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Transport through quantum dots in the Kondo regime obeys an effective low-temperature theory in
terms of weakly interacting quasiparticles. Despite the weakness of the interaction, we find that the
backscattering current and hence the shot noise are dominated by two-quasiparticle scattering. We show
that the simultaneous presence of one- and two-quasiparticle scattering results in a universal average
charge 5=3e as measured by shot-noise experiments. An experimental verification of our prediction would
constitute a most stringent test of the low-energy theory of the Kondo effect.
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Introduction.—Shot-noise measurements in mesoscopic
devices provide a direct measurement of the effective
charge e� of the current-carrying particles. Prominent
examples in which this charge differs from the elec-
tron charge e include the observation of the fractional
charge e� � e=3 in the fractional quantum Hall re-
gime [1], as well as the detection of the Cooper-pair
charge e� � 2e in normal metal-superconductor junc-
tions [2]. In this Letter we study shot noise in quantum
dots in the Kondo limit. Despite the Fermi-liquid (FL)
nature of the low-energy fixed point of the Kondo effect,
we find that the effective backscattering charge is a uni-
versal quantity satisfying e� > e. Unlike in quantum Hall
systems and superconductors, this enhancement relative to
the noninteracting value is not related to the funda-
mental quasiparticle charge. Instead, it is a direct conse-
quence of interactions between quasiparticles of charge e,
which lead to simultaneous backscattering of two
quasiparticles.

The Kondo effect occurs in quantum dots [3] when the
dot carries an effective spin, and charge fluctuations are
frozen out by the strong Coulomb repulsion. Virtual tun-
neling of electrons into and out of the dot induces an
antiferromagnetic coupling of the dot spin with the elec-
trons in the leads. In this Letter, we focus on the regime of
temperatures T well below the Kondo temperature TK,
where the dot spin is locked into a singlet state with the
lead electrons. Then, for two leads coupled symmetrically
to the dot, the linear-response conductance is enhanced to
the maximal unitary value g0 � 2e2=h [4], corresponding
to the conductance of a fully transparent channel with
transmission probability T��� � 1.

Shot noise in the Kondo effect was recently addressed
theoretically for a wide range of temperatures and voltages
V [5,6]. For energies well above TK, shot noise exhibits the
typical enhancement / log�2�eV=TK�, then it develops a
peak around TK, and is finally suppressed at low energies.
The low-temperature suppression can be understood from
the expression for the shot noise S in noninteracting sys-
tems [7]

 S�2g0

Z
d�T����1�T�������V=2�������V=2����;

(1)

which vanishes in the unitary limit T��� ! 1. Here
��V=2� �� and ���V=2� �� are the zero temperature
Fermi distribution functions of the source and drain, re-
spectively. Intuitively, while the incident fermionic carrier
flow is fluctuationless at zero temperature, the transmitted
and reflected carrier flows generally exhibit probabilisti-
cally generated noise. However, if T��� � 1 or 0, no noise
is generated by the scatterer.

The starting point of the present Letter is the observation
that close to the limit of perfect transmission, it is natural to
extract the charge of the backscattered particles from the
ratio

 e� � S=2Ib; (2)

where Ib denotes the backscattering current of reflected
carriers. Indeed, this definition was used to extract the
quasiparticle charge in the fractional quantum Hall effect
[1]. In the noninteracting case, Ib � 2 e

h

R
d��1� T�����

���V=2� �� � ���V=2� ���, and using Eqs. (1) and (2)
we have e� � e when T��� ! 1 for energies � close to the
Fermi energy. In contrast, it is the central result of this
Letter that e� � 5

3 e in the Kondo regime. We show below
that this is a universal property of the Kondo effect, which
is independent of the Kondo temperature TK.

Near the unitary limit, it is most convenient to describe
the system in the language of right movers (R movers)
propagating from source (with chemical potential �s) to
drain (with chemical potential �d) and left movers (L
movers) propagating from drain to source. Deviations
from the unitary limit will allow R movers to backscatter
into L movers and vice versa, as indicated schematically by
a wavy line in Fig. 1(a). We now turn to a discussion of the
various relevant backscattering processes which are dic-
tated by the low-energy fixed point of the Kondo effect and
summarized pictorially in Figs. 1(b)–1(d).

In a naı̈ve picture, the Kondo effect is thought of as the
formation of a single-quasiparticle resonance of width TK,
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centered exactly at the Fermi energy EF. Then, individual
quasiparticles are backscattered as energies � away from
the Fermi energy become relevant due to finite temperature
or voltage [see Fig. 1(b)]. The rate for this process grows
quadratically in maxfT=TK; V=TKg. However, as T or V
increase, an additional inelastic channel opens for scatter-
ing between the R movers and L movers, in which the
backscattering event is accompanied by the simultaneous
creation of a particle-hole pair. In this case, the correspond-
ing rates are again quadratic in maxfT=TK; V=TKg due to
phase-space restrictions for particle-hole-pair creation. If
the particle-hole pair is created within the drain or within
the source [see Fig. 1(c)], the process effectively back-
scatters a single mover. However, when particle and hole
are created in drain and source, respectively [see Fig. 1(d)],
we encounter an event in which two R movers backscatter
simultaneously [8]. These are the processes that lead to an
effective backscattering charge e < e� < 2e as measured
by shot noise.

The universality of e� is a consequence of the fact that
the Kondo resonance is tied to the Fermi level. This fixes
the ratio between the amplitudes � for elastic scattering
and � for the interactions which generate inelastic scatter-
ing. It is a central result in Nozières’ FL theory of the
Kondo effect [9] that � � �. Thus, the fixed-point
Hamiltonian Eq. (3) describes the low-energy properties
by a single parameter TK. It is interesting to note that the
Wilson ratio, i.e., the ratio between the relative changes in
the susceptibility and the specific heat due to the local
spin, W � ���=��=��Cv=Cv� � 1	 �=� � 2, is another

quantity which acquires a universal value due to the same
reason. However, the universality of W is actually re-
stricted to situations where the g factors of localized spin
and conduction electrons are equal [10]. We emphasize
that the universality of e� is not subject to this restriction.

The large value of the effective charge is surprising since
there are six possible processes in which one mover is
backscattered [two elastic and four inelastic processes,
see Figs. 1(b) and 1(c)] compared to only a single process
of two-particle backscattering [Fig. 1(d)]. However, the
phase space for the two-particle process is significantly
enhanced by the fact that the applied voltage acts on both
particles scattered from source to drain. Indeed, we find for
eV 
 T that 2=3 of the backscattering current is carried by
two-particle processes.

Calculation.—We describe a quantum dot with symmet-
ric dot-lead couplings near the unitary limit in the basis of
L and R movers with energy �k � vFk, spin 	, as well as
creation operators Lyk	 and Ryk	, respectively. The distribu-
tion of incoming R movers (L movers) is dictated by the
chemical potential of the source (drain). Because of the LR
symmetry, the low-energy Hamiltonian H� � can be writ-
ten entirely in terms of the symmetric combination  k	 �
1��
2
p �Lk	 	 Rk	�.

In view of the Fermi-liquid nature of the Kondo fixed
point, the low-energy physics can be completely described
by the scattering phase shift suffered by an incoming
quasiparticle ( k	), combined with the quasiparticle dis-
tribution n	 [9]. Following Nozières, the low-energy ex-
pansion of this phase shift is �	 �

��
TK
� �n �	


TK
, where

�	 � �	 and 
 is the density of states. Notice that the
phase shift of the electrons differs by �=2 from that of the
 k	 particles [11]. Combining this expansion with the
floating of the Kondo resonance, i.e., ����; n � 
��� �
��� � 0; n � 0�, one obtains the important FL relation
� � � mentioned above.

Equivalently, the low-temperature physics can be de-
scribed in terms of the Hamiltonian [3,11]

 H �
X
k	

�k 
y
k	 k	 �

�
2�
TK

X
k;k0	

��k 	 �k0 � 
y
k	 k0	

	
�

�
2TK

X
k1;k2;k3;k4

 yk1"
 k2"

 yk3#
 k4#

; (3)

whose t matrix t	 �
1

2�i
 �1� e
2i�	� ’ ��	=�
 reprodu-

ces the desired phase shift.
The term / � in Eq. (3), which yields the energy de-

pendence of the phase shift, is consistent with the picture of
a resonant level of width TK centered at EF. Since the
phase shift grows by � across the resonance, this picture
implies �� 1. The term / � describes the quasiparticle
interactions. While the corresponding contribution to the
phase shift follows from this interaction at the Hartree
level, a treatment beyond Hartree involves inelastic pro-
cesses in which quasiparticle scattering is accompanied by
the creation of particle-hole pairs.
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FIG. 1. Transport processes near the unitary limit. (a) In the
unitary limit an electron incident from the source is almost
totally transmitted into the drain, a process describing the free
motion of a R mover. Weak backscattering between R movers
and L movers is denoted by the wavy line. (b) Elastic backscat-
tering of 1 R mover with energy � relative to EF �
��s 	�d�=2. The energy dependence of this amplitude /
��=TK corresponds to scattering off a resonant level of width
/ TK=�, centered at EF. (c) Inelastic backscattering of 1 R
mover accompanied by creation of a particle-hole pair within
one reservoir. (d) Inelastic backscattering of 2 R movers with
opposite spins 	 and �	. The amplitudes of processes (c), (d) are
proportional to �, see Eq. (3).
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The current I transmitted from source to drain contains a
dominant (maximal) unitary contribution Iu � 2 e2

h V as
well as the backscattering current, I � Iu � Ib. The back-
scattering contribution Ib, describing deviations from per-
fect transmission, follows from the Hamiltonian Eq. (3) by
evaluating the increase in the numbers of L movers rela-
tive to R movers, Ib �

e
2
d
dt �NL � NR�, where Na�L;R �P

k	a
y
k	ak	. The zero-frequency current fluctuations (noise

power) are defined as S �
R
dthf�I�0�; �I�t�gi, where �I �

I � hIi. At zero temperature, only Ib contributes to shot
noise.

We calculate current and noise through the biased quan-
tum dot by the Keldysh technique, which allows one to
couple the L and R movers perturbatively in 1=TK. To
leading order, we obtain after lengthy but straightforward
calculations [12]

 I � Iu � Ib �
2e2

h
V
�

1�
�2 	 5�2

12

�
V
TK

�
2
�
; (4)

 S �
4e3

h
V
�2 	 9�2

12

�
V
TK

�
2
: (5)

Substituting these expressions into Eq. (2), and using � �
�, we indeed find e� � 5

3 e.
Interpretation.—We can gain physical understanding of

this result by rewriting the Hamiltonian Eq. (3) in terms of
the operators of left and right movers. This allows us to
unravel the nature of the backscattering of R movers into L
movers and to obtain the rates of the various backscattering
processes from the relevant amplitudes combined with the
voltage-dependent phase space.

Substituting  k	 �
1��
2
p �Lk	 	 Rk	�, the inelastic term /

� in the Hamiltonian Eq. (3) takes the form H� �
�

4�
2TK

Pa;b;c;d�L;R
k1;k2;k3;k4

ayk1"
bk2"

cyk3#
dk4#

. Clearly, it contains pro-

cesses in which 0, 1, or 2 particles are backscattered. An
interesting process without net backscattering is
Lyk1"

Rk2"
Ryk3#

Lk4#
, which contributes to the spin current

[13] but not to the charge current considered here.
Backscattering of two R movers arises from the terms

/
P
Lyk1"

Rk2"
Lyk3#

Rk4#
in H� [see Fig. 1(d)]. Their contribu-

tion I�2 � ��2 � 2e to the backscattering current Ib is
determined by the rate

 ��2 �
2�
@

X
k1;k2;k3;k4

jhLk1"
Ryk2"

Lk3#
Ryk4#

H�ij
2���k1

	 �k3
� �k2

� �k4
� �

2�
@

�2

16�2T2
K

Z eV

�eV
d��V � ���V 	 ��: (6)

Here we used
P
k � 


R
d�k, hLk	L

y
k0	0 i � �kk0�		0 �1�

���V=2� �k��, and hRyk	Rk0	0 i � �kk0�		0��V=2� �k�.
� denotes the energy transfer from the spin-up to the
spin-down particle, and the factors V � � and V 	 � origi-
nate from the integrations over the initial energies of the
spin-up and spin-down R movers, respectively. Performing
the � integration, we obtain I�2 �

e2

h
2
3 �

V
TK
�2V�2.

In a similar manner, one finds that inelastic backscatter-
ing processes of a single R mover give a contribution to Ib
which is of the form I�1 � 4��1e �

e2

h
1
6 �

V
TK
�2V�2. The

factor of 4 reflects spin as well as the fact that the
particle-hole pair can be created either in the source or in
the drain [see Fig. 1(c)]. ��1 is obtained by replacing
Ryk4#
! Lyk4#

in Eq. (6) for ��2. Note that the ratio of the
phase-space factors for inelastic backscattering of two
movers versus a single mover is ��2=��1 � 8.

The backscattering current due to elastic processes [see
Fig. 1(b)] follows from the elastic term in the Hamilton-
ian Eq. (3), which takes the form H� � �

�
4�
TK

�Pa;b�L;R
k;k0	 ��k 	 �k0 �a

y
k	bk0	 in terms of Lk	 and Rk	. This

contains processes in which at most one mover is back-
scattered. The corresponding elastic contribution to Ib is
given by I� � 2��e �

e2

h
1
6 �

V
TK
�2V�2, where the factor of 2

originates from spin.
Since the scattering events have rates / � VTK�

2  1 and
are thus rare, they are uncorrelated. For this reason, the
total shot noise S � 2e�I� 	 I�1 	 2I�2� contains inde-
pendent contributions from each process. Using Eq. (2)
and � � �, we recover the effective charge

 

e�

e
�

�2

6 	
�2

6 	 2 2�2

3

�2

6 	
�2

6 	
2�2

3

�
5

3
: (7)

So far, we have derived this universal value of e� for
systems which reach the maximal unitary limit as T ! 0.
A necessary condition for this to happen is that the system
respects the following symmetries: (i) SU�2� spin symme-
try, requiring zero magnetic field �h � g�BH=TK � 0;
(ii) particle-hole symmetry leading to the absence of po-
tential scattering, �r � 0; (iii) LR symmetry, requiring
dot-lead tunneling tL;R and capacitive couplings which
are equal for left and right lead. Deviations from tL � tR
imply �� � 0, where �� � 2�� �=2 with � �
arctanjtR=tLj, 0 � � � �=2. Asymmetric capacitances
may shift the position of the resonance level further. We
quantify this shift by a parameter � satisfying EF �
�s	�d

2 	 V�.
Some theoretical approaches artificially break these

symmetries in order to arrive at solvable models. E.g.,
the Schiller-Hershfield version of the Toulouse solution
[5] breaks SU�2� spin symmetry as well as the LR sym-
metry and indeed, we find that it would predict e� � 2e.
Slave-boson mean field theory neglects two-particle scat-
tering and breaks particle-hole symmetry [14]. Since it
leads to a self-consistent single-electron description in
terms of a resonance-level model, one necessarily has
e�=e � 1.

Realistic quantum dots.—The maximal unitary limit is
also not easily accessible in experiment due to residual
symmetry-breaking perturbations [4]. Such perturbations
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lead to a backscattering current linear in V, which domi-
nates at low voltages and implies e� � e. However, the
previously discussed (� and �) processes grow as V3 and
will thus dominate at sufficiently high voltages, leading to
a crossover of e� to a value close to the universal value 5

3 e.
To quantify this scenario, we note that the backscattering
current / V, Ib � 2 e2

h V�1� sin2�2�� 1
2

P
	��sin2�el

	� [3],
is determined by the LR asymmetry �� and by the elec-
tronic phase shift �el

	 � �=2� �r � 	�h. The latter dif-
fers by �=2 from the  particles phase shift, ��r � 	�h.
This phase shift can be included by adding to the
Hamiltonian a local term, Hloc �

P
kk0	

�r	�h	
�
  yk	 k0	.

(A global magnetic field has a similar contribution to the
phase shift through a Hartree treatment of the interaction.)
If the dot is close to unitarity, ��, �h, �r  1, we have the
expansion Ib � 2 e2

h V�
2, where �2 � �2

� 	 �
2
h 	 �

2
r . Thus,

this contribution to backscattering becomes negligible
once

 V� � TK maxf��; �h; �rg  V  TK; (8)

and the detailed crossover of e� takes the form

 

e�

e
�
�2V 	 5

3 �V
3=2T2

K�

�2V 	 �V3=2T2
K�

; (9)

(with � � � � 1), as shown in Fig. 2.
It may be useful to note for experimental tests of our

predictions that for voltages V 
 V�, it should be possible
to subtract explicitly the identical contributions / V in the
noise S=2e and in the backscattering current, cf. Eq. (10)
below. In this way, one isolates the terms / V3 and recov-
ers the universal value 5=3 even in the presence of
symmetry-breaking perturbations.

We remark that strictly speaking, symmetry-breaking
perturbations also affect the terms / V3. These corrections
appear at yet higher order [e.g. O��2�2

r�]. Evaluating these
corrections within the Keldysh approach for weak symme-
try breaking, we obtain

 

S=2e� �2g0V

Ib � �2g0V
�

5

3
�

X
i�r;h;�

ci�2
i 	 c��

2 	O��3�; (10)

where cr, ch, c�, and c� are numbers of O�1� [15].
At finite temperature the noise S�V; T� depends on both

voltage and temperature. But, in the shot-noise limit, T 
V, the excess thermal noise S�V; T� � 4dI=dV�V; T�T �
S�V; 0� is negligible compared to S�V; 0� [1]. It is therefore
possible to conduct an accurate measurement of the Fano
factor at finite temperatures.

Conclusion.—At low temperatures, the Kondo effect is
described by an effective Fermi-liquid theory of weakly
interacting quasiparticles, succinctly captured by the fixed-
point Hamiltonian Eq. (3). In view of the weakness of
the interactions, it is remarkable that two-quasiparticle
rather than single-quasiparticle scattering dominates the
backscattering current and hence the shot noise. As a
result, we find a universal fractional Fano factor of 5=3.
Our prediction persists even in the presence of weak
symmetry-breaking perturbations and is independent of
the Kondo temperature. This makes it ideal for a most
stringent experimental test of the low-energy theory of
the Kondo effect.
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