] These technical assumptions simplify the analysis. We

believe them to be physically irrelevant.
[18] G. Berkolaiko, J. Phys. A 34, 319 (2001).
[19] For an example of a mixing graph with nonuniversal

spectral statistics, see G. Berkolaiko and J. P. Keating, J.
Phys. A 32, 7827 (1999).

[20] For a definition of the supersymmetric generalization of
the determinant ‘‘sdet’’ and the trace ‘‘str,’’ see [6].

[21] Some details on the derivation of the action (6): starting
from (3), we introduce enlarged fields according to
 � ! �� � 1��

2
p � T�; � ��

dir
1 �T and � � ! ��� � 1��

2
p � � �;

 T���
dir
1 � �bf

3 ��. The new fields depend on each other
through ��� � ��(, where the orthosymplectic trans-
position ( is defined in the main text. As a result,
the action assumes the form S � 2 ��1T�2 

2 ��
2T
y�
1  S0, where S0 is the T-independent con-

tribution and the indices 1; 2 refer to the x components of
�. To each of the B phase averages over ei"b 2 U�Nc �
1� we now apply the color-flavor transformation in a
variant �Nc � 1; Nf � 4�, i.e., for one color and four
‘‘flavors’’ (the latter labeled by t � 1; 2 and d � 1; 2),
which in practice means [15] that the phase action gets
replaced by S ! S0 � 2 ��1Z�
1  2 ��
2

~Z�2  S0,
where Z and ~Z are 8B-dimensional block matrices con-
taining 8 � 8 supermatrices Zb and ~Zb as independent
subblocks. We finally use relations such as ��
1Z�1 �
��1Z

(�
1 to symmetrize the action and arrive at (5).
[22] This simplification is justified because in practice (see

below) T� � 1 O�B
1�.
[23] In deriving this result, we have neglected the coupling of

the modes introduced by T�. However, for Lb=L �
O�B0�, this coupling leads to corrections to the action
of O�B
1� which are negligible.
194101-4


