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We present a planar surface-code-based
scheme for fault-tolerant quantum computation
which eliminates the time overhead of single-
qubit Clifford gates, and implements long-range
multi-target CNOT gates with a time overhead
that scales only logarithmically with the control-
target separation. This is done by replacing
hardware operations for single-qubit Clifford
gates with a classical tracking protocol. Inter-
qubit communication is added via a modified
lattice surgery protocol that employs twist de-
fects of the surface code. The long-range multi-
target CNOT gates facilitate magic state distil-
lation, which renders our scheme fault-tolerant
and universal.

1 Introduction
The performance of quantum computers is limited by
the coherence times of the underlying physical qubits.
Quantum error correction [1] offers the possibility to
enhance the qubits’ survival times by encoding quan-
tum information using logical qubits consisting of many
physical qubits. Topological quantum error-correcting
codes [2, 3] are of particular interest, as they only re-
quire the measurement of spatially local operators –
a feature that is compatible with the local opera-
tions accessible in two-dimensional solid-state qubit ar-
chitectures, such as superconducting qubits [4], spin
qubits [5], or Majorana-based qubits [6].

Quantum error-correcting codes typically operate in
cycles. In each code cycle, mutually commuting oper-
ators called stabilizers [7] are measured to reveal the
error syndrome, which is used to determine and cor-
rect errors. Surface codes [8, 9] are topological codes
that feature a high error threshold [10, 11], and only re-
quire the measurement of four-qubit stabilizer operators
for the readout of the error syndrome. The low-weight
stabilizers are an advantage over other codes such as
color codes [12, 13], which require the measurement of
six-qubit operators. This facilitates syndrome readout
in many physical architectures such as superconducting
qubits, where the measurement of higher-weight sta-

bilizers requires more potentially faulty controlled-not
(CNOT) gates.

The main drawback of surface codes in comparison
to color codes is the absence of transversal single-qubit
Clifford gates, i.e., the gates that are products of the
Hadamard gate H and the phase gate S. While the
transversal Clifford gates of color codes provide them
with fast logical H and S gates, defect-based propos-
als for surface codes [14] implement the H gate via a
multi-step measurement protocol, and the S gate via a
distilled ancilla qubit. In order to lower the overhead
of single-qubit Clifford gates, surface code qubits can
be encoded using twist defects [15], which are essen-
tially Majoranas that can be braided via code defor-
mation [16]. It was pointed out that braiding of twists
can also be implemented via a classical tracking proto-
col [17], in accordance with the Gottesman-Knill theo-
rem [18].

In this work, we present a scheme that implements
this tracking protocol for planar surface codes, as op-
posed to twist-based encodings. We refer to this pro-
tocol as edge tracking. In our scheme, Clifford com-
pleteness is achieved via a modified lattice surgery [19]
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Figure 1: An example of a surface code qubit with code distance
d = 5. Physical qubits are located on the vertices, and the
faces define the two- and four-qubit Z type (bright) and X
type (dark) stabilizer operators. X strings along the X edge
(orange) are logical XL operators, whereas Z strings along Z
edges (blue) are ZL operators.
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Figure 2: An example of edge tracking with a wide surface code qubit. Starting from the default encoding Xedge = XL and
Zedge = ZL, an H gate changes it to Xedge = ZL and Zedge = XL, and a subsequent S gate modifies it to Xedge = ZL and
Zedge = YL.

protocol. Twist defects are no longer used to encode
quantum information, but reappear in lattice-surgery
protocols involving the logical YL operator, so that we
refer to the protocol as twist-based lattice surgery. Our
scheme provides long-range multi-target CNOT gates –
i.e., CNOTs with one control and arbitrarily many tar-
gets – between any set of edge-tracked surface code
qubits. These gates are particularly useful for magic
state distillation [20], which completes the universal
gate set by fault-tolerantly implementing the T gate
(or π/8 gate). Our scheme not only eliminates the need
for hardware operations for single-qubit Clifford gates,
but also conceptually simplifies the twist-defect-based
approach to surface-code quantum computing. Even
though our scheme features twist defects and disloca-
tion lines, the only concepts necessary to understand
our scheme are the encoding of logical qubits and the
measurement of two-qubit parity operators. We discuss
the implementation of the single-qubit Clifford gates,
CNOT gates, and T gates in Secs. 2, 3 and 4, respec-
tively. In a concluding section, we discuss our scheme in
the context of possible hardware implementations and
in comparison to alternative topological codes.

2 Edge Tracking
The basic framework of our scheme are physical qubits
arranged on a 2D square lattice which allow for the
measurement of local stabilizer operators. Examples of
possible physical realizations include superconducting
qubits emulating stabilizer measurements using ancilla
qubits and CNOT gates [14], or Majorana-based qubits
using direct measurements of the stabilizers via Majo-
rana fermion parity measurements [21]. A single surface
code qubit can be defined using the checkered square
shown in Fig. 1, where physical qubits are located at
the vertices. We refer to the Pauli operators of the
physical qubits as X, Y , and Z. The faces define the
X⊗n- and Z⊗n-stabilizers of the code, where n is the
number of qubits that are part of the face. The figure
shows an example of a code with code distance d = 5,
but this construction can be generalized to arbitrary

code distances.

Surface code qubits have two distinct types of bound-
aries, usually referred to as rough and smooth edges.
Here, we call them X and Z edges in analogy to the log-
ical Pauli operators XL and ZL that they encode. Sur-
face code qubits can be easily initialized in the logical
+1-eigenstates |0L〉 and |+L〉 of ZL and XL by initial-
izing all physical qubits in the corresponding physical
states |0〉 and |+〉, measuring all stabilizers, and correct-
ing the errors. Conversely, they can be read out in the
XL and ZL basis by measuring all physical qubits in the
X or Z basis, and performing classical error correction.

We define the operator Xedge (Zedge) as the string
of X operators (Z operators) on all physical qubits
along an X edge (Z edge). In the default encoding,
Xedge = XL and Zedge = ZL. The edge tracking proce-
dure that we now introduce essentially modifies which
logical operators are encoded by Xedge and Zedge. Logi-
cal single-qubit Clifford gates map the logical Pauli op-
erators XL, YL, and ZL onto other Pauli operators. In
particular, an H gate maps XL → ZL, YL → −YL, and
ZL → XL. An S gate maps XL → YL, YL → −XL, and
ZL → ZL. Thus, we can replace single-qubit Clifford
gates by a classical tracking procedure. This is essen-
tially the content of the Gottesman-Knill theorem [18],
which states that Clifford gates can be simulated effi-
ciently on a classical computer. For now, we only con-
sider tracking of single-qubit Clifford gates H and S,
whereas CNOT gates are performed explicitly.

In order to combine this tracking scheme with lat-
tice surgery, it will be convenient to use the wide
qubits shown in Fig. 2 instead of the square qubits
that were previously introduced. These qubits have
an X and Z edge on the same side, such that the
logical operators XL, YL and ZL can all be accessed
by lattice surgery from the same side of the qubit.
Compared to square qubits with the same code dis-
tance, this comes at the price of a larger number
of physical qubits for each logical qubit. The fig-
ure also shows an example of edge tracking. The de-
fault encoding is Xedge = XL and Zedge = ZL. An
H gate changes the encoding to Xedge = ZL and
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Zedge = XL. A subsequent S gate modifies it to
Xedge = ZL and Zedge = YL.

3 Lattice surgery with a twist
Edge tracking requires a suitable CNOT gate protocol
in order to be useful for universal quantum computa-
tion. This is provided by twist-based lattice surgery.
It essentially implements the circuit identity shown in
Fig. 3 for edge-tracked qubits. Here, a CNOT between a
control and target qubit corresponds to three measure-
ments: a Z ⊗ Z parity measurement between the con-
trol and an ancilla initialized in the X eigenstate |+〉, a
subsequent X ⊗X parity measurement between ancilla
and target, and a final Z basis readout of the ancilla
qubit. In order to use this protocol for logical CNOTs,
measurements of logical two-qubit parity operators are
required, e.g., operators such as ZL ⊗ ZL, which are
nonlocal operators involving 2d physical qubits.

3.1 Nearest-neighbor CNOT
Let us first discuss standard lattice surgery between two
neighboring wide qubits in the default encoding. Con-
sider the CNOT protocol in Fig. 4. Lattice surgery [19]
is a protocol for fault-tolerant logical parity measure-
ments which only requires the measurement of local sta-
bilizer operators. After initializing an ancilla qubit in
the |+〉 state, lattice surgery between the Z edges of
the control and ancilla qubit in step (2) measures their
ZL⊗ZL parity. This is done by modifying the stabilizers
along the boundaries. The boundary X stabilizers are
merged to form four-qubit stabilizers (orange), and new
Z stabilizers (blue) are introduced. While the stabiliz-
ers still mutually commute, this procedure increases the
total number of stabilizers by one. In other words, the
number of degrees of freedom is reduced by one, and
one bit of information is measured during this proto-

(1) (2) (3)

Zm2

Xm1+m3

Figure 3: A CNOT between a control |c〉 and a target |t〉 is
equivalent to a Z ⊗Z parity measurement between |c〉 and an
ancilla in the |+〉 state, followed by an X ⊗X parity measure-
ment between ancilla and |t〉, and finally a Z basis measurement
of the ancilla. The measurement outcomes determine a Pauli
correction.

col. The measurement outcome of the orange stabiliz-
ers is trivial, as they are products of previously known
boundary stabilizers. The outcome of the blue stabiliz-
ers, on the other hand, is nontrivial. They contain each
boundary qubit exactly once. Therefore, their product

is precisely the operator Z
(control)
edge ⊗Z(ancilla)

edge , which cor-
responds to the ZL⊗ZL parity in the default encoding.
Thus, lattice surgery implements a fault-tolerant par-
ity measurement between logical qubits. Similarly, in
the following lattice surgery step (3), the blue stabiliz-
ers are trivial, and the product of orange stabilizers is

(2)

(3)

Z Z

ZZ

Z

ZZ

XX

X X

X

X X

XL ZL XL ZL

control

ancilla

(1)

ZL XL

target

Figure 4: CNOT by lattice surgery corresponding to the gate
circuit in Fig. 3. (1) All qubits are in the default encoding
Xedge = XL and Zedge = ZL, and the ancilla is initialized
in the |+〉 state. (2) To measure the ZL ⊗ ZL parity be-
tween control and target, the two-qubit boundary stabilizers
are merged (orange), and new Z type stabilizers (blue) are in-
troduced, whose product is precisely the parity. (3) Similarly,
the XL ⊗XL parity between ancilla and target is measured by
the product of new X type stabilizers (orange).
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Figure 5: Long-range CNOT between two wide qubits in the default encoding that are separated by three other qubits. After
initializing two ancillas in the |+〉 state (1), lattice surgery (2) simultaneously measures the ZL ⊗ZL parities between control and
ancilla 1, and ancilla 1 and ancilla 2. This also yields the ZL ⊗ ZL parity between control and ancilla 2, such that ancilla 2 can
be used for an XL ⊗XL parity measurement (3) with the target qubit. At the end of the CNOT protocol, ancilla 1 is read out in
the X basis with outcome m, leading to a Zm correction on the control.

X
(ancilla)
edge ⊗ X(target)

edge . A ZL basis measurement of the
ancilla qubit completes the gate circuit in Fig. 3. The
subsequent Pauli corrections are Clifford gates and can
be handled by edge tracking.

3.2 Long-range CNOT
A similar protocol can be used to perform CNOTs be-
tween logical qubits that are not nearest neighbors, but
separated by some distance. For this, we use lattice
surgery to measure the ZL ⊗ ZL parities between the
control qubits and multiple ancilla qubits simultane-
ously [19, 22, 23]. In the protocol in Fig. 5, two ancilla
qubits are initialized in the |+〉 state, one long ancilla
that spans the entire distance between the control and
target, and another that is adjacent to the X edge of
the target. In step (2), lattice surgery simultaneously
measures the ZL⊗ZL parities between control and long
ancilla, and between both ancillas. This effectively mea-
sures the ZL ⊗ZL parity between control and ancilla 2
as the product of both measurements. Thus, ancilla
2 can be used as the ancilla of the CNOT protocol of
Fig. 3. An XL ⊗ XL parity measurement between an-

cilla 2 and the target qubit, and a subsequent Z basis
readout of ancilla 2 complete the CNOT protocol. Since
ancilla 1 is still entangled with the control qubit, it can-
not be discarded right away, but needs to be measured
in the X basis with outcome m ∈ {0, 1}, which leads to
a subsequent Zm Pauli correction on the control qubit.

Vertical X error strings connecting the (orange) X
edges of the long ancilla qubit can introduce errors to
the CNOT protocol. While the number of possible error
strings increases linearly with the control-target sepa-
ration s, the probability of error strings decreases expo-
nentially with the width of the ancilla. Therefore, the
width needs to increase with O(log s) in order to main-
tain the CNOT gate fidelity, implying a space overhead
of O(s log s) for the long-range CNOT. There are two
factors that contribute to the time overhead of the pro-
tocol: decoding and syndrome readout errors. While
decoding can be done with a runtime that scales with
O(log s) [24], the correction of stabilizer measurement
errors is handled by recording multiple rounds of syn-
drome extraction for one code cycle [25]. This effec-
tively introduces a third dimension to the code. The
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(a) Measurement of XL ⊗XL = X
(ancilla)
edge ⊗ Z(target)

edge

(b) Measurement of XL ⊗XL = X
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edge ⊗ iZ(target)

edge ·X(target)
edge

X

ancilla

Figure 6: XL ⊗XL parity measurements between an ancilla and an edge-tracked target qubit. In (a), edge tracking has changed
the encoding of the target to Xedge = ZL and Zedge = XL. The stabilizer configuration that measures the XL ⊗ XL parity
corresponds to a dislocation line. In (b), the encoding of the target qubit is Xedge = ZL and Zedge = YL. Here, the XL ⊗ XL

parity is measured by a stabilizer configuration that corresponds to a dislocation line that is terminated by a twist defect.

number of recorded measurement rounds for each code
cycle depends on the measurement fidelity. With higher
measurement fidelity, fewer measurement rounds are re-
quired to reach the same logical CNOT gate fidelity. As
with the width of the long ancilla, errors in the time di-
mension are suppressed exponentially with the number
of measurement rounds, i.e., with the code distance in
time, but the number of possible error strings increases
linearly with s. This implies that the number of mea-
surement rounds needs to increase with O(log s). Thus,
the total time overhead is still just O(log s), which is
essentially constant for finite-size systems.

Note that in our figures (such as Fig. 5), the widths
of the ancilla qubits, and therefore their code distances,
are chosen to be smaller than the code distances of the
wide qubits. This may be a valid choice for some com-
putations, since the ancillas only need to survive for
the duration of the CNOT, as opposed to data qubits
that may need to survive for the entire computation. In
practice, however, we expect that the space reserved for
ancilla qubits will be in use for various CNOT gates for
essentially the entire duration of the quantum compu-

tation. Therefore, for most applications, the code dis-
tances of the ancilla qubits and the data qubits should
be chosen to be equal, and the logarithmic space over-
head scaling with the control-target separation can be
ignored. In this case, all logical qubits are protected
against error strings of length (d − 1)/2 during each
code cycle. There is still a logarithmic space overhead
scaling, since the necessary code distance to reach a
certain target error probability at the end of a quan-
tum computation involving n logical qubits scales with
O(logn).

3.3 CNOT between edge-tracked qubits
The previously discussed standard lattice surgery pro-
tocols can be used to measure Zedge ⊗ Zedge and
Xedge ⊗Xedge. However, CNOTs between edge-tracked
qubits may require additional parity measurements.
This is where dislocations and twist defects come into
play.

In Fig. 6, we explore the two additional situations
that may occur for XL ⊗XL parity measurements be-
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ZL YL

ancilla 1

target 3
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Figure 7: Long-range multi-target CNOTs with edge-tracked qubits. The control, ancillas, and target 1 are in the default encoding
Zedge = ZL and Xedge = XL, whereas target 2 and target 3 have been modified by edge tracking, such that XL ⊗ XL parity
measurements require lattice surgery between different edge types. Five ancilla qubits are initialized in the |+〉 state (1) and their
ZL⊗ZL parities with the control qubit are measured simultaneously (2). Ancillas 2 and 4 merely provide long-range communication
and are not used for CNOTs, but are instead read out in the X basis. Subsequent XL ⊗ XL parity measurements (3) use the
previously discussed lattice surgery protocols for edge-tracked qubits.

tween an ancilla and an edge-tracked target qubit dur-
ing a CNOT protocol. In the first situation (a), the XL

operator is defined by the target’s Z edge as a conse-
quence of edge tracking. Thus, lattice surgery needs to

measure the operator X
(ancilla)
edge ⊗Z(target)

edge . For this, the
boundary stabilizers are merged, and new stabilizers are
introduced. One can check that all stabilizers commute,
and that the product of the nontrivial stabilizers indeed
yields XL ⊗XL.

The remaining possibility is that, as a consequence of
edge tracking, none of the edges of the target define its
XL. In (b), the target qubit is in the encoding where
Xedge = ZL and Zedge = YL. Since XL = iZLYL, and
therefore XL = iXedgeZedge, lattice surgery now needs

to measure X
(ancilla)
edge ⊗ iX

(target)
edge · Z(target)

edge . Similar
to the previous cases, stabilizers along the boundary
in (b3) are merged yielding the trivial stabilizers. The
product of the newly introduced nontrivial stabilizers is
again the XL⊗XL parity. Note that the center qubit of
the blue five-qubit operator contributes to the stabilizer
measurement in the Y basis, since it is part of both the
X and the Z edge.

The three different lattice surgeries in panel (3) of
Fig. 5, and panels (a3) and (b3) of Fig. 6 can also be
interpreted as protocols to measure XL⊗XL, ZL⊗XL

and YL ⊗XL between a wide qubit and a square qubit
in the default encoding. The protocol involving YL is
what we refer to as twist-based lattice surgery, since the

five-qubit operator corresponds to a twist defect.
Such a parity measurement can also be used to mea-

sure the product iXedge · Zedge of a qubit, e.g., to read
out the qubit in the YL basis in the default encoding.
For this, an ancilla can be initialized in the |0〉 state,

such that a Y
(qubit)
L ⊗Z(ancilla)

L parity measurement be-
tween qubit and ancilla is equivalent to a YL measure-
ment of the qubit.

This covers all the necessary lattice surgery protocols
for CNOTs between edge-tracked qubits. The ZL ⊗ZL
parity measurements between ancilla qubits and edge-
tracked control qubits are analogous to the XL ⊗ XL

parity measurements in Fig. 6. The concrete imple-
mentation of the required stabilizer measurements de-
pends on the given architecture. While Majorana-based
implementations allow for direct measurements of the
necessary operators, non-topological setups such as su-
perconducting qubits require the use of measurement
qubits. In the latter case, the stabilizer measurement
protocol requires special care in order to avoid corre-
lated errors that lower the effective code distance, as
we show in Appendix A.

3.4 Connection to twist defects
The stabilizer configurations in these modified lattice
surgery protocols feature dislocations and twist defects.
The mixed stabilizers in (a3) correspond to a dislocation
in the surface code. The stabilizer configuration in (b3)
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control 1

control 2 control 3

target 1 target 3

target 2

Figure 8: Example of a two-dimensional arrangement of surface code qubits, where qubits are grouped in blocks of six. The long
ancilla qubits can be used for three simultaneous long-range CNOT gates.

corresponds to a dislocation line between the X edge
of the ancilla and the Z edge of the target which is
terminated by a five-qubit twist defect [15, 16].

Twist-based lattice surgery can also be interpreted in
a Majorana fermion picture. It was pointed out that
the corners of square surface code qubits (as in Fig. 1)
correspond to twist defects [16]. Similarly, the ends
of the X and Z edges of wide qubits can be replaced
by twist defects – i.e., Majorana fermions – such that
the logical operators XL, ZL, and YL are two-Majorana
fermion parity operators. Lattice surgery then effec-
tively implements a four-Majorana fermion parity mea-
surement [16]. In Fig. 6 (b3), these four Majorana
fermions are in the bottom left and right corners of the
target, and in the top left and right corners of the an-
cilla. The twist defect corresponds to the remaining
Majorana fermion residing between the X and Z edge
of the target qubit, which is not part of the parity mea-
surement.

3.5 Long-range multi-target CNOT
The simultaneous ZL⊗ZL parity measurements of long-
range CNOTs can be used for multi-target CNOTs, i.e.,
for multiple CNOTs with the same control, but different
target qubits. An example is shown in Fig. 7, where five
ancillas are used to perform three CNOTs with three
edge-tracked targets simultaneously. Step (2) shows the
simultaneous measurement of ZL ⊗ ZL parities of six

neighboring qubits, which correspond to one control and
five ancilla qubit. This protocol effectively measures the
ZL⊗ZL parities of all pairs of qubits, and in particular
of the control and each ancilla qubit. Thus, each of
the five ancilla qubits can be used for XL ⊗XL parity
measurements with target qubits. While ancillas 1, 3,
and 5 are used for CNOTs with targets 1, 2, and 3,
ancillas 2 and 4 merely bridge distances between distant
qubits.

Thus, by simultaneously initializing multiple ancillas,
lattice surgery provides long-range multi-target CNOTs
with edge-tracked qubits with the same time overhead
as single CNOTs. At the end of the protocol, ancillas
that are used for XL ⊗ XL parity measurements with
target qubits are read out in the Z basis, whereas an-
cillas used to bridge long distances are read out in the

XL ZL

XL ZL

XL ZL

XL ZL

(a) (b)

Figure 9: Double-sided qubits encode two logical qubits using
(a) 2d2 + d − 1 or (b) 2d2 − d physical qubits. The left and
right edges correspond to the logical operators ZL ⊗ ZL and
XL ⊗XL of both encoded qubits, respectively.
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Figure 10: Example of the 15-to-1 magic state distillation protocol using long-range multi-target CNOTs via lattice surgery. By
appropriately partitioning the long ancilla qubit, it can be used for each of the five multi-target CNOTs of the protocol.

X basis. Multi-target CNOTs are particularly useful
for logical T gates, as magic state distillation schemes
typically consist of many multi-target CNOTs. These
complete the universal gate set of our scheme, as we
discuss in the following section.

4 2D arrangement of logical qubits
So far, we have considered logical qubits arranged on
a line. The lattice-surgery-based CNOT gates can also
provide long-range connectivity in two dimensions. For
this, it will be convenient to use the space of wide qubits
to encode two logical qubits instead of just one. The
double-sided qubits shown in Fig. 9 reduce the space
overhead from ∼ 2d2 physical qubits for each logical
(wide) qubit back to ∼ d2 physical qubits, similar to
the square qubits in Fig. 1. The downside of double-
sided qubits is that state initialization and readout is
more complicated, as the two encoded qubits cannot be
measured independently. However, one can use lattice
surgery to initialize and read out in any Pauli basis. For
instance, a qubit can be initialized in the |0〉 state by
initializing a standard ancilla encoding a single qubit in
the |0〉 state and performing lattice surgery via the Z
edges of both qubits. Readout is done the same way,
using the appropriate edge of the qubit. Should one
require fast initialization and readout, it is still possible
to use wide qubits instead of double-sided qubits.

An example of a 2D arrangement of double-sided
qubits is shown in Fig. 8, where they form blocks of
six logical qubits. The space between blocks is used for
ancilla qubits for long-range CNOT gates. The separa-
tion between blocks not only sets the maximum width
of the ancilla qubits, but also influences the number

of multi-target CNOTs that can be performed simul-
taneously. The larger the separation, the more ancilla
qubits can fit between the qubit blocks. The example
in Fig. 8 shows three simultaneous CNOT gates, where
the space between qubit blocks allows for two parallel
“lanes” of CNOT ancillas. Thus, a larger separation be-
tween qubit blocks increases the connectivity, but also
the space overhead.

4.1 Example: Magic state distillation
Having discussed the implementation of the logical Clif-
ford gates in our scheme, the remaining gate for univer-
sal quantum computation is the logical T gate. One
possibility to implement the logical T gate using physi-
cal T gates and logical Clifford gates is magic state dis-
tillation [20]. The aim of this scheme is to generate an
encoded magic state |m〉 = (|0〉 + eiπ/4 |1〉)/

√
2, which

corresponds to a |+〉-state on which a T gate has been
performed. A CNOT gate between |m〉 and a target
qubit, followed by the measurement of |m〉 corresponds
to a logical T gate on the target qubit, up to a Clifford
correction.

However, it is only possible to prepare physical magic
states, which are moreover faulty states |m̃〉, i.e., gener-
ated using an imprecise physical T gate. These physical
states can be converted into logical faulty magic states
|m̃〉 via state injection [19]. Magic state distillation pro-
tocols take many faulty magic states and convert them
to fewer, but more precise magic states. These protocols
typically consist of many multi-target CNOT gates.

One example of a magic state distillation protocol
is shown in Fig. 10 for the example of 15-to-1 conver-
sion [20], which converts 15 faulty magic states into
one better magic state. It consists of 34 CNOT gates
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color code wide surface code double-sided surface code
space overhead + low (≈ 3

4d
2 or 1

2d
2) – high (≈ 2d2) ∼ moderate (≈ d2)

initialization & readout + fast X,Y, Z ∼ fast X,Z; slow Y – slow X,Y, Z
stabilizer weight – high (six or eight) + low (four) + low (four)

Table 1: Comparison between color-code-based [13, 23] and surface-code-based schemes.

grouped into five multi-target CNOTs. The figure also
shows an arrangement of qubits that can be used to
implement the protocol. By appropriately partition-
ing the long ancilla qubit, each of the five multi-target
CNOTs can be performed using the protocol in Fig. 7.
We provide the detailed stabilizer configurations for this
15-to-1 conversion in Appendix B. The space overhead
of the 15-to-1 conversion depends on the code distances
of the magic states and the width of the ancilla. The
time overhead is mostly determined by the five multi-
target CNOTs, which require two code cycles (includ-
ing repetitions accounting for stabilizer measurement
errors) for their parity measurements by lattice surgery.

5 Conclusion
We have demonstrated that edge tracking can be used
to eliminate the time overhead of logical single-qubit
Clifford gates in surface codes, as should be expected
considering the Gottesman-Knill theorem. Twist-based
lattice surgery provides long-range multi-target CNOTs
with a time overhead that only scales with O(log s) of
the control-target separation s, and a space overhead
that scales with O(s log s). Compared to color code
qubits, the surface code qubits used in our scheme re-
quire more physical qubits (∼ d2) for each logical qubit
with code distance d, but – with the exception of twist
defects – only require the measurement of weight-four
stabilizers. Our scheme can provide full 2D connectivity
between logical qubits, where the degree of connectiv-
ity is governed by the separation of qubit blocks, and
therefore by the space overhead. Together with magic
state distillation, our scheme allows for fault-tolerant
universal quantum computation.

One may be wondering whether there is still any ad-

Figure 11: Example of a Clifford circuit that is reduced to Pauli
product measurements.

vantage offered by the transversal single-qubit Clifford
gates of color codes and the color-code-based lattice-
surgery scheme presented in Ref. [23]. A comparison
of these codes is shown in Tab. 1. While color codes
require the measurement of higher-weight stabilizers,
they offer fast qubit readout in all Pauli bases, and
a lower space overhead of ∼ 3

4d
2 physical qubits per

logical qubit for 6.6.6 color codes, or even ∼ 1
2d

2 for
4.8.8 color codes. So if the measurement of higher-
weight stabilizers is not substantially more difficult in
a given physical implementation, as might be the case
for Majorana-based qubits, it is advantageous to use
the color-code-based scheme. In other implementations,
such as superconducting qubits, the difficulty of higher-
weight stabilizer measurements shifts the preference to-
wards surface-code-based architectures.

An important point is that the Gottesman-Knill the-
orem allows for the classical tracking of all Clifford
gates, including CNOT gates. As CNOT gates map
X⊗1→ X⊗X and 1⊗Z → Z⊗Z, tracking of CNOTs
does not preserve the locality of the logical operators, in

Figure 12: Circuit identity for the measurement of the Pauli
product operator Z ⊗Y ⊗Z ⊗X using an ancilla and a multi-
target CNOT gate. The circuit identity exploits the fact that
the roles of control and target can be reversed by the application
of Hadamard gates before and after a CNOT gate. Any product
of Pauli operators can be measured this way.
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Figure 13: Tunnel coupling configurations for the measurement of various check operators using a square network of Majorana-based
tetron qubits, as introduced in Ref. [21].

contrast to single-qubit Clifford gates. By tracking all
Clifford gates, any layer of Clifford gates followed by n
single-qubit measurements can always be compressed to
n measurements of nonlocal products of Pauli operators
without any preceding gate operations (see Fig. 11 for
an example). With distilled magic states as a resource,
any non-Clifford gate corresponds to trackable Clifford
gates and a measurement of the magic state. In this
case, Pauli product measurements are the only hard-
ware operations that need to be performed explicitly.
The fault-tolerant measurement of any nonlocal Pauli
product can be implemented using an ancilla qubit and
a multi-target CNOT gate on edge-tracked qubits. An
example of such a protocol is shown in Fig. 12 for the
measurement of the Pauli product ZL⊗ YL⊗ZL⊗XL.
Thus, any quantum computation can be performed us-
ing only two types of hardware operations: distillation
of resource states and Pauli product measurements via
multi-target CNOT gates on edge-tracked qubits.

A crucial problem of quantum information theory is
the optimization of quantum circuits in order to mini-
mize the space-time overhead of any quantum computa-
tion. However, any circuit optimization depends on the
constraints set by the quantum computer hardware and
the code used for error correction. Based on the existing
schemes for surface-code and color-code quantum com-
putation, the following minimal assumptions concern-
ing the underlying hardware and the logical operations
accessible by the code appear reasonable: (i) The un-
derlying hardware can measure local products of phys-
ical Pauli operators. (ii) The quantum error-correcting
code allows for the measurement of nonlocal products
of logical Pauli operators. (iii) Resource states can be

generated for the implementation of logical non-Clifford
gates. Based on these constraints, an important circuit
optimization problem is to find heuristics that minimize
the number of required resource states and the number
of layers of Pauli product measurements, as these are
the only operations that cannot be relegated to a clas-
sical computer.

Open questions related to our surface-code scheme
include the efficient decoding of wide, long and double-
sided qubits, estimations of their survival times, and
implementations of our scheme in a concrete phys-
ical system. Our scheme may also be adapted to
surface-code quantum computing with twist-based tri-
angle codes [26], in order to avoid the reorientation of
triangles, and to further reduce the space overhead of
surface codes. We hope that our lattice-surgery-based
approach can contribute to ongoing efforts to realize a
surface-code quantum computer.
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A Stabilizer measurements in concrete
implementations
Our twist-based surgery scheme requires the measure-
ment of certain operators that are products of Pauli op-
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Figure 14: Circuits for the stabilizer readout using an ancillary
measurement qubit placed in the center of the stabilizer.

erators on up to 5 qubits. How these operators are mea-
sured in practice depends on the concrete hardware used
for quantum computing. In this appendix, we show how
these measurements could in principle be implemented
with Majorana-based qubits, and with non-topological
qubits such as superconducting qubits that require the
use of ancillary measurement qubits for stabilizer read-
out.

A.1 Majorana-based qubits
The primary operation of Majorana-based qubits is the
measurement of local products of Majorana operators,
which correspond to local products of Pauli operators.
Thus, they can be straightforwardly used to measure

the stabilizers in our twist-based surgery scheme. In
Fig. 13, we show how this can be done in a network
of tetron qubits introduced in Ref. [21]. In a nutshell,
these are qubits that are encoded in the doubly degen-
erate ground-state space of four Majorana zero modes
γ1 . . . γ4 that are localized at the ends of two topological
superconducting nanowires which are put into a fixed
parity sector (γ1γ2γ3γ4 = −1) by a non-topological su-
perconductor bridging the two wires. The Majorana
operators are self-conjugate γ = γ† and mutually anti-
commute {γi, γj} = 2δi,j . Therefore, the Pauli opera-
tors of each tetron qubit can be chosen as Z = iγ1γ2
and X = iγ2γ3.

In a square lattice of tetrons, each tetron qubit is
connected to a network of semiconductors. Local prod-
ucts of Majorana operators are measured by open-
ing tunnel couplings between tetrons and the semicon-
ductor network, such that the tunnel couplings form
closed paths. The semiconducting wire segments be-
tween tetrons form quantum dots whose energy levels
are shifted by virtual processes that tunnel electrons
around the closed path. Since these processes involve
each Majorana operator along the path exactly once,
spectroscopy on any of the dots can be used to measure
the product of the Majorana operators along the path.
In Fig. 13, we show tunnel coupling configurations that
can be used to measure X and Z stabilizers, dislocation
operators, and twist operators. For the twist operator,
in particular, additional Majoranas γa and γb in a fixed
parity sector iγaγb = 1 are used as so-called coherent
links in order to form the closed path. More details on
operator measurements in tetron networks are found in
Refs. [21, 23].

A.2 Non-topological qubits
For non-topological qubits such as superconducting
qubits, Pauli products cannot be measured directly, but
are usually read out using ancilla qubits (measurements
qubits) that are located in the center of each stabilizer
operator, such as in the scheme of Ref. [14]. These
measurement qubits are entangled via two-qubit gates
with each data qubit that is part of the stabilizer. Af-
terwards, they are read out to yield the corresponding
Pauli product. The readout can be done using the cir-
cuits shown in Fig. 14. Depending on the elementary
operations accessible in a given hardware, a different
(but equivalent) circuit may be used, but in any case
the readout of each stabilizer requires up to 5 two-qubit
gates which need to be performed in succession.

One practical problem of this approach to stabilizer
measurements is that due to the use of two-qubit gates,
single errors on measurement qubits can spread to mul-
tiple data qubits. This can lead to correlated errors
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which are referred to as hook errors [25]. In particular,
Z errors on measurement qubits of Z stabilizers can lead
to correlated Z errors on the surrounding data qubits.
Similarly, X errors on X measurement qubits lead to
correlated X errors. Since three errors are equivalent to
just one error (up to a multiplication with a stabilizer),
the worst case is the case of one error on a measurement
qubit leading to two errors on data qubits. Since these
errors will occur on the first two (or last two) qubits
that were part of entangling two-qubit gates, the or-
der of the two-qubit gates in the circuits of Fig. 14 is
important.

The aim is to avoid these correlated errors from low-
ering the effective code distance. That is, we need to
find an ordering of the two-qubit gates, such that a logi-
cal operator of a distance d qubit can only be formed by
no fewer than d errors. For square surface code patches
(as in Fig. 1), this is done by orienting the ordering of
CNOT gates for X stabilizers in an N shape (or in a N
shape), and for Z stabilizers in a Z shape (or Zshape),
as was shown in Ref. [27]. This guarantees that cor-
related Z errors only form in the horizontal direction,
while logical Z strings are all oriented vertically. Simi-
larly, correlated X errors form horizontally, which does
not contribute towards a vertical logical X string.

However, in our scheme, we use the double-sided
qubits of Fig. 9, which have Z and X operators in both
the horizontal and vertical direction. Thus, it is not suf-
ficient to assign one orientation to the Z stabilizers and
the other to X stabilizers. In fact, the left half of the
double-sided qubit looks like the square qubit in Fig. 1,
i.e., Z stabilizers should be oriented in a Z shape, and X
stabilizers in an N shape. In contrast, the right half of
the double-sided qubit looks like a rotated square qubit,
i.e., Z stabilizer should be oriented in an N shape, and
X stabilizers in a Z shape. In the crossover region in
the center, both logical X and Z operators are vertical
strings, such that both Z and X stabilizers should be
oriented in a Z shape. This motivates the first condition
for a valid ordering shown in Fig. 15a. Z stabilizers in
the blue region should be oriented in a Z shape, and in
an N shape outside of the blue region. X stabilizers in
the red region should be oriented in a Z shape, and in
an N shape outside of the red region. One can verify
that with this choice of orientations, no logical operator
string can be formed with fewer than d physical errors.

The only remaining problem is the scheduling of the
two-qubit gates. Since the largest check operator is the
5-qubit twist defect, each two-qubit gate needs to be
assigned to one of 5 time steps. This implies two other
conditions on the ordering of the two-qubit gates. Since
each data qubit can only be part of one two-qubit gate
in a given time step, the four time steps assigned to
the two-qubit gates that a given data qubit is part of

a
b
c
d

a 6= b 6= c 6= d

a

c

b

d

(a < b) ∧ (c < d)

(a > b) ∧ (c > d)
or

(a) Condition 1

(b) Condition 2 (c) Condition 3

Figure 15: Three conditions for a valid ordering of two-qubit
gates during stabilizer readout. (a) In the blue region, the
Z stabilizers are oriented in a Z shape, and outside of this
region in an N shape. In the red region, the X stabilizers are
oriented in a Z shape, and outside of this region in an N shape.
This ensures that hook errors do not lower the effective code
distance. (b) The time steps a, b, c, and d, that are assigned to
the (up to) four two-qubit gates of one data qubits need to be
all different. (c) For all edges between neighboring stabilizers,
the condition shown in the figure needs to be fulfilled to ensure
that the sequence of two-qubit measurements reproduces the
desired stabilizer measurements.

need to be all different, which is the second condition
in Fig. 15b.

Finally, one needs to ensure that the sequence of
two-qubit measurements reproduces the desired stabi-
lizer measurements. For this, consider the action of the
CNOT gates of the readout circuit for a Z stabilizer in
the Heisenberg picture (or see Appendix B of Ref. [14]).
The aim of the readout circuit is to map the Z opera-
tor of the measurement qubit onto the operator Z⊗5 on
the measurement qubit and all four data qubits. Since
a CNOT maps 1⊗Z onto Z ⊗Z (where the first qubit
is the control and the second is the target), the circuit
in Fig. 14 achieves exactly that. However, notice that
two CNOT gates of the readout circuit of a neighbor-
ing X stabilizer also act on the Z operators of the data
qubits. These may map the operator onto an operator
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Figure 16: Possible ordering of two-qubit gates that fulfills the three conditions shown in Fig. 15. This stabilizer configuration is
the most general, as it involves bulk stabilizers, a dislocation line, and a twist defect. It corresponds to a twist-based lattice surgery
between a double-sided qubit and a standard rectangular qubit.
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that involves the Z operator of the wrong measurement
qubit, i.e., the measurement qubit of the neighboring
stabilizer. This needs to be avoided, as this neighbor-
ing measurement qubit is measured in X, which anti-
commutes with the aforementioned operator, leading to
random measurement outcomes. For concreteness, let
us refer to the time steps assigned to the two CNOTs
of the Z stabilizer in question as a and c, and to the
CNOTs of the X stabilizer as b and d, as in Fig. 15c.
There are only two choices of time steps that map the
Z operators of the measurement qubit to the correct
Z⊗5 operator. The first possibility is that a > b and
c > d, such that the two CNOTs of the neighboring
X stabilizer have already been performed, which pre-
cludes them from acting on the Z operator of the data
qubit. The second possibility is that a < b and c < d,
such that the mapping is performed twice: The first
CNOT maps 1 ⊗ Z to Z ⊗ Z, and the second CNOT
maps Z ⊗ Z back to 1⊗ Z. This is the third condition
shown in Fig. 15c. It needs to hold for all edges between
neighboring stabilizers.

It is possible to find an ordering of two-qubit gates in
5 time steps (due to the 5-qubit twist operators) that
fulfills all three conditions. Such a possibility is shown
in Fig. 16. The figure shows the most generic situa-
tion which involves the bulk stabilizers of standard and
double-sided qubits, as well as a dislocation line and a
twist defect.

B Magic state distillation protocol
Here, we explicitly show the lattice surgery protocols for
the multi-target CNOTs part of the 15-to-1 magic state
distillation scheme in Fig. 10. Figures 17 and 18 show
the five multi-target CNOTs of the distillation proto-
col, where the control and target qubits are highlighted
in blue and orange, respectively. Note that the default
encodings of the X and Z edges of qubits 5, 9 and 11
are inverted in this protocol. The figures only show
the ZL ⊗ ZL parity measurements. The subsequent
XL ⊗ XL parity measurements are done via lattices
surgeries between the highlighted orange edges and the
adjacent ancilla qubits.
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Figure 17: First and second multi-target CNOT of the distillation protocol in Fig. 10.
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Figure 18: Third, fourth and fifth multi-target CNOT of the distillation protocol in Fig. 10.
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