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Sequences of nodal counts store information on the geometry (metric) of the domain where the wave
equation is considered. To demonstrate this statement, we consider the eigenfunctions of the Laplace-
Beltrami operator on surfaces of revolution. Arranging the wave functions by increasing values of the
eigenvalues, and counting the number of their nodal domains, we obtain the nodal sequence whose
properties we study. This sequence is expressed as a trace formula, which consists of a smooth (Weyl-like)
part which depends on global geometrical parameters, and a fluctuating part, which involves the classical
periodic orbits on the torus and their actions (lengths). The geometrical content of the nodal sequence is
thus explicitly revealed.
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Eigenfunctions of the Schrödinger and other wave equa-
tions can be characterized by the number of their nodal
domains—a nodal domain being a maximally connected
region where the eigenfunction has a constant sign. The
intimate connection between the spectra of wave equations
and the corresponding sequences of nodal counts is well
known and frequently used in various branches of physics
and mathematics. Sturm’s oscillation theorem states that in
one dimension the nth eigenfunction has exactly n nodal
domains. In higher dimensions Courant proved that the
number of nodal domains �n of the nth eigenfunction
cannot exceed n [1]. Recently, it was shown that the
fluctuations in the nodal sequence f�ng1n�1 display univer-
sal features which distinguish clearly between integrable
(separable) and chaotic systems [2]. Their study also leads
to surprising connections with percolation theory [3].
Moreover, the nodal sequences of several isospectral (yet
not isometric) domains were recently shown to differ in a
substantial way [4,5]. The later observations suggest that
the nodal sequence stores information about the domain
geometry, and this information is not equivalent to the one
stored in the spectrum. Here, we provide further evidence
by deriving an asymptotic trace formula for the nodal
counting function:

 C�K� �
X�K�
n�1

�n; K > 0; �� � �� � the integer part:

(1)

The trace formula [see (7) and (19)] shows the explicit
dependence of the nodal sequence on the geometry of the
surface in both the smooth (Weyl-like) and the fluctuating
parts. Thus, the nodal trace formula is similar in structure
to the corresponding spectral trace formula [6–9]. Kac’s
famous question ‘‘Can one hear the shape of a drum?’’ was
triggered by the study of the progenitors of the spectral
trace formulas [10]. The trace formula for the nodal counts

leads us to the title of this Letter in which ‘‘count’’ replaces
‘‘hear.’’ We will consider here two particular classes of
systems, namely, the wave equation on convex smooth
surfaces of revolution and on simple two-dimensional
tori. Generalization to other Riemannian manifolds in
two or more dimensions are possible, provided the wave
equation is separable.

The nodal counting function (1) is well defined if the
spectrum is free of degeneracies, En > En�1. In case of
degeneracies we represent the wave functions in the unique
(real) basis in which the wave functions appear in product
form. This, however, does not suffice to set a unique order
within the degenerate states, which consequently introdu-
ces ambiguities in the nodal sequence. To circumvent this
problem, we modify the definition of the nodal counting
function: First, define ~c�E� �

P
1
n�1 �n��E� En�. This

function is based on information obtained from the nodal
sequence and the spectrum. To eliminate the dependence
on the latter, we use the (�-smoothed) spectral counting
function N ��E� �

P
1
n�1

1
� �arctanEn� � arctanE�En� �, which

for finite � is monotonic and can be inverted. We define
E��K� as the solution of N ��E� � K, and the modified
nodal counting function is

 c�K� � lim
�!0

~c �E��K��: (2)

If there are no degeneracies, c�K� is equivalent to (1) up to
a shift K ! K � 1

2 . A g-times degenerate eigenvalue En �
En�1 � � � � � En�g�1 contributes a single step function
��K � �n� 1� g

2��
Pg
s�1 �n�s�1 where the nodal count-

ing function increases by the sum of the nodal counts
within the degeneracy class. We will derive a trace formula
for this modified nodal counting function below (and omit
the ‘‘modified’’ in the sequel).

We start with the simpler case of a 2-dim torus repre-
sented as a rectangle with side lengths a and b and periodic
boundary conditions. The eigenvalues take the values
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En;m � �2��2�
n2

a2 �
m2

b2 �, where m; n 2 Z. The correspond-
ing wave functions for m; n 	 0 are  n;m�x; y� �
cos�2�nx=a� cos�2�my=b� and the cosine is replaced by
a sine for negativem or n. The number of nodal domains in
the wave function  n;m is

 �m;n � �2jnj � �n;0��2jmj � �m;0�: (3)

The aspect ratio � � a=b is the only free parameter in this
context because the number of nodal domains is invariant
to rescaling of the lengths.

Using Poisson’s summation formula
Pn2
n�n1

f�n� �P
1
N��1

Rn2�1=2
n1�1=2 dnf�n�e

2�iNn, the leading asymptotic
trace formula for the spectral counting function N �E� �P
m;n��E� En;m� for a torus is

 N �E� �AE�

����
8

�

s
AE1=4

X
r

sin�Lr

����
E
p
� �

4�

L3=2
r

�O�E�3=4�: (4)

Here, A � ab=�4��, and the sum is over the winding
numbers r � �N;M� 2 Z2n�0; 0� [in the sequel every
sum over r will not include �0; 0� unless stated otherwise].

Lr �
��������������������������������
�Na�2 � �Mb�2

p
is the length of a periodic geodesic

(periodic orbit) with r � �N;M�.
Our goal is to derive a similar trace formula for the

leading asymptotic behavior of the nodal counting func-
tion. Again, using Poisson resummation and the saddle
point approximation, we get for ~c�E�

 

~c�E� �
2A2

�2 E2 � E5=4 211=2A3

�1=2



X

r

jMNj

L7=2
r

sin
�
Lr

����
E
p
�
�
4

�
�O�E�: (5)

To express the counting function as a function of the index
K, we formally invert the spectral counting function to
order O�K0�,

 E�K� �
K
A
� K1=4 23=2

A�1=2

X
r

sin�lr
����
K
p
� �

4�

l3=2
r

; (6)

where lr � Lr=
������
A
p

is the rescaled (dimensionless) length
of a periodic orbit. This formal inversion needs a proper
justification which makes use of the fact that we actually
invert the smooth and monotonic N ��E�. However, a de-
tailed discussion of this point goes beyond the scope of the
present Letter. The numerical tests which we provide here
support the validity of this formal manipulation. Replacing
E by E�K� in (5) and keeping only the leading order terms,
we get the nodal counting function, which we write as a
sum c�K� � �c�K� � cosc�K� of a smooth part �c and an
oscillatory part cosc:

 

�c�K� �
2

�2 K
2 �O�K�;

cosc�K� � K5=4
X

r
ar sin

�
lr

����
K
p
�
�
4

�
�O�K�;

ar �
27=2

�5=2l3=2
r

�
4�2jNMj

l2r
� 1

�
:

(7)

While the smooth part is independent of the geometry of
the torus, the oscillating part depends explicitly on the
aspect ratio � and can distinguish between different ge-
ometries. The main difficulty in computing higher order
corrections to the leading behavior of the nodal counting
function is that products of sums over periodic orbits
appear already in the terms of order K.

Turning now to more general surfaces we consider ana-
lytic, convex surfaces of revolution M which are created
by the rotation of the line y � f�x�, x 2 I � ��1; 1� about
the x axis. To get a smooth surface, f�x� in the vicinity of
x � �1 should behave as f2�x� 
 a��1� x�, with a�
positive constants. Convexity is achieved by requiring the
second derivative of f�x� to be strictly negative, and
f0�xmax� � 0, xmax 2 I, where f reaches the value fmax.
We consider the wave equation�� �x; �� � E �x; �� and
the Laplace-Beltrami operator for a surface of revolution is

 � �
1

f�x���x�
@
@x

f�x�
��x�

@
@x
�

1

f�x�2
@2

@�2 : (8)

Here, ��x� �
���������������������
1� f0�x�2

p
and � is the azimuthal angle.

The domain of � are the doubly differentiable, 2� periodic
in � and nonsingular functions on �I 
 S1�. Under these
conditions, � is self-adjoint and its spectrum is discrete. �
is separable and the general solution can be written as a
product ��x; �� � exp�im���m�x�, where m 2 Z. For any
m, (8) reduces to an ordinary differential equation of the
Sturm-Liouville type, with eigenvalues Em;n (doubly de-
generate when m � 0) and eigenfunctions �n;m�x� with
n � 0; 1; 2; . . . ; nodes. The eigenfunctions corresponding
to the eigenvalue En;m can be written as linear combina-
tions of cos�m���n;m�x� and sin�m���n;m�x�. To be defi-
nite, we chose these two functions as the basis for the
discussion and associate the former with positive values
of m and the later with the negative values of m. The nodal
pattern is that of a checkerboard typical to separable sys-
tems and contains

 �n;m � �n� 1��2jmj � �m;0� (9)

nodal domains. The semiclassical spectrum is constructed
by using the Bohr-Sommerfeld approximation [7],

 Escl
n;m � H�n� 1

2; m� �O�1�; n 2 N; m 2 Z;

(10)

where H�n;m� is the classical Hamiltonian defined in
terms of the action variables m and n, where m is the
momentum conjugate to the angle � and n is
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n�E;m� �
1

2�

I
px�E; x�dx �

1

�

Z x�

x�
px�E; x�dx;

px�E; x� �
������������������������������������������������������
�Ef2�x� �m2��1� f0�x�2�

q
=f�x�:

(11)

x� are the classical turning points Ef2�x�� �m2 � 0,
with x� � xmax � x�. The Hamiltonian is obtained by
expressing E as a function of n;m using the implicit
expression (11). H�n;m� is a homogenous function of
order 2: H�	n; 	m� � 	2H�n;m�. It suffices therefore to
study the function n�m� � n�E � 1; m� which defines a
line � in the �n;m� plain. n�m� is defined for jmj � fmax

and is even in m; n�m� � n��m�. The function n�m� is
monotonically decreasing from its maximal value n�0� to
n�m � fmax� � 0. All relevant information on the geode-
sics on the surface can be derived from n�m�. Periodic
geodesics appear if the angular velocities !n �

@H�n;m�
@n and

!m �
@H�n;m�
@m are rationally related. Since dn�m�

dm � �
!m
!n

,
this is equivalent to the condition

 M� N
dn�m�
dm

� 0 (12)

forM,N � 0. The integers r � �M;N� 2 Z2n�0; 0� are the
winding numbers in the � and x directions. The classical
motion is considerably simplified if the twist condition [9]
n00�m� � d2n�m�

dm2 � 0 for 0<m � fmax is fulfilled. This ex-
cludes, for example, the sphere but includes all mild de-
formations of an ellipsoid of revolution. We will assume
the twist condition for the rest of this Letter. It guarantees
that there is a unique solution to (12), which we will call
mr. Note that n0�m� has a finite range � and a solution only
exists if�M=N 2 �. The cases N � 0,M � 0 or M � 0,
N � 0 are not described by solutions of (12). They de-
scribe a pure rotation in the � direction at constant x �
xmax wherem0;�jMj � �fmax (N � 0) or a periodic motion
through the two poles at fixed angle �mod� (M � 0) such
that mjNj;0 � 0. The length of a periodic geodesic is given
by

 Lr � 2�jNn�mr� �Mmrj: (13)

Returning to the spectrum, we note that the leading terms
in the trace formula for the spectral counting function
N�E� �

P
m;n��E� En;m� can be obtained by using (10)

and Poisson’s summation formula [9]:

 N �E� �AE� E1=4
X

r
N r�E�; (14)

where

 A �
Z fmax

�fmax

n�m�dm � jjMjj=4� (15)

and jjMjj is the area of the surface. The oscillating parts
contain integrals /

Rfmax
�fmax

dme2�iE1=2�Nn�m��Mm�, which can

be calculated to leading order in E1=2 using the stationary
phase approximation. The points of stationary phase are
identified as the classically periodic tori (12) withm � mr.

This restricts the range of contributing r values to the
classically accessible domain �M=N 2 �. Thus,

 N r�E� � ��1�N
sin�LrE

1=2 � ��
4�

2�jN3n00r j
1=2

�O�E�1=2�; (16)

where n00r � n00�m � mr� and � � sgn�n00r � which is the
same for all values of r. The contributions of the terms
with either N � 0 or M � 0 or with �M=N =2 � are of
higher order in 1=E and will not be considered here.

We are now ready to derive the asymptotic trace formula
for
 

c�K� � ~c�E�K�� �
X1
n�0

X1
m��1

�mn��E�K� � Em;n�;

E�K� �
K
A
�

�
K
A

�
1=4X

r

N r�
K
A�

A
�O�K0�:

(17)

The second equation was obtained by inverting K �
N �E� to the desired order using the trace formula (14).
We follow the same approach as for N and expand the
result in �E�E�K��K=A such that c�K� � ~c�K=A� �
~c0�K=A��E�O�~c00�E2�, which is consistent if we ne-
glect all orders smaller than O�K�. The result can be ex-
pressed as a sum c�K� � �c�K� � cosc�K� of a smooth part �c
and an oscillatory part cosc, in complete analogy to (7):
 

�c�K� � 2
mn
A

K2 �
�m

A1=2
K3=2 �O�K�;

cosc�K� � K5=4
X

r:�M
N2�

ar sin
�
lrK

1=2 �
��
4

�
�O�K�;

ar � ��1�N
mrn�mr� � 2mn

A5=4�jN3n00r j
1=2
;

lr � Lr=
������
A
p

;

mpnq �
1

A

Z
E�m;n�<1

dmdnjmjpnq;

(18)

where lr is the rescaled length of a periodic geodesic and ar
is the amplitude contributed by the (classically allowed) r
torus. For mr � 0 or mr � �fmax, only one-half of the
stationary phase integral contributes and the amplitude ar
has to be multiplied by 1=2.

The approximations involved in the above calculation
have been tested on an extensive numerical data base for
two ellipsoids of revolution defined by the equation f�x� �
R

��������������
1� x2
p

[R � 2 in data set (a), and R � 1=2 in data set
(b)] and for two different tori [�2 � 2 in data set (c), and
�2 �

���
2
p

in data set (d)]. The spectral interval used for the
numerical tests included the first 105 eigenvalues for the
ellipsoids, and the first 4
 106 eigenvalues for the tori.
The numerically computed c�K� were fitted to a fourth
order polynomial in 
 �

����
K
p

and in all cases, the agree-
ment of the two leading coefficients with the asymptotic
theory was better than a percent. The oscillating part has
been obtained numerically by subtracting the best poly-
nomial fit from the exact c�K�. The fluctuating parts of the
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trace formulae were tested in two ways. The integral of the
squared oscillatory part

 R�K� 

Z K

0
dK0cosc�K

0�2 (19)

was computed as a function of K and compared with the
theoretical expression which consists of a double sum over
periodic geodesics. Simplifying this expression by consid-
ering only its diagonal part, one gets the estimate

 R�K� �
2

7
K7=2

X
r
jarj

2; (20)

which scales like K7=2. This scaling has been tested and the
results are shown in the left part of Fig. 1. Clearly, the
expected power law is reached for sufficiently large values
of the counting index K. A more stringent test of the trace
formula is provided by computing the length spectrum,
defined by the properly scaled Fourier transform of cosc�K�
with respect to 
 �

����
K
p

.

 S�l� � l3=2
Z 1

0
d

�5=2cosc�K � 
2�e�

�
�
0�
2

! �i
l: (21)

Gaussian windows centered at 
 � 
0 and with a width /����
!
p

restricted the data used to be well within the semiclas-
sical domain. The trace formula for the nodal counts
predicts pronounced peaks at the scaled lengths l � lr of
the periodic geodesics. The right frame in Fig. 1 shows a
remarkable agreement of the numerical data with the theo-
retical predictions. This excellent agreement provides fur-
ther support for the validity of the approximations which
were used in the derivation of the two versions of the nodal
counts trace formula.

Recent studies [4,5] have shown that the nodal sequen-
ces of isospectral domains are distinct and can be used to
resolve isospectrality. Thus, the geometrical information
stored in the nodal sequence is not equivalent to the one
stored in the spectral sequence. This result, together with
the trace formula obtained here, motivates further research
of the nodal sequence as a tool in spectral analysis.
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FIG. 1 (color online). Numerical checks of the fluctuating parts of trace formulae for the two ellipsoids [(a) and (b), see text] and the
two tori [(c) and (d), see text]. Left: Double logarithmic plot of the integrated squared fluctuations (20) (arbitrary scale), the solid line
has slope 7=2. Right: Length spectra of the nodal counting functions (21). The solid line is obtained from the trace formulas (7) and
(19) and the points represent the numerical data.
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