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Charge and Magnetization Inhomogeneities in Diluted Magnetic Semiconductors
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It is predicted that III-V diluted magnetic semiconductors can exhibit stripelike modulations of
magnetization and carrier concentration. This inhomogeneity results from the strong dependence of the
magnetization on the carrier concentration. Within Landau theory, a characteristic temperature T� below
the Curie temperature is found so that below T� the equilibrium magnetization shows modulations, which
are strongly anharmonic. The wavelength and amplitude of the modulation rise for decreasing tempera-
ture, starting from zero at T�. Above T�, the equilibrium state is homogeneous, but the coupling between
charge and magnetization leads to the appearance of an electrically charged layer in domain walls.
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Introduction.—Diluted magnetic semiconductors (DMS)
are investigated extensively as promising materials for
spintronics applications [1,2] and because of their unique
physical properties [3,4]. Since the magnetic interaction is
mediated by the carriers, the magnetization and the Curie
temperature increase for increasing carrier concentration
[5–10]. In fact, the magnetization can be changed in situ by
tuning the carrier concentration with a gate voltage [5,6,8].

Coupling between magnetism and carrier concentration
can lead to inhomogeneous equilibrium states, as found in
manganites [11], nickelates [12], and cuprates [13]. The
present Letter analyzes this possibility for III-V DMS,
concentrating on stripelike, one-dimensional variations of
the magnetizations. We employ a Landau theory for the
coupled magnetic and charge degrees of freedom. This ap-
proach is valid on length scales on which the impurity dis-
tribution can be treated as homogeneous [14]. The charac-
teristic length scale is n�1=3

Mn , where nMn is the density of
Mn impurities [4,15]. Finally, we discuss possible
experiments.

Magnetic domains have also been observed in
�Ga;Mn�As [16,17]. They are formed to reduce the dipolar
energy, as in other ferromagnets. One can expect the
coupling between magnetization and carriers to lead to
an inhomogeneous charge profile in a domain wall. This
question is addressed in the final part of this Letter.

Landau theory.—We write the Hamiltonian as a func-
tional of magnetization m and deviation of carrier density
from its spatial average �n�n� �n. Charge neutrality re-
quires

R
d3r�n � 0. The magnetic part has the usual form

Hm �
Z
d3r

�
�
2
m2 �

�
4
m4 �

�
2
@im � @im

�
; (1)

where @i � @=@ri and summation over i is implied. The
mean-field Curie temperature is determined by � � 0.
Since experimentally the Curie temperature depends ap-
proximately linearly on carrier concentration, we expand
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� � �0�T � Tc � ��n�, where Tc is the Curie tempera-
ture for �n � 0. This dependence of � provides the cou-
pling between magnetism and carrier concentration in our
model and is responsible for the physics discussed in the
following. Since the equilibrium magnetization for con-
stant � is m0 �

��������������
��=�

p
, larger magnetization is favored

in regions with higher carrier concentration (note that �<
0 in the ferromagnetic phase).

The second ingredient for our model is the screened
Coulomb energy due to the charge inhomogeneity,

H�n �
1

2

Z
d3rd3r0

e2

4��0�
�n�r��n�r0�

e�jr�r0j=r0

jr� r0j
: (2)

The total Hamiltonian is H � Hm �H�n.
We first discuss qualitatively what kind of equilibrium

states we expect from H. Any inhomogeneous charge
distribution increases H�n. On the other hand, the contri-
bution from Hm is not obvious, since the first term is
negative for T < Tc � ��n. We will see that the magnetic
energy decrease in regions of higher carrier concentration
and magnetization can outweigh the increase in regions of
lower �n and m and even the increase in electrostatic
energy. In that case, the equilibrium state is indeed inho-
mogeneous. We consider stripelike, one-dimensional mod-
ulations. Two- and three-dimensional patterns seem less
likely, because they contain more regions with large mag-
netization gradients for a given inhomogeneity length
scale, which increase the energy due to the gradient term
in Hm. One could expect the inhomogeneity to take the
form of stripe domains [16] with alternating magnetiza-
tion. However, we will see that the equilibrium solution
shows a magnetization modulation without sign change.

We now turn to the formal derivation of equilibrium
states. It is convenient to express H�n in terms of the elec-
trostatic potential�. With ��� r�2

0 ���r� � �e�n�r�=�0�
(for p-type DMS), we obtain the total Hamiltonian
H�
Z
d3r

�
�0�T�Tc�

2
m2�

�
4
m4�

�
2
@im �@im�

�0�

2r2
0

�2�
�0�
2
@i�@i��

�0��0�

2er2
0

m2��
�0��0�
e

m � �@im�@i�
�
: (3)
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FIG. 1 (color online). Phase diagram for periodic solutions for
the magnetization in terms ofmmin andm� � m�0� formsing � 1.
Type 1 solutions exist for m� � �2m2

min �m
2
sing�

1=2 and become
a special case of type 2 for m� <msing. Type 2 solutions exist for
m� <min�mmin; msing� and type 3 solutions for msing <m� <
�2m2

min �m
2
sing�

1=2. The homogeneous solutions are also shown.
Inset: Schematic plot of the denominator in Eq. (7) showing the
values assumed by m for type 2 and 3 solutions.
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Equilibrium configurations are given by minima of H
subject to the constraint of charge neutrality

R
d3r���

r�2
0 �� � 0, which is implemented with a Lagrange multi-

plier. Introducing the averaged squared magnetization �m2

and the rescaled potential � � ��0��0�=e��, we obtain
two coupled Euler equations for m and �. Eliminating �
from the first, we find

0 � �am@i�m � @im� � b�m

�

�
c�

a

2r2
0

�m2

�
|���������{z���������}

c0

m�
�
d�

a

2r2
0

�
|������{z������}

d0

m2m (4)

and

��� r�2
0 �� �

a
2
��� r�2

0 ��m
2 � �m2�; (5)

with a � �02�2�0�=e2, b � �, c � �0�T � Tc�, d � �.
Equation (4) retains information about the coupling to
the carrier density since a / �2. The only bounded solu-
tion of Eq. (5) is � � �a=2��m2 � �m2�. The equations
support the homogeneous mean-field solution m2 � m2

0 �
�c=d > 0, � � 0 for T < Tc. While Eqs. (4) and (5)
contain five parameters, it is sufficient to vary only two
to obtain all possible solutions up to rescaling. We choose
a=dr2

0 / �
2 and cr2

0=b / T � Tc.
Periodic solutions.—For periodic, collinear solutions

that depend only on x, Eq. (4) becomes

0 � �am@x�m@xm� � b@2
xm� c0m� d0m3: (6)

This is an integro-differential equation due to the term
�m2 � �1=	�

R
	
0 dxm

2�x� in c0, where 	 is the wavelength.
c0 is determined self-consistently below. Boundary condi-
tions m�0� � m� and @xm�0� � 0 are imposed, where m�

will be obtained by minimizing the energy.
Using standard methods, we obtain the explicit integral

for the inverse function on the interval 	�	=2; 	=2
,

x��
Z m

m�
d ~m

���������������������������������������������������������������������
b�a ~m2

c0 ~m2�d0 ~m4=2�c0m�2�d0m�4=2

s
: (7)

This expression satisfies @xm�0� � 0, since @x=@m di-
verges at m � m�. To obtain a periodic function, the
denominator must have another zero at the next extremum
of m�x� at x � �	=2. Beyond �	=2, the solution contin-
ues periodically.

A special role is played by the magnetization value
msing �

���������
b=a

p
: Here @x=@m vanishes so that coordinates

x beyond this point normally cannot be reached and there is
no solution for all x. However, a solution (here called
type 1) crossing m � msing is possible if numerator and
denominator vanish simultaneously. This solution is
m�x� � �2m2

min �m
2
sing�

1=2 cos�
������������
d0=2a

p
x�, where mmin ����������������

�c0=d0
p

is the minimum of the denominator.
For all other periodic solutions, m must be either larger

or smaller than msing everywhere. For m� <msing, periodic
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solutions (type 2) oscillating between m� and �m� with
zero average exist if m� <mmin. For m� >msing, periodic
solutions (type 3) oscillating aroundmmin exist for c0m�2 �
d0m�4=2< c0m2

sing � d
0m4

sing=2; see Fig. 1.
Next the phase diagram is mapped back onto the pa-

rameters of the Euler equation (6), determining �m2 self-
consistently. The results are shown in Fig. 2(a) for a=dr2

0 �
1. The diagram for other values has the same topology.
Figure 2(b) shows the resulting phase diagram in terms of
cr2

0=b and general dr2
0=a / m

2
sing. The lines A, B, and C

show the shift of the crossing points marked A, B, and C,
respectively, in Fig. 2(a) with dr2

0=a. Type 3 solutions exist
to the left of point A, i.e., for m0 >msing.

From Eqs. (3)–(5), we find the average energy density

�e �
1

	

Z 	

0
dx
�
�
d0

4
m4 �

a
2
m2�@xm�2

�
�

a

8r2
0

� �m2�2: (8)

For the homogeneous solution, we obtain the standard
result �e � ehom � �c2=4d. Numerical evaluation shows
that type 1 and 2 (3) solutions always have higher (lower)
energy than the homogeneous solution. Among type 3
solutions, the energy is minimized by the maximum am-
plitude, where m comes arbitrarily close to msing.

The mean-field magnetization of our DMS model is thus
zero for T � Tc, homogeneous for T� 
 T < Tc, where

T� � Tc �
e2

�0�
��

�03�2 (9)

corresponds to line A in Fig. 2(b), and a periodic spin-
density and charge-density wave for T < T�. The dipolar
interaction omitted here favors m lying in the yz plane. The
magnetization and potential show sharp cusps at the min-
1-2
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FIG. 3 (color online). Wave length 	, average magnetization
�m, peak-to-peak amplitude �mpp, and gain in energy density �e�
ehom for the periodic magnetization with lowest energy. The
magnetization for the homogeneous solution is also shown. The
unit of magnetization is ms �
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p
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0 � 1 is assumed.
Inset: Magnetization and excess carrier density for cr2
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FIG. 2 (color online). (a) Phase diagram for periodic solutions
for the magnetization in terms of cr2

0=b / T � Tc and initial
magnetization m� � m�0� for a=dr2

0 � 1. The symbols are as in
Fig. 1. In the distorted triangle with corners A, B, 0, two
solutions with different wavelength coexist. (b) Phase diagram
for periodic magnetization solutions in terms of cr2
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and dr2
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2
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ima of m; see the inset in Fig. 3. The cusps lead to negative
peaks in the carrier density, which become � functions for
m� ! msing. This divergence is cut off by the condition of
non-negative hole concentration. Since the amplitude,
wavelength, and energy approach finite values for m� !
msing, the Landau theory gives a good impression of the
profile, except for some broadening of the cusps.

The optimum solution can be written down explicitly:

m�x� �
�����������������������������
2m2

min �m
2
sing

q
sin
� ������
d0

2a

s
x� 


�
; (10)

for 0 
 x 
 	 and periodically repeated. Here �2m2
min �

m2
sing�

1=2 sin
 � msing. From m�x�, one can obtain expres-

sions for the wavelength 	 � 2�2a=d0�1=2��=2� 
�, the
average magnetization �m, the peak-to-peak amplitude
�mpp � �2m

2
min �m

2
sing�

1=2 �msing, and the energy; see
Fig. 3. Note that �m is nonzero for all T < Tc. Close to
T�, the wavelength becomes small. In this regime, the
continuum theory breaks down, since 	 is not large com-
pared to the disorder length scale. Figure 3 also shows that
the fundamental length scale is the screening length r0. The
inset shows a typical solution.

It is important to check whether the periodic solution can
occur in real DMS. For that, Tc � T� should be small.
Equation (9) shows that this is the case for high dielectric
constant, small spin stiffness, strong dependence of Tc on
carrier concentration, and rapid onset of magnetization
below Tc. For �Ga;Mn�As, we estimate T� by comparing
experiments [7,9] to mean-field theory for homogeneous
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magnetization [14] and to spin-wave theory [18]. We find
Tc � T� of the order of 10 K. The properties of �Ga;Mn�As
vary strongly with Mn concentration and growth proce-
dures. In particular, Tc � T� is inversely proportional to the
square of the shift of Tc with carrier concentration �2. In
Ref. [9], �� 5:4� 105 K �A3, which was used for the
above estimate, whereas in Ref. [7], �� 1:5� 105 K �A3,
which would increase Tc � T�.

Figure 3 suggests that measurements of the average
magnetization, which have been performed extensively,
are unlikely to find evidence for the inhomogeneous state.
For that, probes sensitive to the spatial variation are re-
quired. For example, the magnetic modulation should be
observable in neutron-scattering experiments. In real
space, magnetic scanning-tunneling microscopy (STM)
and, for large 	, scanning Hall probe experiments [16] or
magneto-optical techniques [17] are promising. Con-
versely, the modulation in carrier concentration should
be observable in optical reflection or transmission for large
enough 	. It also leads to a modulation of the local density
of states which could be probed by STM. The smoking gun
experiment would be to look for charge and magnetization
modulations of the same wavelength.

Domain walls.—Finally, we study the effect of
magnetization-carrier coupling on domain walls [16,17].
We restrict ourselves to solutions that are homogeneous in
the y, z directions. Equations (4) and (5) are solved under
the boundary conditions limx!�1m�x� � �m0ẑ, where ẑ
is the unit vector in the z direction. Since m2�x� only
deviates appreciably from m2

0 in a finite interval, we have
�m2 � m2

0 � �c=d in the limit of infinite system size L!
1. However, it turns out that charge neutrality can be
satisfied only by keeping terms of order 1=L in �m2. One
such term comes from the region far from the wall, where
1-3
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we write m�L=2� � m0 �m1=L. This means that the en-
hanced carrier density compensating the reduction in the
wall is spread out over the bulk.

With the additional condition m�0� � 0, we obtain

x �
Z m

0
d ~m

���������������������������������������������������������������������
b� a ~m2

c0 ~m2 � d0 ~m4=2� c0m2
0 � d

0m4
0=2

s
; (11)

with c0 � c� �a=2r2
0��c=d� and d0 � d� a=2r2

0. The in-
tegrand must be free of singularities for 0 
 ~m<m0,
which implies m0 
 msing. Thus, domain-wall solutions
exist only for T� 
 T < Tc [19]; see Fig. 2(a). This indi-
cates that Tc � T� is large for samples which show do-
mains at low temperatures.

Equation (11) can be integrated explicitly. It also yields
an expression for the typical width �w � m0=@xm�0� of a
domain wall, �2

w � �2bd=c�d� a=2r2
0�. �w increases for

increasing coupling a / �2 between magnetism and car-
riers due to their Coulomb repulsion. Figure 4 shows m�x�
and ��x� for typical domain-wall solutions. The excess
carrier concentration �n / �r�2

0 ���� is negative in the
domain wall, where the magnetization is reduced.

The areal energy density of the domain wall is obtained
by integrating the energy density over x, where corrections
to m�x� of order 1=L are again relevant,

�� �
Z 1
�1

dx
�
�

cd

2�d� a=2r2
0�

�m2

�
1

4

�
d�

a

2r2
0

�
��m2�2 �

a
8
�@x�m

2�2
�
; (12)

with �m2 � m2��1� �m2�x�. The dependence of �� on
the coupling a / �2 is shown in the inset in Fig. 4. �� first
decreases with increasing coupling and then increases
again, finally diverging as d0 � d� a=2r2

0 goes to zero.
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For larger jcr2
0=bj, the divergence is not reached, since the

condition m0 � msing (i.e., T � T�) is satisfied first. The
initial decrease is dominated by the 1=L term in �m2�x� far
from the wall, i.e., from the redistribution of carriers. In
this regime, domain walls are (slightly) less costly than
they would be without coupling. The strong increase comes
mostly from the increased width due to Coulomb repul-
sion. Domain walls could be observed in the real-space
experiments discussed above. The charged layer should
also affect electronic transport through domain walls.

Conclusions.—The carrier-concentration dependence of
the magnetization in DMS introduces a characteristic tem-
perature T� < Tc such that the mean-field magnetization m
and excess carrier density �n show periodic modulations
for T < T�, whereas m is homogeneous and �n � 0 above
T�. Tc � T� can be of the order of 10 K in p-type DMS.
The modulation is strongly anharmonic, and amplitude and
wavelength increase for decreasing temperature, starting
from zero at T�. For T � T�, the equilibrium state is
homogeneous, but the coupling between magnetism and
carrier concentration leads to the appearance of a nega-
tively charged layer in the vicinity of a domain wall for
p-type DMS.
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