
PRL 94, 076802 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 FEBRUARY 2005
Theory of Charge Sensing in Quantum-Dot Structures
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Charge sensing in quantum-dot structures is studied by an exactly solvable reduced model and
numerical density-matrix renormalization-group methods. Charge sensing is characterized by repeated
cycling of the occupation of current-carrying states due to the capacitive coupling to trap states. In
agreement with recent experiments, it results in characteristic asymmetric Coulomb-blockade peaks as
well as sawtooth and domelike structures. Temperature introduces asymmetric smearing of these features
and correlations in the conductance provide a fingerprint of charge sensing.
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FIG. 1. Conductance (solid line) through one connected state
with ten disconnected states as function of chemical potential.
(a) Intermediate coupling case: � � �1:08, t � 0:2, U � 0:16,
and em � �1:2� 0:02m (m � 1; . . . ; 10). (b) Strongly con-
nected case: � � �1, t � 0:5, U � 0:08, em � �1:24�
0:04m. Dotted curves: Conductances for fixed occupations nd �
0; . . . ; 10 of the disconnected states. As nd changes with 
, the
conductance (solid line) switches accordingly. Inset: Schematic
of the connected and disconnected dots.
Introduction.—Within the orthodox picture of the
Coulomb blockade, subsequent Coulomb-blockade peaks
are due to the filling of consecutive single-particle states
[1]. Once a state is filled, it remains so. Although this
picture successfully describes various transport properties
of weakly coupled nanoscopic systems, there has been
much interest in identifying situations in which the ortho-
dox picture fails and a ‘‘dynamical’’ behavior of the occu-
pations of single-particle orbitals emerges.

One of the earliest pertinent examples was pointed out
by Kuznetsov et al. [2] who considered the filling of
localized states in a barrier. They have shown that as the
gate voltage increases, a localized state may first fill and
then vacate, once a different localized state is occupied.
This behavior is manifested in the conduction through the
barrier by the reappearance of the same conduction peak. A
new wave of interest was motivated by the correlations
observed in the transmission phase through a quantum dot
[3]. An attractive explanation for these correlations is that a
number of successive transmission peaks through the dot is
carried by the same state [4–6]. This, of course, requires
the population of this state to be repeatedly cycled. Various
mechanisms, which lie beyond the orthodox picture, have
been proposed [4–6].

In this paper, we show that repeated filling of a single-
particle state is in fact a rather generic phenomenon. We
find that it occurs whenever there exist traps in the system,
either by accident or by specific design of a quantum-dot
structure. This phenomenon has been seen by Lindemann
et al. [7] and in tailored structures by Johnson et al. [8] and
Kobayashi et al. [9]. Consistent with these experiments, we
observe that repeated filling of a given single-particle state
as a function of gate voltage can be reflected in the con-
ductance in many different ways, ranging from essentially
no signature to sawtooth or domelike structures to asym-
metric Coulomb-blockade peaks. The underlying mecha-
nism termed charge sensing in Ref. [8], is based on the
capacitive coupling between the traps and the conducting
channel.
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We first obtain our results within a reduced, exactly
solvable model which captures the essential features of
the phenomenon. As a by-product we show how the
mechanism previously proposed by Silvestrov and Imry
[6] is a limiting case of our more general approach. Relying
on numerical results obtained by a density-matrix
renormalization-group (DMRG) method [10,11], we sub-
sequently discuss how our results are modified when relax-
ing various restrictions of the exactly solvable model.

Model.—Motivated by the experiment of Ref. [8], we
consider a reduced model of the charge-sensing setup as
shown in Fig. 1. A quantum dot is coupled to two leads.
This connected quantum dot is coupled electrostatically to
a disconnected dot in its vicinity. Within our reduced
model, we make the following assumptions: (i) There is
no tunneling between the disconnected dot and the leads or
2-1  2005 The American Physical Society
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the connected dot. (ii) Transport through the connected dot
is carried by a single state. (iii) The disconnected dot may
have many single-particle levels. We emphasize that this
model may also represent a quantum point contact with
nearby traps, as well as transport through a single quantum
dot in which one state is much more strongly coupled to the
leads than the others [6,7]. In the latter case, transport
through the weakly coupled states does not contribute
significantly to the conductance. Instead, the weakly
coupled states predominantly affect the system through
their capacitive coupling to the well coupled state and
may thus, to leading order, be thought of as trap states.

Our reduced model is defined by the Hamiltonian

H � Hdots �Hleads �Hmix: (1)

Here, the Hamiltonian Hdots of the dots involves the level
energy � of the connected dot (with creation operator 
y)
and em of the disconnected dot (with creation operator dym)
together with the charging energies Ud and Um for the
disconnected dot and for the mutual capacitive coupling of
both dots. For simplicity, we will assume these charging
energies to be equal. For spinless electrons this gives
Hdots��
y
�

PNd
m�1emd

y
mdm�U�nd�nd�1�=2�n
nd�,

where n
 � 
y
 and nd �
PNd
m�1 d

y
mdm. The lead

Hamiltonian is Hleads �
P
k;��L;REk�c

y
k�ck� and the tun-

neling between lead and connected dot is described by
Hmix �

P
k�tk�


yck� � H:c:
Generally, Eq. (1) is a many-particle Hamiltonian. Note,

however, that there is no charging term for the connected
dot since it can be only singly occupied. When combined
with the assumption of no tunneling to and from the dis-
connected dot, this fact makes our reduced model exactly
solvable. Since the occupations hdymdmi of the
disconnected-dot states can only take on the values 0 or
1, we can treat these operators as c numbers in the
Hamiltonian Eq. (1). Thus, the Hamiltonian can be re-
garded as a set of 2Nd single-particle Hamiltonians, one
for each possible set fnmg of occupation numbers dymdm,

Hfnmg � ���Und�
y
�
X
m

emnm �Und�nd � 1�=2

�Hleads �Hmix: (2)

The corresponding thermodynamic potentials at a given
chemical potential 
 and zero temperature are

�fnmg � Hfnmg �
�
y
� nd �
X

k;��L;R

cyk�ck��: (3)

The ground state occupation fnmg of the dots can now be
found by determining the configuration with the lowest
thermodynamic potential. Since �fnmg is a single-particle
thermodynamic potential, this can be done by calculating
�fnmg for all 2Nd possible configurations.

Analytical treatment.—Focusing on the essential phys-
ics, we present a full analytic treatment of the thermody-
namic potentials in Eq. (3) for a single disconnected state
of energy e1. The extension to several disconnected states
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is straightforward. For a single disconnected state, there are
two different possibilities nd � 0 and nd � 1 with corre-
sponding thermodynamic potentials �0 and �1. As the
chemical potential (gate voltage) 
 increases, the discon-
nected state will be filled at 
 � 
switch when the condi-
tion �0 � �1 is fulfilled. This switch in the occupation of
the disconnected state is accompanied by an abrupt change
in the occupation of—and hence the conductance
through—the connected dot. It is this general phenomenon
that is referred to as charge sensing. We now proceed with
a quantitative analysis.

The Hamiltonians H0 and H1, associated with empty
and occupied disconnected state, respectively, are
single-particle Hamiltonians with eigenstates j 0

j i and
j 1

j i and eigenenergies f�0j g and f�1j g. Thus, we can define

the density of states on the connected dot �0�1��"� �P
jh 

0�1�
j j
y
j 0�1�

j i��" � �0�1�j �, and on the leads

N 0�1��"� �
P
jh 

0�1�
j j

P
k�c

y
k�ck�j 

0�1�
j i��" � �0�1�j �. We

now express the thermodynamic potentials as

�nd ��e1�
��nd;1�
Z 


�1
d"�"�
���nd�"��N nd�"��:

Assuming that the density of states of the lead varies on
scales large compared to both U and the width � of the
connected state, we can write �0�"� � ��=2����"� ��2 �
��=2�2��1 and �1�"� � �0�"�U�. Moreover, a finite set
of disconnected states leaves the continuum of lead states
essentially unaffected so that N 0 � N 1. Thus, we obtain

�1 ��0 � e1 �
�U=2�

� �
�

arctan
�
2�
� ��

�

�

�

�U� �

�
arctan

�
2�
�U� ��

�

�

�
�

4�
ln
�
�
�U� ��2 � ��=2�2

�
� ��2 � ��=2�2

�
(4)

upon performing the integration.
We first consider the limit of a weakly connected dot for

which the distances of the connected-dot energies from the
chemical potential ��
 (for nd � 0), and ��U�

(for nd � 1) are large compared to the level width �.
Then, Eq. (4) simplifies to �1 ��0 ’ e1 � �� ��=2���
ln�j
� ��Uj=j
� �j�, in agreement with the many-
body perturbation theory result of Silvestrov and Imry [6].
This implies that the switching occurs on the Coulomb-
blockade plateau (hn
i is an integer); hence there is no
effect on the conductance at 
switch. However, the switch
leads to repeated appearances of the same Coulomb-
blockade peak [6].

We now turn to the situation when the broadening � is
comparable (intermediate coupling) or larger (strongly
connected) than the distances of the dot energies from
the chemical potential 
. In these cases, the perturbation
theory of Ref. [6] fails, while our general solution Eq. (4)
still applies. Specifically as 
 sweeps across 
switch from
2-2
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FIG. 2 (color online). Conductance as a function of overall
chemical potential 
 and external gate voltage Vg for the
disconnected states (see inset in Fig. 1). Connected state: � �
0; disconnected states: em � �0:55� 0:05m (m � 1; . . . ; 5),
U � 0:1, and t � 0:2.
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below, the occupation of the connected-dot state decreases
abruptly from n
 � 1=2� arctan�2�
switch � ��=��=� to
n
 � 1=2� arctan�2�
switch � ��U�=��=�. In the limit
of a strongly connected state, Eq. (4) leads to the explicit
solution 
switch ’ e1 �U=2.

Instead of the occupations n
, we focus on the experi-
mentally accessible (dimensionless) conductances g of the
quantum dot. For the case of a quantum dot with two
symmetrically coupled single-channel leads, the Friedel
sum rule implies the relation g � sin2��n
� in the usual
way [12]. Thus, the jump in occupation n
 at 
switch

translates directly into a jump in conductance (unless
�n
 � 1, as happens for a weakly connected dot).

Numerical results.—Representative traces of the con-
ductance as a function of 
 are shown in Fig. 1. These
plots are based on a generalization of the above analytic
results to the case of an arbitrary number Nd of discon-
nected states. The most striking behavior occurs for inter-
mediate coupling where the broadening � is comparable to
or slightly smaller than the charging energy U. In this case
shown in Fig. 1(a), one observes the appearance of new
asymmetric peaks in the conductance trace. In the absence
of disconnected states, there would be only a single con-
ductance peak due to the single level of the connected dot.
In the presence of the disconnected states, the occupation
of the connected state decreases abruptly whenever a dis-
connected state is filled up. Thus the sharp jump in the
conductance is downward (upward) if it occurs on the
rising (falling) side of the conductance peak of the con-
nected level. This leads to the appearance of new trap-
induced peaks in g whose asymmetry arises from the
abrupt jumps. Indeed, hints of this behavior have recently
been seen in experiments and were attributed to charging
of disconnected states [7].

For strongly connected dots (U � �), the jumps in the
occupation n
 of the connected states which are associated
with charging of disconnected states are typically small
compared to one. In this case, also the abrupt changes in
the conductance are small compared to the conductance
itself, leading to a characteristic sawtooth-behavior of g as
function of chemical potential. This is shown in Fig. 1(b).
When the connected level is close to half filling, a typical
dome shape is observed. This is very similar to the behav-
ior seen in recent charge-sensing experiments on a quan-
tum point contact monitoring the charge in a disconnected
dot [8].

In experiments, a gate voltage does not affect connected
and disconnected levels in the same way. Using different
gates one can even manipulate the levels independently [8].
Such experiments correspond to nonvertical trajectories in
the �Vg;
� plane where 
 is the overall chemical potential
and Vg is assumed to affect the disconnected states only.
The resulting intricate pattern of the conductance in the
�Vg;
� plane is shown in Fig. 2.

Temperature leads to very interesting behavior of the
conductance, even when kT � �. In the latter regime, the
sharp jumps of the conductance are broadened by tempera-
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ture, while the other side of the conductance peaks is
smooth on the scale � and thus insensitive to T. This results
in a very asymmetric temperature broadening of the saw-
tooth peaks which was indeed observed in experiments [7].
These considerations can be quantified by noting that close
to the charging of a disconnected state the system can be
well approximated by a two-level system, with the two
levels corresponding to nd � 0 and nd � 1 (or, more gen-
erally, nd � N and nd � N � 1). The occupation of the
connected state is then given by

n
 �
�12 � arctan2
� �e

�!0 � �12 � arctan2�
�U�� �e�!1

e�!0 � e�!1
;

where!nd ��nd=kT. Since the entropy is governed by the
lead states which are unaffected by the change in nd, one
expects the entropy terms in � to be equal, i.e., TS1�TS0,
and thus to cancel out. Expanding �1�
switch��
��
�0�
switch��
��kT in �
, one obtains kT�
�
f1� ��1�arctan�2�
switch �U�=��� arctan�2
switch=
���g. Therefore, the abrupt change in n
 and g is smeared
by temperature over a range kT in 
. The resulting T
dependence of g is depicted in Fig. 3(a).

A qualitatively similar effect occurs when the discon-
nected state is broadened, e.g., by coupling it to an external
reservoir different from the current-carrying leads. This
situation is no longer amenable to an exact solution since
the occupation of the ‘‘disconnected’’ state can now differ
from 0 or 1, and we resort to a numerical DMRG method.
[We have checked that the DMRG reproduces our exact
solution for vanishing broadening; see Fig. 3(b).] We find
that the main effect of a finitely coupled disconnected state
is to smear the sudden jump in the occupation of the latter,
similar to the effect of finite temperature. Correspondingly,
the effect of the broadening on g is very similar to that of
temperature, as can indeed be verified by comparing
Figs. 3(a) and 3(c).

This observation enables us to qualitatively understand
the physics of two connected states of the same dot with
2-3
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FIG. 4. Occupation for two connected states (t � 0:5) at �1 �
�1:1 (gray circles) and �2 � �1 (gray squares) and two dis-
connected states e1 � �1:12 (solid line), e2 � �1:02 (dotted
line) as function of 
 obtained from DMRG (U � 0:3). To
demonstrate that right after the switch n
�
� � n
�
�U�,
we plot n
�
�U� for values of 
 prior to the switch, i.e.,
�1:2<
<�1 and �0:48<
<�0:28 (white symbols). A
clear overlap between the white and gray symbols is seen.
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FIG. 3. (a) Temperature dependence of the conductance as
function of 
 (connected state: " � �1:3; disconnected state:
e1 � �1:26; U � 0:4; t � 0:3). The different curves correspond
to �kT � 0, 0.1, 0.2, 0.3, 0.4. (b) Occupation of the connected
state n
 (open symbols) and disconnected state nd (filled sym-
bols) for several values of couplings as the disconnected state
opens up additional non-current-carrying lead. Lines: results of
the exact solution of Eq. (3); symbols: DMRG calculations for
different couplings of the disconnected state (circles t � 0,
squares t � 0:1, diamonds t � 0:2). (c) Conductance of con-
nected state in (b).
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�1 � �2. Indeed, the level occupations are insensitive to
whether the levels are coupled to the same or different
leads. Figure 3(b) then applies and is consistent with very
recent works on such setups employing Hartree-Fock and
numerical RG methods [13,14]. Evidently, the way these
states are coupled to the leads is crucial for the conduc-
tance, due to Fano-type interference effects [8,9].

The insight gained from our analysis involving a single
connected state may be used to make quantitative predic-
tions concerning several connected and disconnected
states, including charging energies for the connected-dot
states. Although it is then difficult to calculate the exact
switching point for a particular disconnected state, one
nevertheless predicts that for chemical potentials 
 (or
Vg) immediately before or after the switching, n
j�
�

0� � n
j�
�U� and therefore g�
� 0� � g�
�U�.
(Here, n
j denotes the occupation of the jth connected
state.) This is illustrated in Fig. 4 for two connected and
two disconnected states, based on a DMRG calculation.
This prediction should be very useful for analyzing experi-
mental data. For any abrupt jump due to charging of a
disconnected state, the conductance satisfies this relation.
By contrast, if the jump in the conductance is due, e.g., to
noise, no such correlation is expected.

In conclusion, it is interesting to speculate that the
charge-sensing physics discussed theoretically in this
Letter may occur generically in relatively well coupled
chaotic quantum dots. By the nature of the Porter-
Thomas distribution of lead-induced level broadenings,
there will be a significant number of narrow levels in
addition to broader levels, in particular, for systems with
07680
time-reversal symmetry. Charge sensing and patterns not
unlike Fig. 1(b) may thus be important ingredients in
explaining the large-scale structure of Coulomb-blockade
sequences observed in such systems [15].
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