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We present a self-consistent real space formulation of spin-fluctuation mediated d-wave pairing. By calculating
all relevant inhomogeneous spin and charge susceptibilities in real space within the random phase approximation
(RPA), we obtain the effective pairing interaction and study its spatial dependence near both local potential and
hopping impurities. A remarkably large enhancement of the pairing interaction may be obtained near the impurity
site. We discuss the relevance of our result to inhomogeneities observed by scanning tunneling spectroscopy on
the surface of cuprate superconductors.
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I. INTRODUCTION

Scanning tunneling spectroscopy (STS) experiments on
surfaces of several high-Tc materials1 have discovered that the
electronic structure of at least some of the cuprate supercon-
ductors is strongly inhomogeneous in real space. Modulations
observed include checkerboard local density of states (LDOS)
patterns that peak at biases near the local gap energy, together
with strong gap modulations on nanometer length scales.2–8

While the latter modulations appear to be random in character
and driven by disorder, the STS conductance maps contain
important correlations of gaps with other physical observables.
For example, the size of the local gap was found to be positively
correlated with atomic scale defects, thought to be interstitial
oxygen dopants9 (see, however, Ref. 10). This observation
inspired a reexamination of the effect of an impurity in these
systems, since it had been anticipated that an oxygen, which
donates two holes to the CuO2 plane, would locally overdope
the system and lead to a smaller gap in the neighborhood of
such a dopant impurity. The positive correlation between the
putative oxygens and the observed spectral gap led Nunner
et al.11,12 to propose that the dopants might be enhancing the
pair interaction on the atomic scale. This might occur if the
local electronic structure was modified significantly and seems
to be consistent with a number of other recent STS results.13–17

Nunner et al.11 observed on phenomenological grounds that
this simple assumption of dopant atoms modulating the pair
interaction could explain a large number of observed correla-
tions; for example, it correctly reproduces the anticorrelation
of coherence peak height and peak energy, the correlation of
impurity position with gap size, and the detailed frequency
dependence of the O:LDOS(ω) correlation. In almost all
treatments of disorder in superconductors, impurities are
assumed to simply scatter electrons via a screened Coulomb
potential, rather than modify the pair interaction locally. The
well-known suppression of the gap due to pair breaking is
of course observed in such theories if they treat the gap self-
consistently; this effect is distinct, however, from a modulation
of the underlying interaction, which may be expected to
influence the gap in a potentially new way. Exceptions

to the standard approach in the literature on conventional
superconductors include Ref. 18, where the notion of a local
pair interaction was considered in some specialized contexts;
from these works, it is clear that these effects will be largest
in systems where the coherence length is small, like the
cuprates.

The goal of such theories has been to use the STS data
to potentially deduce which changes in electronic structure
influence the pairing interaction locally, and thereby learn
about the origin of pairing itself in these systems. For such
a program to be successful, one needs an understanding of
the location of the dopants and the changes in electronic
structure that they cause, as well as a microscopic model
capable of including these changes. Thus far some work
has been performed on the first question. For example, He
et al.19 performed density functional theory (DFT) supercell
calculations to find the position of lowest energy for an O
dopant in a Bi2Sr2CaCu2O8 unit cell and noted that the
interstitial atom caused a rigid tilting of the CuO4 half
octahedron giving rise to an additional weakly hybridized state
at −1 eV, which coupled well to the STM tip.

In addition, considerable model-based work has been done
on the second question, that of determining how an impurity
might actually affect the pairing interaction. In the strong
coupling limit, superconductivity is sometimes treated within
slave boson mean field theories of the t-J model,20,21 whereby
the pairing interaction is provided by the superexchange
interaction Jij itself. Assuming some random distribution of
exchange couplings,22–24 results were obtained for the gap
maps and other observables, which were similar to those found
by Nunner et al.11 The study of the microscopic origin of
pairing interaction modulations was begun using the strong
coupling approach by Máska et al.,25 who assumed that the
presence of the dopant atoms induces a position-dependent
shift of the atomic levels in the CuO2 plane, and then
calculated the locally modified superexchange interaction J

between copper ions in the presence of an impurity from a
perturbation expansion of the one-band Hubbard Hamiltonian
up to second order. Within this framework, the diagonal
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disorder in the plane always leads to an enhancement of
J ; accordingly, with the assumption that pairing is due
to superexchange, the pairing superconducting gap always
increases in the vicinity of the dopant atoms, as assumed
phenomenologically in Ref. 11. However, Johnston et al.26

argued based on cluster model calculations for the three-band
Hubbard Hamiltonian,27 which account explicitly for the
Cu-O hopping processes, that electrostatic modifications due
to the presence of the oxygen dopants locally suppress J .
An enhancement of J was only possible if they assumed
that electronic coupling to local phonon modes was strongly
modified by the dopants. Foyevstova et al.28 returned to the
perturbation theory approach in the three-band model and
showed explicitly that whether an impurity enhances or sup-
presses the local exchange in this somewhat more realistic case
depends explicitly on details of the Cu-O model parameters. A
different approach was taken by Khaliullin et al.29 including
polarization effects due to covalency between the dopant and
apical oxygen electrons. In their case, an increase in the su-
perexchange coupling was found as a result of local screening
effects.

For completeness, it should be mentioned that a recent cal-
culation within the Gutzwiller approximation to the t-J model
including disorder also studied the local disorder-induced
variations in the effective super-exchange couplings J .30

This study, however, focused on the consequences of charge
reorganization and the doping dependence of disorder-induced
magnetism and did not include the explicit J enhancements
caused by renormalized local Coulomb interactions.25

Assuming, as in the strong coupling case, that the mean-
field interaction can be taken as a local pairing strength is
intuitively reasonable, but the approximation is even less well
controlled than in the homogeneous case. It should be possible
to study this problem from the weak coupling side as well, in an
approach where the effective interaction in the particle-particle
channel can be clearly defined, and which has the additional
advantage that it can be more easily coupled to ab initio results,
which provide the needed structural and electronic structural
details for a given system. An “average” version of the
calculation envisaged was performed by Foyevstova et al.,31

who calculated the total singlet spin-fluctuation interaction32

for a Bi2Sr2CaCu2O8 system with and without an O dopant; in
this case, the defect was indeed found to enhance the overall
pairing.

Nevertheless, one would like to understand the influence
of an impurity on pairing at the local level. In this work,
we continue this program from the microscopic side by
formulating the full RPA particle-particle vertex in the singlet
channel in real space for a general inhomogeneous system.
This interaction has a somewhat more complicated mathemat-
ical form compared to the popular Berk-Schrieffer fluctuation
exchange expression.32,33 We then evaluate the real pairing
interaction for a single impurity in a Hubbard model, and show
that remarkably large enhancements of pairing strength can be
obtained near a dopant impurity. The spin-fluctuation model
produces a characteristic shape of the pairing modulation near
a strong impurity which is reflected in the LDOS pattern
observable by STM. In our conclusions, we discuss the
prospects for observing this behavior.

II. MODEL AND METHOD

In the initial step of the calculation of the effective real
space pairing potential, we obtain the electronic densities
calculated self-consistently in the normal state using a mean-
field approximation to the one-band Hubbard model:

H0 =
∑
i,j,σ

ti,j c
†
iσ cjσ +

∑
iσ

(U 〈niσ 〉 − μ)niσ̄

+
∑
iσ

Vimpδ(ri − rimp)niσ . (1)

Here, c†iσ refers to creation of an electron with spin σ at lattice
site i, and niσ is the number operator of spin σ particles at site
i. The hoppings ti,j are included to nearest t = 1, and next-
nearest neighbor sites t ′ = −0.3. Note that this Hamiltonian
also contains the impurity potential Vimp at a site placed at
position rimp. A diagonalization of Eq. (1) allows us to obtain
the effective interaction Veff(i,j ), which in real space can be
written as

Veff(i,j ) = U + U 3χ↓↓χ↑↑

1̂ − U 2χ↓↓χ↑↑

∣∣∣
(i,j )

+ U 2χ↓↑

1̂ − Uχ↓↑

∣∣∣
(i,j )

.

(2)

The effective interaction (2) is due to longitudinal and
transverse spin fluctuations using the approach of Berk and
Schrieffer,32 and the derivation is given in Appendix. The
susceptibilities entering Eq. (2) are real-space matrices given
by

χσσ ′
ij =

∑
m,n

umiσ umjσunjσ ′uniσ ′
f (Emσ ) − f (Enσ ′)

Enσ ′ − Emσ + iη
, (3)

in terms of the eigenvectors umσ and eigenvalues Emσ obtained
in the diagonalization of Eq. (1).

It is useful now to consider the partial Fourier transform
of the susceptibility with respect to relative coordinate r =
ri − rj , leaving explicit dependence on one spatial variable ri ,

χ (q,ri) =
∑

rj

eiq·(ri−rj )χ (ri ,rj ). (4)

Note that Eq. (2) reduces to the usual form in the case
of translational invariance, χ (q,ri) = χ (q). In addition, it is
worth remarking that the convention used here is slightly
different from other works, e.g., Ref. 38 where the mixed
susceptibility is a function of the center of mass variable
(ri + rj )/2.

After the calculation of the effective spin-fluctuation me-
diated pairing, the densities 〈niσ 〉 and superconducting gap
values �i,j are calculated self-consistently from Eq. (1) with
the addition of a standard BCS singlet pairing term, i.e., from
the Hamiltonian

HSC = H0 +
∑
i,j

[
�i,j

2
(c†i↑c

†
j↓ − c

†
i↓c

†
j↑) + H.c.

]
, (5)

where �i,j = Veff(i,j )
2 〈cj↓ci↑ − cj↑ci↓〉. The factors of 1/2

arise from the restriction to the singlet pairing channel, cf.
Appendix.

054507-2



LOCAL MODULATIONS OF THE SPIN-FLUCTUATION- . . . PHYSICAL REVIEW B 86, 054507 (2012)

III. RESULTS

A. Pointlike nonmagnetic impurity

In Fig. 1(a), we show the normal state electron density, ni =
〈ni↑ + ni↓〉 as a function of site i around a single nonmagnetic
pointlike impurity. In contrast to the superconducting case,
in the normal state, there is never in this model any induced
local magnetization due to the absence of the impurity bound
state near the Fermi level.34–37 The effective pairing interaction
between the nearest-neighbor sites is shown in Fig. 1(b), where
at each site, we show the average interaction to the four nearest
neighbors: Vsc(i) = 1

4

∑
j Veff(i,j ), j ∈ {i ± x̂,i ± ŷ}. It is

seen that the effective pairing interaction is suppressed at the
impurity site, but enhanced on a quartet of small regions close
to the impurity. The response of the system to a perturbation
is dominated by the peaks in the homogeneous susceptibility,
although because the perturbation is space dependent all wave
vectors are coupled. The strength of the pairing interaction is
given by the real part of Veff [see Eq. (2)] at ω = 0. In the
present band structure, the real part of the full susceptibility
χRPA(q,ω) = χ0(q,ω)/[1 − Uχ0(q,ω)] at ω = 0 is peaked at
incommensurate wave vectors Q + �q, where Q = (π,π ) and
�q � (±0.5π,0),(0, ± 0.5π ). The spatial modulation of the
nearest-neighbor pairing shown in Fig. 1(b) is determined by
�q, giving rise to the quartet of peaks at roughly four lattice
spacings from the impurity site. With the effective pairing
interaction given in Eq. (2), we can calculate self-consistently
the densities 〈niσ 〉 and the superconducting d-wave order
parameter �i,j from HSC, see Eq. (5). For all results shown in
this paper, we include the twelve closest sites j around each
site i in Veff(i,j ). The resulting spatial structure of the density
modulations and the superconducting gap variations are shown
in Figs. 2(b) and 2(d). The superconducting order parameter is
averaged over the four nearest-neighbor sites �i = 1

4 [�i,i+x̂ +
�i,i−x̂ − �i,i+ŷ − �i,i−ŷ]. For comparison, we also calculated
the densities and the d-wave order parameter in a system
containing the same impurity, but with a homogeneous pairing
potential calculated from a clean system with the same pa-
rameters, giving a nearest-neighbor pairing interaction Vsc =
−0.43. The result is shown in Fig. 2(c), where it is seen that no
enhancement of the d-wave gap is present, as opposed to the
case of spin-fluctuation mediated pairing [see Fig. 2(d)], where

FIG. 1. (Color online) (a) Local charge density ni in the normal
phase prior to calculation of the effective pairing interaction. For
the results presented here, the parameters are U = 2.2, t ′ = −0.3
(all energies are given in units of t), and doping x = 0.15. A
strong pointlike nonmagnetic impurity (Vimp = 10) is situated at
site (ximp,yimp) = (13,13). (b) Effective pairing interaction between
nearest neighbors for the same system as in (a). For each site, the
average potential to the four nearest neighbors is plotted.

FIG. 2. (Color online) (a) Local charge density ni in a system
with a strong nonmagnetic impurity (Vimp = 10) and a spatially
homogeneous superconducting pairing potential Veff = −0.43. Pa-
rameters are U = 2.2, t ′ = −0.3, and doping x = 0.15. (b) Same as
(a) but in the case of the spatially inhomogeneous spin-fluctuation
mediated pairing potential Veff(i,j ) from Fig. 1(b). (c) and (d) Local
superconducting d-wave order parameter corresponding to the two
cases in (a) and (b), respectively. (e) and (f) Local density of states
at energy E = 0.78 (close to maximum gap value) corresponding to
the two cases in (a) and (b), respectively.

the d-wave gap is locally enhanced and the spatial structure is
similar to the structure of the effective pairing potential from
Fig. 1(b). Note that the amplitudes of the pairing interaction
Veff and superconducting gap � modulations are similar. The
spatial scale of the modulation of the pairing interaction is
determined by the incommensurate peaks in the real part of
the full susceptibility, and is of order a unit cell spacing a. In
a clean superconductor, the order parameter response to such
a local perturbation will then be smeared out over a coherence
length ξ0, which in a realistic system is larger than the atomic
lattice constant a;11 here, however, we have shown results
for an artificially large gap, corresponding to a coherence
length ξ0 � a, in order to visualize the effect of the condensed
state more clearly. The incommensurate positions are not very
sensitive to the strength of U , and even though we have tuned U

to a value that gives an artificially large gap this does not affect
the spatial structure of the enhanced gap around the impurity.

The LDOS is suppressed at the impurity site both in the
case of a constant effective interaction and in the case of
spin-fluctuation mediated pairing, see Figs. 2(e) and 2(f).
However, whereas the LDOS in the case of constant effective
interaction is roughly constant for all sites away from the
impurity, the picture is different when the pairing interaction
is due to spin fluctuations. In the latter case, we find significant
LDOS enhancements at energies close to the gap value at the
same quartet of real space regions seen in Figs. 1(b) and 2(d).
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FIG. 3. (Color online) Maximum of the superconducting d-wave
gap, �max, as a function of Coulomb interaction U for pointlike
nonmagnetic impurities and a homogeneous system. For all runs, the
system displays no antiferromagnetic order, since the critical U in
this system is Uc2 > 2.4. The inset shows the profile of the d-wave
gap as a function of site (x,yimp).

From Fig. 2(d), it is clear that certain sites close to the
impurity site exhibit a local maximum of the superconducting
gap. In Fig. 3, we show how this maximum gap value depends
on both the strength of the Coulomb interaction U and the im-
purity potential Vimp. For reference, we have plotted the gap in
a homogeneous system, which is also enhanced upon increased
U . This effect arises simply from the singularity in the RPA
susceptibility. Since we tune the system towards the singularity
from below in the paramagnetic phase, it is the last term in the
effective interaction of Eq. (2) that is the most important. In
the system containing a single impurity, the gap is strongly
enhanced as was shown in Fig. 2(d). The local structure of the
gap enhancement is similar for a strong and a weak impurity
as seen from the inset in Fig. 3, which shows a profile of the d-
wave gap through the impurity site. However, the enhancement
is much more pronounced in the strong impurity case.

The local enhancement effect can be understood from
spatially dependent variations in the bare transverse spin
susceptibility. Due to the finite value of next-nearest neighbor
interaction, t ′ = −0.3, the susceptibility displays splitting
in reciprocal space into incommensurate peaks and a broad
maximum around the ordering vector Q = (π,π ). We Fourier
transform the real-space susceptibility to obtain χ↑↓(q,ri) and
map out the change in the magnitude of the susceptibility
near Q as a function of site ri . To account for the broadening
of the peak and to minimize finite-size effects, we average
over a region containing Q and the eight closest q values
around Q to obtain 〈χ0

↑↓(Q,ri)〉. The result of this procedure
is given in Fig. 4. It is seen that due to local variations in the
bare transverse spin susceptibility, the quartet of points with
enhanced pairing in Figs. 1(b), 2(d), and 2(f) are characterized
by being locally closer to the Stoner instability Uχ0

↑↓(Q) → 1
than any other sites in the system. This is the origin of the
observed enhancement of the pairing potential and ultimately
what causes the local gap enhancements. Specifically, density
of states variations due to an impurity act to tune the system
closer to the Stoner instability locally that results in gap
enhancements in the neighboring regions of the impurity.

1 4 7 10 13 16 19 22
0

0.2

0.4

0.6

0.8

1

U=2.15

U=2.2

U=2.23

U=2.25

(x,yimp)

U
χ

0 ↑↓
(Q

)

FIG. 4. (Color online) Average of Uχ 0
↑↓(Q) around Q = (π,π )

for different values of U as a function of site ri = (x,yimp). Black lines
are U〈χ 0

↑↓(Q)〉 for a homogeneous system, whereas colored lines are
for systems with a nonmagnetic impurity at (ximp,yimp) = (13,13).

B. Impurity with reduced hopping constants

In this section, we present the results of the local pairing
modulations for another kind of impurity characterized by
all hopping constants onto the impurity site being reduced
by a certain percentage. In the extreme limit of 100%
reduction, we obtain results similar to the case of a strong
nonmagnetic potential scatterer as expected [compare, e.g.,
Fig. 2(d) and Fig. 5(d)]. Both magnitude and local structure of
the superconducting d-wave gap are similar in these two cases.

FIG. 5. (Color online) (a) and (b) Effective pairing interaction
between nearest neighbors. For the results presented here the
parameters are U = 2.2, t ′ = −0.3, doping x = 0.15. A reduced
hopping impurity of strength [−20 % (a) and −100 % (b)] is situated
at site (ximp,yimp) = (13,13). (c) and (d) Local superconducting
d-wave order parameter for the two impurity cases. (e) and (f) Average
of Uχ 0

↑↓(Q) around Q = (π,π ) as a function of site ri = (x,yimp).
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Furthermore, there is no induced local antiferromagnetic order.
In the intermediate regime, however, where the reduction is
less than 100%, we find a different local structure of the d-wave
gap enhancement. As an example, we show in Figs. 5(a) and
5(c) the effect of reducing the hopping elements by 20%. In this
case, weak local antiferromagnetism is induced (not shown),
and the enhancement of the local pairing interaction as well
as the d-wave gap is maximal at the impurity site. Again, this
gap structure can be understood from the local modulations
in the transverse spin susceptibility, see Fig. 5(e). Note that
for the effective pairing interaction shown in Fig. 5(a), the
spatial structure of the effective interaction and the size of
the amplitude modulations are closely comparable to the
phenomenological values used in Ref. 11 to model the STS
gap variations in optimally doped Bi2Sr2CaCu2O8.

IV. CONCLUSIONS

The results of the local gap enhancements found in this
paper give rise to a number of additional questions for future
studies. First, is the LDOS within the present formalism
from more realistic many-impurity simulations consistent with
the experimental STS data? As shown by Nunner et al.11

the positive correlation between dopant atoms and large
gap regions will certainly exist with the presented scenario,
but the LDOS evolution with doping, where pseudogap
regions become dominant in the underdoped regime cannot
be captured within this weak-coupling approach. In addition,
several unsolved LDOS issues remain regarding the origin of
the so-called extinction of impurity resonances near strong
onsite impurity potentials in large-gap regions.41

Second, what are the effects on a modified pairing near
other kinds of impurities? We have recently applied the present
formalism to also study the pairing interaction and local gap
structure near pointlike magnetic impurities.42 There it was
found that the local structure of the gap enhancement is
very similar compared to the case of pointlike nonmagnetic
impurities even though local antiferromagnetism is induced
around a magnetic impurity site.

Third, what is the feedback effect on the pairing interaction
in coexisting phases where, e.g., spin- and charge-density
waves are present? The current formulation of the real-space
pairing mechanism does not hold in the ordered state. The
simple expression that was derived in Eq. (2) predicts a
singularity in the effective pairing interaction as the system
develops long-range antiferromagnetic order, as has been
discussed previously. This effective vertex is, however, known
to be suppressed by interactions with spin waves (Adler
principle39,40), and our model is therefore only valid in the
paramagnetic phase.

Fourth, what are the thermodynamic consequences of the
local enhancements of the gap found above? In particular
one might expect a nontrivial evolution of the residual
resistivity �ρ and Tc suppression with increasing disorder
concentrations. The slow rate of Tc suppression relative to �ρ

in the case of strong scatterers such as Zn in cuprates has
never been satisfactorily explained, but has been attributed to
correlation effects.43 This interesting question will be the topic
of a future study.

Finally, how robust is the present result of local enhance-
ment of pairing to the form of the bare interaction vertex?
In the strong coupling limit, Foyevstova et al.28 showed that
the local pairing interaction (exchange) was increased in some
circumstances, including in the limit of pure Hubbard-type
correlations in a single band.25 We have established here the
weak coupling analog of this result, but it is clear that other
types of interactions in the host, beyond the scope of this work,
might lead to different results.

Some questions regarding the approximation used to study
the interacting inhomogeneous many body problem also
remain. For example, we have calculated the spin fluctuation
pairing interaction by diagonalizing the self-consistent mean
field Hubbard model. In the homogeneous case, this is equiv-
alent to calculating the pairing interaction within the random
phase approximation. If one improves this approximation
by including interaction self-energy effects self-consistently,
results may be expected to change quantitatively. We see no
reason to expect qualitative changes, but such a study is beyond
the scope of this work and may deserve further attention.

Summarizing, we have studied how single nonmagnetic
potential and hopping impurities modify the local pairing
interaction in a d-wave superconductor. The local pairing
interaction was calculated within a real space formulation
of the spin-fluctuation mechanism, and this formalism was
used to study the single-impurity problem. We find that the
local variations in the charge densities or hopping integrals
may significantly enhance the local d-wave gap close to
the impurity sites due to a locally enhanced transverse spin
susceptibility. We have discussed the observation of such
enhancement effects in relation to STS measurements on the
surface of cuprate superconductors. Our model provides a
powerful tool to study ideas about the effect of inhomogeneity
on superconductivity at a microscopic level. It will be
interesting to find whether inhomogeneous defects or magnetic
structures can enhance the critical temperature, as was found
in phenomenological44 and numerical approaches.45,46
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APPENDIX: EFFECTIVE PAIRING INTERACTION IN
REAL SPACE

The interaction Hamiltonian is given by

Hint =
∑

a,b,c,d

Veff(a,c; b,d)(c†b↑c
†
d↓cc↓ca↑ + H.c.), (A1)

where a, . . . ,d are real space points. We define the noninter-
acting spin-dependent susceptibility of the normal phase as

χσσ ′
ab (τ ) = −Gab,σ (τ )Gba,σ ′ (−τ ). (A2)

Note the sign convention. The effective interaction in real
space is evaluated directly from the real space version of
the standard spin-fluctuation diagrams. Since the Coulomb
interaction is local both in space and time, it connects
fermions at the same site and of opposite spin. Omitting the
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FIG. 6. Real-space diagrams for longitudinal spin fluctuations to
fifth order in U .

external fermion lines and evaluating the interaction part from
the bubble diagrams shown in Fig. 6 gives

V
(1)

eff (a,c; b,d)

= Uδabδcdδad + U 3
∑

e

δabδcdGae,↓Gea,↓Ged,↑Gde,↑ + · · · .

(A3)

The pairing interaction is dependent only on two spatial
variables since U is on-site. We get

V
(1)

eff (a,c; b,d) = δabδcd

[
Uδad + U 3

∑
e

χ↓↓
ae χ

↑↑
ed

+U 5
∑
e,f,g

χ↓↓
ae χ

↑↑
ef χ

↓↓
fg χ

↑↑
gd + · · ·

]

= δabδcd

[
U 1̂ + U 3χ↓↓χ↑↑ (A4)

+U 5(χ↓↓χ↑↑)2 + · · ·
]

ad

= δabδcd

(
U 1̂ad + U 3χ↓↓χ↑↑

1̂ − U 2χ↓↓χ↑↑

∣∣∣
ad

)
.

Similarly, in the case of the ladder diagrams shown in Fig. 7,
we get

V
(2)

eff (a,c; b,d) = δadδbc

[
Uχ

↑↓
ab + U 3

∑
e

χ↑↓
ae χ

↑↓
eb

+U 5
∑
e,f

χ↑↓
ae χ

↑↓
ef χ

↑↓
f b + · · ·

]

= δadδbc[U 2χ↑↓ + U 3χ↑↓2 + U 5χ↑↓4 + · · ·]
= δadδbc

(
U 2χ↑↓

1̂ − Uχ↑↓

∣∣∣
ab

)
. (A5)

ab

c d

+
ab

dc e

e

FIG. 7. Real-space diagrams for transverse spin fluctuations to
third order.

The interaction Hamiltonian now becomes

Hint =
∑

a,b,c,d

V
(1)

eff (a,c; b,d)(c†b↑c
†
d↓cc↓ca↑ + H.c.)

+V
(2)

eff (a,c; b,d)(c†b↑c
†
d↓cc↓ca↑ + H.c.)

=
∑
ad

V
(1)

eff (a,d; a,d)(c†a↑c
†
d↓cd↓ca↑ + H.c.)

+
∑
ab

V
(2)

eff (a,b; b,a)(c†b↑c
†
a↓cb↓ca↑ + H.c.). (A6)

From this, it is apparent that the first part corresponds to spin-
conserving processes, while the second describes a spin-flip
interaction.

1. Mean-field Hamiltonian

The result for the effective interaction derived in Eq. (A6) is
treated in a mean-field approach. We consider only the singlet
channel:

Hint = 2
∑
i,j

V
(1)

eff c
†
i↑c

†
j↓cj↓ci↑

−
∑
i,j

V
(2)

eff (c†i↓c
†
j↑cj↓ci↑ + c

†
i↑c

†
j↓cj↑ci↓) (A7)

= H
(1)
int + H

(2)
int ,

where we have used that the interactions are symmetric with
respect to interchange of spatial indices. We define two gaps
that are respectively symmetric (s) and antisymmetric (a) under
interchange of spatial indices:

�
s/a

(1),ij = V
(1)

eff

2
(〈cj↓ci↑〉 ∓ 〈cj↑ci↓〉),

(A8)

�
s/a

(2),ij = V
(2)

eff

2
(〈cj↓ci↑〉 ∓ 〈cj↑ci↓〉).

For the first term in the interaction Hamiltonian, we get by a
standard mean-field decoupling,

H
(1)
int = 2

∑
i,j

V
(1)

eff c
†
i↑c

†
j↓cj↓ci↑

�
∑
i,j

V
(1)

eff (〈c†i↑c
†
j↓〉cj↓ci↑ + c

†
i↑c

†
j↓〈cj↓ci↑〉)

=
∑
ij

1

2

[
�s∗

(1),ij (cj↓ci↑ − cj↑ci↓)

+�s
(1),ij (c†i↑c

†
j↓ − c

†
i↓c

†
j↑)

+�a∗
(1),ij (cj↓ci↑ + cj↑ci↓) + �a

(1),ij (c†i↑c
†
j↓ + c

†
i↓c

†
j↑)

]
.

The second term gives

H
(2)
int = −

∑
i,j

V
(2)

eff (c†i↓c
†
j↑cj↓ci↑ + c

†
i↑c

†
j↓cj↑ci↓)

= −
∑
i,j

V
(2)

eff

2
[〈c†i↓c

†
j↑〉cj↓ci↑ + 〈c†i↑c

†
j↓〉cj↑ci↓

+ c
†
i↓c

†
j↑〈cj↓ci↑〉 + c

†
i↑c

†
j↓〈cj↑ci↓〉]
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=
∑
ij

1

2

[
�s∗

(2),ij (cj↓ci↑−cj↑ci↓)

+�s
(2),ij (c†i↑c

†
j↓ − c

†
i↓c

†
j↑)

+�a∗
(2),ij (cj↓ci↑ + cj↑ci↓)

+�a
(2),ij (c†i↑c

†
j↓ + c

†
i↓c

†
j↑)

]
.

Adding these results, we obtain the final effective mean-field
Hamiltonian in the singlet channel:

H MF
singlet

= 1

2

∑
i,j

[
�s∗

ij (cj↓ci↑ − cj↑ci↓) + �s
ij (c†i↑c

†
j↓ − c

†
i↓c

†
j↑)

]
,

(A9)

where

�s
ij = Veff(i,j )

2
(〈cj↓ci↑〉 − 〈cj↑ci↓〉). (A10)

Here, the total effective pairing interaction Veff(i,j ) is the sum
of the effective interactions V

(1)
eff and V

(2)
eff derived in Eqs. (A4)

and (A5). Thus the effective pairing is given by the real space
matrix

Veff(i,j ) = V
(1)

eff (i,j ) + V
(2)

eff (i,j )

= U 1̂i,j + U 3χ↓↓χ↑↑

1̂ − U 2χ↓↓χ↑↑

∣∣∣∣
i,j

+ U 2χ↑↓

1̂ − Uχ↑↓

∣∣∣∣
i,j

,

(A11)

which reduces to the usual expression in the translationally
invariant case.
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