PHYSICAL REVIEW B 90, 085417 (2014)

Weak measurement of cotunneling time
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Quantum mechanics allows the existence of “virtual states” that have no classical analog. Such virtual states
defy direct observation through strong measurement, which would destroy the volatile virtual state. Here, we
show how a virtual state of an interacting many-body system can be detected employing a weak measurement
protocol with post-selection. We employ this protocol for the measurement of the time it takes an electron to
tunnel through a virtual state of a quantum dot (cotunneling). Contrary to classical intuition, this cotunneling
time is independent of the strength of the dot-lead coupling and may deviate from that predicted by time-energy
uncertainty relation. Our approach, amenable to experimental verification, may elucidate an important facet of
quantum mechanics which hitherto was not accessible by direct measurements.
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I. INTRODUCTION

An important aspect of quantum mechanics is the existence
of states that have no classical analog. Such “virtual states”
cannot exist in classical physics as they violate energy
conservation. It is commonly suggested that their presence
within quantum mechanics as short-lived states is allowed
by the uncertainty principle [1] At AE ~ h. These states,
being volatile, are destroyed by a strong measurement, and are
therefore inaccessible to direct detection. By contrast, weak
measurement, along with its weak backaction, may provide us
with a nondestructive probe into virtual states. In fact, weak
measurement based protocols with post-selection [weak values
(WV)] [2] have been employed with remarkable success in
explaining quantum paradoxes [3], detecting and amplifying
weak signals [4,5], directly measuring a wave function [6],
and devising protocols for quantum states discrimination [7].

The primary goal of this paper is to extend the utility of
WVs to the arena of many-body states, specifically probing
virtual many-body states. This task is accomplished here
for the first time by specifically considering the process
of cotunneling [8,9]. In the latter, electrons are transported
between a source (S) and a drain (D) through a quantum
dot (QD); the QD is tuned such that the addition of an extra
charge to it is classically forbidden (the Coulomb blockade
regime) [10]. Nevertheless, an electron can enter the QD and
later exit, forming a (short-lived) virtual many-body correlated
state. This cotunneling process is qualitatively different from
a single-particle tunneling under the barrier. We design a
weak value protocol, amenable to experimental test, tailored
to measure the lifetime of such a many-body virtual state.
We anticipate that our demonstration of feasibility of such a
protocol will pave the road to the study of a host of many-body
problems that involve virtual states.

The second goal of our work is the study of the specifics of
cotunneling lifetime. The lifetime of a virtual state associated
with the tunneling of a single particle under a barrier has
been studied extensively with a variety of approaches [12-20].
There are several time scales involved in this process: the dwell
time Tqwen marks the lifetime of the virtual state regardless
of whether the electron is eventually transmitted (to D) or
reflected (to S); the traversal time is the lapse between the
disappearance of an electron from § and its appearance in

1098-0121/2014/90(8)/085417(11)

085417-1

PACS number(s): 73.63.Kv, 03.65.Ta, 73.23.Hk

D. For the tunneling of a single particle it has been shown
[14] that the time is related to the imaginary velocity of the
particle under the barrier. Determining the traversal time in the
many-body cotunneling case poses a more difficult challenge,
elucidated in the following.

Here, we show that naive expectations based on analogy
with a single-particle tunneling are unfounded. Strikingly, we
also find that the cotunneling time 7., may not be related to
the time-energy uncertainty relation [11] AE 7. ~ h, where
AFE represents the violation of energy conservation in the
virtual state. Finally, we note that, while by classical intuition
the transmission time through a QD should depend on the
dot-lead tunneling matrix element, this turns out not to be
the case here. Our results are summarized in Table I. We find
that 7. depends parametrically on whether the cotunneling is
dominated by elastic or inelastic processes.

In the following, after defining our model of a detector
weakly coupled to a quantum dot tuned to the cotunneling
regime, we review the measurement time in the regime
of sequential tunneling, where the transport occurs through
classical probability rates of tunneling in and out of the dot.
Employing the same setup, we present a semiheuristic proce-
dure through which we define the cotunneling time. We then
show that this definition coincides with the quantity obtained
relying on a weak-value-based protocol. We finally compute
the cotunneling time in the various relevant parameter regimes.

II. MODEL AND SETUP

Our setup [cf. Fig. 1(a)] consists of a system (a quantum
dot weakly coupled to leads) and a detector [a quantum point
contact (QPC)]. The detector measures the system through
the electrodynamic coupling between them. The way this
setup is defined it is suitable to discuss both transport that
involves real processes (sequential tunneling) as well as virtual
processes (cotunneling). The relevance of many-body states is
self-evident here. The corresponding Hamiltonian is given by

H = HO + HT + Hint + Hdetectora (1)

where Hj represents the isolated (but voltage-biased) QD and
the uncoupled source (S) and drain (D) leads; Hr stands for
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TABLE I. Real and imaginary components of the cotunneling time twy for the inelastic and elastic cotunneling regimes. Listed are the
respective average cotunneling currents too. The results are written in terms of the dot-leads conductance G, = €?v,vo|y®|? /(27 h), with v
being the density of states in the lead (dot); the relevant energy scales in the dot are the level spacing 8, the Thouless energy Ety, the charging
energy Ec, and the applied voltage bias eV. |xs — Xp| is the distance between the source and drain contacts, L the linear size of the quantum

dot. The results in the last two rows are explicitly for the two-dimensional (2D) case.

Re{twv} = Tawen

Im{twv} = £Teo (l)/(G(S)G“)’ V)
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the dot-leads tunnel coupling and Hyetector + Hine describe the
detector dynamics and its interaction with the QD. Specifically,
the part of the Hamiltonian concerning the system (the QD and
the leads) consists of the following terms:

Hoy = Z Zea,kC;kCO(,k + Z Eo,hdzdh + U.

a=S8,D k h

@

It describes the isolated QD, and the uncoupled source and
drain leads. The single-particle terms for the source (S) and
drain (D) leads and the QD are expressed in terms of the
fermionic field operators csk, ¢pk, dj. The charging energy
contribution [10]

eV
U = Ec(Ns + Np — Np)* — - (CsNs = CpNp),  (3)
)}

with N =3, didu,, characterized by the energy E¢, depends
on the charge entering the dot from the left (right) lead Ng(p).
N = Ng + Np is the extra charge on the dot. Equation (3)
provides the explicit dependence of the charging energy U
on dot-source Cg, dot-drain Cp, and dot-gate C, capacitances

(Cz = Cs + Cp + C, is the total capacitance), as well as on
the source-drain voltage bias eV, and on the gate voltage,
through N, = V, /(eCy).

The leads QD tunneling operator Hr = ), _¢ ,, To +H.c.,

with T, = Zk " y,foﬁl)d;ca’k, is written in terms of source and

drain tunneling amplitudes y,f”k) . The current operator in the
QDis

I=8Y chepx=i(Tp—T)). )
k

Transport via virtual processes is oy, and can be classified
into inelastic and elastic cotunneling, corresponding to the
state of the QD being modified or unmodified, respectively,
following a tunneling event. In any case, the virtual occupation
of the dot involves a many-electron correlated state.

The detection of the excess charge on the dot eN is carried
out by a quantum point contact capacitively coupled to the
dot, which is routinely employed in experiments as a charge
sensor [21-23]. The QPC is modeled as a scattering potential
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FIG. 1. (Color online) A measurement scheme of the cotunneling time. (a) Sketch of a quantum dot coupled to a QPC detector. The
transmission through the QPC is affected by the presence of an extra electron in the QD. The top gates V, and Vi control the tunneling rate
to the dot, Vgpc the unperturbed transmission through the QPC, and V, the charging energy in the dot. V, allows us to tune the system from
the sequential tunneling to the cotunneling regime. The transport through the QPC and the QD is controlled by the voltage bias Au and eV,
respectively. The current-current correlation S;; is sensitive to the excess number of electrons N in the dot. (b) Typical detector signal and
current through the dot in the sequential tunneling regime, performing strong measurement with the QPC. The time an electron spends in the
dot can be classified according to the occurrence of a subsequent positive current pulse in the drain (7 ;), or the absence thereof: back-reflection
(t_;). The average sequential tunneling time can be directly obtain by averaging over the durations {tfrl_)l.} of the relevant QPC signals.
(c) Typical detector signal and current through the dot in the weak measurement regime. Straightforward classification of events as in (b) is not
possible. The signal of the QPC preceding a pulse of current through the quantum dot has to be weighted by an appropriate weight function.
The latter should account for the QPC current signal, which precedes and is directly related to the electron detected at the QD’s drain terminal.
In the cotunneling regime, the interval between successive tunneling events is longer than the cotunneling time, hence, one may discard the
weighting function.
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for impinging electrons through

Hgetector = Hope = Z Z v ka;kai,ks (5
i=l,r k

with g;  being the annihilation operator for the left- (i = /) and
right- (i = r) moving scattering states; here v is the magnitude
of the electron velocity. The addition of an extra electron to the
QD ({(N) = 1) results in the modification of the QPC scattering
potential. The coupling to the QD is specified by Hjy,y = NX
[24,25] with

v(8k +iu) n
=——————2Y "4 a4, +Hec (6)
LJk(1 =) thZ ok

It describes a general complex backscattering amplitude due
to the modification of the scattering potential due to the
occupation of the QD by an extra electron. The QPC has
a chemical potential bias A,, which defines the detector’s
bandwidth and is assumed to be the largest energy scale in the
problem. The operator associated with the QPC signal is then
the current through the QPC [24,26]

J = % Z |:Z K(—l)iaikai,p

k,p Li=lr
+ V(= iGe gl ap , + H.c.)j| .

Here, « is the transmission probability through the QPC, L
is the QPC length, and x plays the role of a regularization
parameter.

Various scales of charging energy. In view of the calcu-
lations of the cotunneling current and cotunneling time, we
conveniently denote by (U (7)) the change of charging energy
due to the tunneling of an extra charge from the source into the
dot, and by (U (T; )) the corresponding change due to the exit
of a charge to the source. With the equivalent notation of the
tunneling to/from the drain (D), we can generally denote the
modification of the charging energy due to a certain sequence
of tunneling events as (U(Ty, ...,Tg)) with o, = S,D. In
the Coulomb blockade regime where the charging energy E.
is the largest energy scale of the quantum dot’s dynamics,
we consider only the states with N = 0,1 excess electrons in
the dot. Then, we obtain the relevant charging energies in the
cotunneling processes directly from Eq. (3):

(U(Ts)) = E4i. (U(T)) = E_,, (3a)
(U(Tp)) = E4 + eV, (U(T;)) =E_,+¢eV, (8b)
(U(TST)) = —eV, (U(T{Tp)) = eV, (8¢)
(U(TSTsTh)) = —eV + Eq. (8d)
(U(TpTpT))) = 2eV + Eyy, (8e)
(U(T{TITp)) = 2¢V + E_,, (8f)
(U(T,T)Ts)) = —eV + E_,. (82)

Following, we will focus on the limit eV K E_, K E4;, in
which cotunneling is dominated by particlelike processes
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rather than holelike processes; hereafter, we simply set
E+[ EEC.

III. A HEURISTIC APPROACH

Before addressing the cotunneling regime, let us discuss
how the detection scheme of Fig. 1 works in the sequential
tunneling regime, which is a real (nonvirtual) process. Refer-
ring to Fig. 1(b), we note that the entry of the ith electron into

the QD may result in a successful (unsuccessful) sojourn rf)l

(‘L'S)i), at the end of which the electron is transmitted to the
drain (is backscattered). The current through the QPC, J, is
a two-valued signal, where the two values J© and JO are
associated with the absence or presence of an extra electron
on the QD. Noting that a peak in the current through the QD,
1, signals a successful tunneling event (we neglect processes
where the electrons hop from the drain to the dot), one can
easily extract the time of sequential tunneling (7)., from

(J1) = (D = JOY @Dy oy (1) e, ©9)

which defines the tunneling time in terms of the excess current
in the QPC conditional to the occurrence of a tunneling event
through the QD (J;) and the average tunneling current (/). A
rate equation analysis reveals that (L(rl))seq depends on the
source and drain tunneling rates I's and I'p, respectively,
yielding (1{")seq = 1/(T's + 'p).

While Eq. (9) is straightforwardly applicable to experiments
with strong QD-detector coupling [23], (/) cannot be directly
addressed in the weak measurement regime. The signal
JD — JO is then masked by quantum noise [cf. Fig. 1(c)];
it is not possible to uniquely determine the duration of each
interval Tilz This hurdle can be overcome by introducing a
(Poissonian) probability distribution p(t) for the time intervals
{rfrl’)i}. Evidently, p(¢) depends on (ril))seq. The sequential
tunneling time may be obtained through an average over such
a distribution, as

(1 )seq = lim Jo dt Jy ds POt —5) = 7110

—00 T (I)(JO — JO) - (10

where P(t) =1 — fot ds p(s) is the probability the electron
entering the dot at + = 0 remains in the dot at time 7. This
is a self-consistent equation for (rfrl)>seq. A direct calculation
shows that Eq. (10) leads to the same results as Eq. (9) (cf.
Appendix A).

We now consider the case of cotunneling. Here, we
generalize Eq. (10) employing quantum mechanical current-
current correlations. We stipulate that these correlations decay
in time faster than the time interval between two consecutive
cotunneling events, hence, we may neglect the cutoff due to
the p(s), and replace J © by the average (J). This relates the
cotunneling time to the current-current correlation function
Siy = fooo ds (I(O[J(t —s) — (J)]) through

My N
e = hae —

It is worth noting that the integration in Eq. (11) is only over
positive times.

Evidently, to evaluate the time obtained in the cotunneling
regime, a microscopic treatment of the problem is due. For

an
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this we employ the Hamiltonian in Eq. (1)), and evaluate
the averages in the Keldysh formalism [27,28]. To this goal
a time ordering of operators 7k is introduced on a time
contour consisting of two branches corresponding to forward-
or backward-in-time parts of the contour. The operators are
labeled by a subscript +, — depending on whether they belong
to the former or the latter branch of the contour. To first order
in perturbation in Hjy, the correlator S;; reads as

Si1 =—if dff ds [(Tg[1-(t + T)N(s)]) g+ (s — 1)
0 —00

— (Txg - + T)N-()])g-+(s — )], 12)

where  gii(t — 1) = (Tx[J ()X (D), gyt — 1) =
(Tx [J_()X L ()]). In the limit considered here, where A is
the largest energy scale in the problem, one obtains g_ (¢t —
Y=g (@ —1t)=(An)/Q2m)idk +u)s(t —t'+n), and
finally

(t)eo = Re {rwy) = (/8 Im frwy} . (13)
where Twy is an intrinsic quantity of the system with the
dimensions of time

Jo U@INE =)= (N)])
WV = . ( 1 4)
(1)
In fact, Twy is the complex time obtained by a direct application
of a weak value protocol to the cotunneling time.

IV. COTUNNELING TIME FROM THE WEAK
VALUE FORMALISM

In this section, we present the result for the cotunneling
time as obtained through a direct application of the weak value
formalism. In complete analogy with the problem of single-
particle tunneling time [19], twy is obtained with the aid of an
ideal detector whose dynamics is trivial (Hgegector = 0).

The result is obtained employing a simple model in which
the detector is modeled as a pointer coupled via H = ApN,
N being the excess charge in quantum dot (measured in
units of the electron charge e; N may assume the values +1
or 0), and g the position of the detector pointer (initially
at (g) =0) with [g,p] =ih. The detector is assumed to
have no internal dynamics (Hg = 0). Measuring ¢ at a
time At leads to (g) = A fAt ds N(s). One can interpret
this expression to obtain either (i) the time-averaged charge
in the dot e(N) = e(q(¢))/) At, where Ar is the duration
of the measurement, or (ii) the average time the particle
spends in the dot, T = (g) /A. In the latter interpretation, it is
important that the charge exists in quantized units of e, and that
during the measurement time A¢ at most a single cotunneling
event takes place. In the case of sequential tunneling, this
procedure results in (g)/A being exactly the dwell time (as
distinct from the cotunneling time) of the particle in the QD.
We assume this is a valid measurement of the dwell time also
in the regime of cotunneling.

In order to address the time the particle spends in the dot
conditional to a later successful cotunneling event (which
takes the particle to the drain), we can make use of the weak
value formalism [2]. The signal in the detector, conditional
to a successful cotunneling through the QD, is expressed as

PHYSICAL REVIEW B 90, 085417 (2014)

Teot = £{q(#))o/A =Re{(twv)o}, where f indicates that the
average has to be taken conditional to the post-selection of
a certain state | f) of the system. In the weak measurement
regime, Twy is the weak value of the measured observable,
hence,

’ J"ds (L ()N () |
= [ e = SR EEEELas)
where I is the projection into the post-selected state.

In order to specify the post-selection of the cotunneling
process, we consider a simple picture where an electron,
initially in the source reservoir, can eventually reach the drain.
The correlations between subsequently impinging electrons
are neglected, as well as the virtual occupation of the dot by
processes originating from the drain.

The projector onto the post-selected state (i.e., successful
cotunneling) at a time At is Np(At) (where the excess particle
number Np is measured from the reference value before the
cotunneling process started taking place). The post-selection
is, in fact, the result of a continuous measurement over the
interval Af, which accounts for all possible arrival times of
the electron in the drain during the time interval [0, Az]. This
can be properly taken into account by summing the probability
of tunneling at any time and noting that it can be expressed
via the current operator at the drain as Np(At) = fA’ dt 1(t).
We therefore implement the post-selection operator as IT, =

f Aarl (#). In doing so, we note that the detection of an
electron in the drain at time f < Ar consists of a strong
(post-selection) measurement. Therefore, in assessing the
weak value, we need to account only for weak measurements
that preceded that strong measurement at time f. This is
implemented by constraining the correlation between /(¢) and
N(s) for time intervals such that s < ¢. Finally, since we are
dealing with a steady state, the correlations (N (s)I(¢)) depend
only on the time difference r — s and we can write

B Jo ds (I(ON(@ — 5))
(1)

The resulting complex twy encodes the information on the
physical times involved in the cotunneling process. Notably,
the measured QPC-QD current correlation provides access
only to a combination of the real and imaginary parts of Tywy
(which depends on nonuniversal details of the variation of the
QPCs transparency as function of the QDs occupation). The
individual parts can be obtained through detailed tomography
of twv. To shed light on the physical meaning of twy, it is
instructive to first discuss the analogous complex tunneling
time in the context of a single-particle tunneling.

Analysis of a complex twy for a single-particle tunneling.
Here, we review the analysis of the tunneling time of a
single particle (single-particle opaque barrier), through a
weak value protocol. This serves as a benchmark for the
analysis of the equivalent cotunneling time. The issue of
the time of single-particle tunneling has been discussed
extensively in the literature in a variety of approaches: both
vis-a-vis single-particle tunneling in real space [12-15,18],
and to Landau-Zener tunneling in energy space [16]. A weak
measurement approach to this problem [19] gives rise to a
tunneling time and a reflection time Ty, and 7., respectively,

WV (16)
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both being complex. The weighted dwell time under the barrier
is then Tawen = T Tun + (1 — T)Ter (T being the transmission
probability). Quite remarkably, this last equality holds for the
complex tunneling and reflection times. The physical times
of this problem are the dwell time Tqwen = Re{fiun} and the
traversal time under the barrier t7 = [£3, ., + (Im{Zu})?1"/2
[15,19]. In the limit of a high thin barrier Tqwen Vvanishes
(most reflected particles spend a negligible time under the
barrier), hence, T = |Im{f,}|. This agrees with the result of
Ref. [15].

V. MICROSCOPIC CALCULATION

We now turn to calculate the cotunneling time in Eq. (14).

While the result for the cotunneling current is known
[8,9], it is the charge-current correlation function of the
system that encodes information on the cotunneling time. For
simplicity, we tune the gate voltage such that transport through
the quantum dot is dominated by particlelike cotunneling.
Our analysis addresses the limit where the temperature is
smaller than the source-drain voltage. Different contributions
to the current are described by Feynman diagrams and are
conveniently grouped into elastic and inelastic contributions
[cf. Fig. 2(a)] [8]. Correspondingly, we group the contributions
to the correlator (I(#)[N(t —s) — (N)]) into two sets. The
results for the complex cotunneling time will differ depending
on whether the cotunneling is dominated by elastic or inelastic
processes. Examples of diagrams that contribute to (/) and
(I(t)[N(t —s)— (N)]) are depicted in Fig. 2. All in all,
we have 64 different diagrams; when dealing with particle-
dominated cotunneling and considering the zero-temperature
limit, the number of diagrams is reduced to eight (four
elastic processes and four inelastic processes), as shown in

(@)
Lo = i finel = X

(b) t—s t—s t—s
Sryin = § g + 5 § E +
t—s t—s
Sriel = ; § +ﬁ

()

(=X dian {=3>0 =30
h k,h

k,h

t—s —Vsy B sy

EC S1

= (dn(B)d(0)) = (esi(t)eh(0))  >o-t= {epa(t)eh (0))

FIG. 2. (Color online) Feynman diagrams for (/) and S;,. Elastic
and inelastic contributions to the cotunneling current (/) [panel (a)],
and to the current-current correlator S;; [panel (b)], in the zero-
temperature particle-dominated regime. The propagators and vertices
constituting the diagrams are defined in panel (c). Inset: An example
of a diagram neglected in the zero-temperature particle-dominated
limit. Here, we indicate explicitly the time and charging energy
labelings along the time contour, as dictated by the Feynman rules
(cf. Appendix B3).
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Appendix B. The nonvanishing diagrams in this limit are
depicted in Fig. 2(b), and are evaluated in Appendix B2. The
expressions for (I(#)[N(t —s) — (N)]) and (I) in Eqgs. (B8),
(B7), (B23), and (B24) are finally substituted into Eq. (14) to
find

i
2
with 4+ and — for inelastic and elastic cotunneling, respectively.
An equivalent expression yielding the traversal time in terms
of the logarithmic derivative of the transmission probability
holds for the noninteracting case, where, for tunneling through
a square potential barrier, it reads as twy = —dy,[arg(?)] +
%8‘/0 In(t*t) [17]. Here, Vy is the barrier height and ¢ the
transmission amplitude. Our result extends the validity of such
an equation to interacting systems.

Equation (17) is rather general, and does not depend on the
specifics of the electronic dynamics in the quantum dot. How-
ever, in order to obtain specific expressions for Twy, we specify
the dot to be in the diffusive limit L > |xg — xp| > [, where
L is the linear size of the quantum dot, / the elastic mean-free
path, and xg, Xp the position of the source and drain contacts,
respectively. As shown in Appendix B, the cotunneling current
can then be expressed in terms of the diffuson propagator
[29] between the source and the drain points D, (Xs,Xp) =
V0 S* (Ve (X5) Y (XD)Wp(Xp) Y (Xs)), Where ,(x) is the wave
function of the «-energy level of the dot with energy ¢,
w =€y — €g, Vo and S are respectively the density of states
and the area of the dot, and the average is intended over the
different statistical realizations of disorder.

In this case, the cotunneling current reads as [8,9,25,29]

GO GDP) (eV)2

Twy = Fz0g.Inl, a7

in = _V, 18
12 e? E% (18)
GO GD) 8] D, , D_, ,
L= —Vf do (xs5,Xp) + (Xs,Xp)
4m2vge?r  J, 13
(142 (19)
x In — .
Ec

The elastic cotunneling current depends on the diffuson propa-
gator, which is characterized by Thouless energy E1,, ~ D/S,
proportional to the diffusion constant D. The cotunneling
current depends on the ratio between Er, and Ec. The
cotunneling time in the various regimes is finally deduced
directly from Eq. (17) and the corresponding expression for
the cotunneling current [Egs. (B9), (B11), (B13), and (B16)].
The results are listed in Table 1.

We note here that, while the cotunneling current generally
depends parametrically on the various energy scales in the
different regimes, the cotunneling time is t.o ~ h/(E¢) in all
cases except for elastic cotunneling with very close contacts

Em < Ec K L'En . where it is given by

|xs—Xpl|??

T ;3 In~! b (20)
= —]— _ ).
W 2Ee 72|%, — Xp|*Ec

This shows explicitly that the cotunneling time can be
parametrically different from the estimation obtained via the
uncertainty principle. In particular, the particle can spend a
time shorter than 1/E¢ in the dot. This is in striking contrast
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with the results for tunneling of a single particle through a
barrier.

VI. DISCUSSION AND SUMMARY

For a single-particle tunneling through an opaque barrier,
it has been shown [15,19] that the traversal time is given
by the imaginary part of the complex weak value time; the
real part turned out to be the dwell time, and was found to
be vanishing. In the present analysis, we consistently find a
vanishing dwell time (Re{rwy} = 0), while 1ot = |Im{twv}|
(cf. Table I). We also note that Eq. (17) has been established
for single-particle tunneling (opaque barrier [17]). We have
shown here that it remains valid for interacting systems. The
emerging picture shows that the cotunneling traversal time is
not simply given by the uncertainty time i/ E¢, but it can be
logarithmically smaller in Et,/Ec, Ey being the Thouless
time of flight through the QD [29] (assuming, for example,
diffusive dynamics in the dot). The dependence on the ballistic
or diffusive real time of flight through the QD is very different
for the single-particle tunneling: the time of the latter is
determined by the imaginary velocity under the barrier [14].

We have presented our analysis on three levels. First, we
have defined a realistic system-detector setup both in the
sequential and cotunneling regimes, and related the correlation
function of the system-detector currents to (til) )seq OT the

complex (tfrl))col [Egs. (9)—(11)]. These expressions are useful
for processing experimental data, through (i) analysis of
current-current correlations [Egs. (10) and (11)] or (ii), for
single-shot measurements, selective inclusion of signals of
detector current conditional on the later detection of a current
pulse through the QD [Eq. (9)]. Second, through a weak value
analysis, we have addressed the meaning of the complex time
Twy. This complete twy contains information about the dwell
and the cotunneling times. Third, we have considered Egs. (10)
and (11) as a starting point for a first-principles calculation of
Twv, pursued through a diagrammatic Keldysh perturbation
theory. Our protocol is amenable of experimental verification.
For a ballistic semiconducting QD whose linear size is L =
0.15 pm, the electrons Fermi velocity vy = 10® cm/sec and
Ec =20 peV, Er, and E¢ are comparable. One may design
and tune the relevant gates to achieve the desired inequality
between these two energies. Within a broader context, the
analysis outlined here demonstrates the usefulness of such
composite measurements protocols for a systematic, nonde-
structive study of many-body systems driven to a virtual state.
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APPENDIX A: SEQUENTIAL TUNNELING TIME:
A CLASSICAL CASE

We discuss here the measurement of the sequential tun-
neling time through a weak measurement scheme. We show
explicitly that the sequential tunneling time obtained through
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the weak measurement scheme as in Eq. (10) coincides with
the result of a direct strong measurement Eq. (9). To this goal,
we consider a simple model of transport through the QD, where
tunneling of subsequent electrons are uncorrelated events.
We assume a constant flux f; of electrons emitted from the
source. For simplicity, we assume that one electron impinges
on the dot in the time T, i.e., fo = 1/T; hereafter I's, I'p are
the dot-source and dot-drain tunnel rates, respectively.

To begin, we evaluate the probability of the events describ-
ing transport in the dot. Assuming that an electron enters the
dot at r = 0, and that the time for tunneling out is Poissonian
distributed, the probability P(¢) that an electron remains in the
dot until time ¢ is

P(t) = ¢ Tstlo), (A1)

It follows that the probability p(z) dt that an electron remains
in the dot until time ¢ and exits it in the time interval [¢,1 + dt]
is given by

p(t)dt = e~ TsTON(T ), 4 T)dt. (A2)

Wenotice alsothat P(D|t) = I'p/(I's 4+ I'p), where P(D]t) is
the probability that, given that the particle exits the dot within
the time interval [z, 4 dt], it does it through the drain. The
analogous equation with I", <> I'g holds for the corresponding
probability p(S|t) dt in the case of electron exiting toward the
source. The probability that the electron exits the dot in the
time interval [¢,f + dt], given that this takes place through
the drain’s barrier, is determined through the Bayes theorem,
leading to pp(t)dt = p(t|D)dt = p(D|t)p(t)/ P(D), where
P(D)=Tp/(I's + I'p) is the total probability to exit to the
drain, integrated over all times. This results in

pp(t)dt = p(t)dt =~THT (Tg + Tp)dt. (A3)

Note that an identical expression is obtained for pg(¢). The
time the particle spends in the dot, given that it eventually
tunnels to the drain, is then

)y = /OOO dtt p(t|D) = (A4)

Ip+Ts
We conclude that the time the electron spends in the dot is
independent of the condition of eventually exiting to the left
or to the right.

Assessing the sequential tunneling time [Eq. (A4)] by
employing strong measurement protocol is straightforward.
One can correlate the entry of an electron to the QD (detected
through a clear signal in the QPC [23]) with the detection of
the electron at the drain: the relevant quantity is p(¢|D). This
becomes trickier when weak measurement by the detector is
employed. One then needs to resort to Eq. (10), invoking the
correlation function S; ;. We can determine the time resulting
from Eq. (10) assuming, without loss of generality, that the
current J(V(s) = J + &(s) when the electron is in the dot, and
JO(s) = 0 + &(s) otherwise (a constant reference current has
been subtracted). £(s) is a stochastic component of the current
due to the detector’s intrinsic noise with | ioo ds &(s) =0, and
it is uncorrelated to the QD signal. We also note that the event
of having a current peak in the drain at time ¢ happens with
probability P(D|t) and the average in S;; has to be taken with
respect to this probability. Measuring the current through the

085417-6



WEAK MEASUREMENT OF COTUNNELING TIME

QD in units of the electron charge, we can write Eq. (10) as
o9} t
S y=Pt= O)/ dt / ds[JP(D|t)p(t) + £(s)]
0 0

=(s/fo)J / dttTpelrtror (AS5)
0

where P(t =0) =['s/fy is the probability of entering the
dot at time t = 0. In the first equality of Eq. (AS), the term
involving £ (s) is not weighted by any probability since it is not
correlated to the dynamics of the dot. In the second equality
in Eq. (AS5), we take into account that the time integral of that
same term involving the stochastic fluctuations vanishes. We
may further write I = I'sT"p /(I's + I'p). With this expression,
Eq. (9) leads to

(t}) = 1/(Ts + Tp),
in full agreement with the result of a strong measurement.

J

(A6)
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APPENDIX B: CALCULATION OF THE QD
CORRELATION FUNCTION

In this section, we discuss the calculation of (I) and
(I(H)[N(t — s) — (N)]) in the electron cotunneling regime. We
address first the calculation of the average current, and then its
generalization to the charge-current correlation function.

1. Average current

The Hamiltonian is presented in Sec. II. The calculations
are done perturbatively in the tunneling Hamiltonian Hr,
hence, we work in the interaction picture with respect to
Hy + Hiy + Hope, and denote by - the operators in the
interaction picture. The leading-order term in the perturbative
calculation of the current is obtained to third order in H7. The
cotunneling current [8] in Eq. (4) is in turn proportional to y*:

(I =€Re</ dsi / dsy / dsy [Tp(t)Hr(s1)Hr (s2)Hr(s3) + Hr(s3)Hr (s2) Hr (s1)Tp(1)]

—/ dSl/ dsy / ds3 [I:IT(SI)TD(Z)I:IT(S2)I:IT(S3)+HT(SS)HT(SZ)TD(I)HT(SI)]>7

(B

where the average is intended on an unperturbed state (possibly a mixed one), described by a density matrix p(t = —00).

Each of the Hy terms in Eq. (B1) consists in fact of a sum of terms involving products of T, Tp. The system’s state is initially
(atr = —o0) an eigenstate of N, Ng, Np. It remains an eigenstate of the same operators after the application of each Hy (note that
[N,Ts] = T, [N,TST] = —TST, [N, Tp] = Tp, [N,T[T,] = —TLT,). In fact, Hy changes the system’s state to a configuration with 1
extra charge on the QD. The time dependence in the operators in Eq. (B1) can then be made explicit in terms of the time-evolution

operator and computed employing Eq. (8). To be specific, let us address one of the terms appearing in Eq. (B1), namely,

(I)IEeRe</ ds, / ds, f ds TD(z)Tg(sl)Tg(sz)Ts(s3)>.

The explicit time dependence of operators results then in

(B2)

1 S 852 . . .
<1>,=eReTr{ / ds) f ds / ds3TD(t)e’<E+I+€V><’WT;(sl)e*’eV(f'S2>T,§(s2)elE+'<SH$>TS(s3)p(—oo)}, (B3)

where the operators evolve in time through

Ui,t') =T —exp{—iHo(t — 1)}, (B4)

where 7 is the time-ordering operator, and H; is the
Hamiltonian of the dot-leads part, which includes neither
the charging energy nor the detector Hamiltonian. The fact
that the detector Hamiltonian is neglected in Eq. (B4) is a
consequence of the perturbative calculation in the strength of
the measurement. More precisely, since Eq. (13) is obtained
by already computing S;; to first order in Hj,, the S;; can be
safely neglected in the calculation of (/(#)[N(t —s) — (N)]).
A proper treatment of Hj, in the calculation of (I) reveals
that it makes contributions in second order, and is therefore
consistently neglected here [30].

The quantum average in Eq. (B2) can now be easily
obtained via Wick’s theorem. This is conveniently done in
terms of Feynman diagrams on the Keldysh contour, resulting
in the rules specified in Appendix B 3. All possible diagrams

(

correspond to all possible sequences of T, (s;) obtained from
the Hy in Eq. (B1), and are presented in Fig. 3.

Each diagram corresponds to a well-defined process which
contributes to the probability of charge transfer between the
two leads. The amplitude for a charge transfer is a super-
position of electronlike (e¢) and holelike (#) processes. The
various contributions to the probability are labeled accordingly
(e.g., e-e, e-h, ...). Moreover, the diagrams are classified as
forward (backward) when a charge is transferred from the
source (drain) to the drain (source). For instance, the diagrams
obtained by averaging the expression for (/); in Eq. (B2) are
the “e-h forward” both elastic and inelastic, according to the
labeling in Fig. 3.

The analytical expression for each diagram is obtained by
the rules R7-R10 in Appendix B 3. The backward diagrams
are vanishing in the 7 = 0 limit due to the vanishing of
the corresponding phase space. Moreover, by controlling
the gate voltage, one can tune the ratio E_,/E; in the regime
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(a)
Elastic
forward
e-e h-e e-h h-h
oo —00 —o0 0 —00 oo
time time o) time
—0o0 —o0 i —00
time time t time 2 time
backward
h-e h-h e-h e-e
% a —x 00 —00 0 —00 0 —00
time time time time
> —00 —oc —00
50 < . T L ! - ’; ©
[N K time o0 oL time > m time > t T ol time
(b)
Inelastic
forward
e-e h-e e-h h-h
0 o 00 —oo 3] —00 0
. time time = time time
L. —o0 —o0 L —0C —00
> t time > t time > t time > time
backard
h-e h-h e-h e-e
bt a —x 00 —00 co —0C 0o —00

time time time time
—00 —o00 —00 —00
: oy < - 0 ~ - ey < -
time el time t S, / time t RS P time

FIG. 3. (Color online) Feynman diagrams contributing to the cotunneling current. Each contribution to the probability consists of a coherent
superposition of electronlike (¢) and holelike (h) amplitudes. Upon squaring these amplitudes one obtains contributions of the type e-e, e-h,
etc., which are represented by the various diagrams. The diagrams are grouped into elastic (A) and inelastic (B) contributions. Each group
consists of “forward” and “backward” diagrams, depending on whether the associated charge transfer is from source to drain or vice versa,
respectively. The contribution of the latter set of diagrams is vanishing at T = 0. The relative weight of the electron and hole contributions is
controlled by the gate voltage.

E_,/E,; < 1, where the holelike processes are parametrically suppressed by a factor O(E_,/E;). In this zero-temperature
particle-dominated limit, the elastic and inelastic contributions to the current are given by

— . _ (S), (DY*_(D)_ (S)*
+H.c.——2eRe{ fR  drdyde D A =n)A—=n)( = np)mevayva] v, Vi

a,B,j.k
% e—i(E+_/+ea—Ek)xe—i(—eV+e/—Ek)yei(E+,1+eﬂ—ek)z } , (BS)
- N $)121. (D)2
Iin = ’ zg § . +Hc = —ZeRe{ /w dxdydz Z (I —ne)(1 —nj)ngng |y05k)| |y‘§’j)
R: w.pjk
x e—i(E+1+ea—ek)xe—i(—eV+eo,—eﬂ+ej—ek))'ei(E+1+sa—ek)z}’ (B6)

with n,, the distribution function of the occupation of the nth energy level.
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To proceed further, one notes that the tunneling matrix elements can be written in terms of the dot’s and leads’ wave functions

¥ (x) and ¢(x), respectively, as yDESk) = VVSy ¥, (Xs) i (Xs), where Xg is the coordinate of the tunneling point between the source
and the dot, V the volume of each lead, and S that of the dot. An equivalent expression holds for the drain. These are realization-

dependent quantities, and we consider their statistical average. Independently of the QD dynamics, V(qb,is)*(xs)qblgs)(xs)) =1.
Introducing the density of states in the leads ), — fR de;vandinthedot ), — f]R dey v, the integrals in Egs. (B5) and (B6)

are finally performed to obtain

- E&G‘im / degdesde des 8(ea +€p+ € + e — eV)S* (Yo (Xs)Yrs (Xs)l/fﬂ(XDW,s(XD» (B7)
2e R4t (Ec + €4 +€)?
[eRe S (Vo (X8) ¥ (XD) Y (X) Y (Xs)) )
Iy = ot —eV / de, / deg (e + e)Ec + €3) + O[(eV)“1, (B8)

where G@ = vy @|?/(27h) is the conductance of the
a = S, D contact.

The averages over the statistical realizations in Eqgs. (BS8)
and (B7) are well known in the literature [29]. In the diffusive
limit L > |xs—Xp| >0 SV (Xs)WulXs)V5" (Xp)
Vexp)) A1, and  SH(Yu (X)W (Xp)VpXp)Y5(Xs)) =
D,(xs,Xp)/vy, where D, (Xs,Xp) is the diffuson propagator
[29] between the source and the drain points, and @ = €, — €g.
The cotunneling current then reads as [8,9,25,29]

GOGD) (eV)?
127¢  E2

v, (B9)

in =

GO GD v /Oo o D, (xs,Xp) + D_,(Xs,Xp)
47r2yge? 0 <

In{1+4+ —
xn<+EC>

The elastic cotunneling current depends on the diffu-
son propagator, which is characterized by Thouless energy
Ety ~ D/S, proportional to the diffusion constant D. The
cotunneling current depends on the ratio between Ety, and Ec.
In the limit E1y, 3> E the elastic cotunneling current acquires
the universal form

el =

(B10)

GOGD §

4we? E ol
The expression is independent on the dot parameters and
dynamics, and can be regarded as the expression for a “zero-
dimensional” (0D) dot. In the opposite limit, Et, < E¢, the
result depends on the dot’s shape and the electron’s dynamics
therein.

Addressing now the cotunneling time in the latter regime,
we consider the cotunneling current in the specific case of a
square dot of linear size L. We expect our result to be para-
metrically correct for other dot’s shapes. The Thouless energy

L 0p = (B11)

is then Et, = D/(w2L?) and the diffuson is expressed by
Sich(XSaXD)
D,(Xs,Xp) = _— Bl12
(X5.Xp) Zd ot ErinP (B12)
neN+
where n” = (ny, .. nd) in d spatial dimensions, and

d(x5,xp) = (1/LY) ]_[J lcos(" x“)cos(" x”’) We focus
here on the case of a two- dlmensmnal dot although the
calculation can be performed in general in any spatial
dimensions [30]; we assume for simplicity x; = 0. The

(

parameter n = 7 |Xg — X4|+/ Ec/D discriminates between the
two regimes [/L < n <1 and I/L < 1 < n. In the latter
case, the cotunneling current is known to be [8]

GOGP §E,

- Vv B13
16> EZ B1)

Iel,long =
This limit corresponds to the case of the source and drain
contact at the opposite sides of the dot. In the opposite regime
of source and drain close to each other, we estimate the
cotunneling current as

GOGP 5 © dx
Vi [ Saomre. @14
e Em Jo x

Here, Jy(x) is the Oth Bessel function,

1 ) ) ( 1
— | + Liz -
—ix 1 —ix

2

2 b4
— arctan”(x) — 3

I el short ~

f(x)=Li, (1 ) + 27 arctan(x)

(B15)

and —Li)(—x) = fox dy In(1 +y)/y is the dilogarithmic
function. We are interested in the limit n < 1 where
GOGP § D
I N————V—m|———F—|. (Bl6
st T e Eqy (712|x‘Y - XD|2EC> (B16)

2. Charge-current correlation function (I(¢)N(t — s))

The calculation presented above for the cotunneling cur-
rent can be easily generalized to the correlation function
fooo ds (I(t)[N(t —s) — (N)]). Given the specific time order
between the operators, we focus on the calculation of F(s) =
(Tx[I-()[N(t —s) — (N)]]) written in terms of Keldysh
time-ordered operators, and address the time integral later.

The calculation is done perturbatively in y, in complete
analogy with the case of the current. This leads to Feynman
diagrams constructed according to the same rules R1-R6 dis-
cussed above. In fact, the diagrams obtained for the correlator
can be easily deduced from the diagrams of the current. Each
diagram contributing to the cotunneling current has its analog
for the correlator at hand; the only difference between the two
is the insertion of the vertex N (¢t — s) in the upper branch.
As presented in Fig. 4, this has two consequences: (i) the new
N vertex added to a certain current diagram can be connected
in two different ways, leading correspondingly to two distinct
diagrams for the correlation function; (ii) two diagrams of
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(a) Io -Fcl.l -Fel,/l

= = p =
.- ime

FIG. 4. (Color online) Example of Feynman diagrams for the correlation function (I, (¢#)[N_(t —s) — (N)]) obtained from the corre-
sponding diagrams for the cotunneling current. The presented diagrams are all those contributing the correlation function in the limit of
zero-temperature and particle-dominated processes in the elastic (a) and inelastic (b) cotunneling regimes. For each diagram contributing the
cotunneling current there are four diagrams contributing the correlation function.

related by complex conjugation become no longer the complex
conjugate of each other when inserting the new N vertex, so
they have to be computed separately.

All the nonvanishing diagrams in the limit of zero-
temperature and particle-dominated cotunneling are depicted  \here the last equalities in Egs. (B17) and (B18) are valid
in Fig. 4. Technically, the new propagator including an N ¢ 7 — (. In fact, the above equations can be effectively
vertex, namely, (Tx{ca+(s1)[N+(t —5) — (N )]Cg,i(sz)})’ can  jmplemented in the Feynman diagrams as expressed in the rule
be directly evaluated. In the Schrodinger picture R10. It immediately follows that, among all the contributing

1 2 diagrams in Fig. 4, Fe 2 = Fer.4 = Fina = 0. As an example,

(CalN = (N)eg) = 8ap(l = 1e)” = dap(1 = 10), - (BI7) theé;onvanishiig diagram F;, 1(s) in Fig. 4 reads as ’

(ch(N — (N))cp) = =84 pn> = —84.pn2, (B18)

(ch(N = (N))eh) = {calN — (N))cg) =0, (B19)

|
e > * * $)(2]., (D)2
***** 2
’ :e/ dx/ dyf dz Z(l—na)(l—nj)nﬁnk|ya,k| |ya’j
0 0 0 @Bk
% efi(E+.1+ea+ek)xefi(7eV+ea+ek+eﬁ+ej)yei(EH+ea+ek)zefi(fev+ea+ek+eﬁ+ej)s. (B20)

A direct evaluation of all the diagrams in the inelastic and elastic regimes, done in complete analogy with the calculation of
the current, leads to

GOGD)
Fin(s) = Fin,1(8) + Fin2(s) + Fin3(s) = —ie Tomet /]1&4 deqdepde;de Lz(1/fa(Xs)%ﬁ:(xs)Wﬁ(XD)W;(XD»
e~ i(Ecteater)s 1 1 — g—ilepte;—Ec—eV)s
X > |: — :| , (B21)
(Ec +€y+€r)” L€a+€gt+€;+e—eV+ig €g+e€;—Ec—eV
GOGD .
Fe(s) = Fer1(s) + Faz(s) = ie met /R4 deqdegdejder L™ (Yo (Xs) Yo (Xp)Yp(XD) Y5 (Xs))
+
e~ i(Ecteater)s 1 1 — ¢ i(€atej—Ec—eV)s
X |: — + :| (B22)
(EC+€ﬁ+€k)(EC+€a+€k) €j+€k—€V+l§ G.j—GO,—Ec—E’V

with an infinitesimal regularization parameter . After integrating over s (eventually including a convergence factor e~%%), we
obtain

> GOGP 8(€q + €p + € + € — eV )L (Yo (Xs) Y5 (X)W (Xp)V 5 (XD))
/ ds Fiu(s) =ie ——— / deydegde;de, / d k i ki I/f,a D , (B23)
0 2met R4+4 (Ec +eu+ Ek)3
> GOGD L2 (Yo (X5) Vs (Xp) ¥ (Xp) Y j(Xs))
/ ds Fls) = —ie ———— eV f deqdey——— e O PP (B24)
0 4re R? (Ec +€p)(Ec + €q)
Indeed, Eqs. (B23) and (B24) show that [;° ds Fine) = 3. Rules for Feynman diagrams
— ()3 fince- This directly gives the relation between the As discussed in this appendix, the correlation function
cotunneling time and the cotunneling current in Eq. (14). (I(t)N(t — s)) and the cotunneling current (/) are calculated
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(@) ©

0 —00

time ¢ t Le—teon (=t _
o T g = Onwe [ = n(h)

e o= e n(h)

FIG. 5. (Color online) (a) Time contour for the Keldysh formal-
ism. (b) Rules for drawing vertices in the diagrams for (/) and
(I(t)N(t — s)), required by the rule R2. (c) Explicit expressions of
propagators stipulated by the rule RS.

perturbatively in Hy. They are obtained to fourth order in
perturbation theory. The various contributions are expressed
in terms of Feynman diagrams. We present here the rules to
obtain all the diagrams for the correlation function and their
corresponding analytical expression. The diagrams (Figs. 2, 3,
and 4) are drawn on the Keldysh contour [cf. Fig. 5(a))]. The
Feynman rules are as follows. R1: Each operator is drawn as
a vertex on the Keldysh contour according to the expressions
given in Fig. 5(b); the vertices for TT, Tg are obtained by
reversing the arrows in T and Tp. R2: Each operator (vertex)
is labeled by a time and a subscript (+ or —) indicating
whether the operator appears in forward- or backward-in-time
branch of the Keldysh contour. R3: To begin, the diagrams for
the current (/) are drawn by inserting the operator Tp_(f)
or TDT_(t); the diagrams for the correlator (I(t)N(t — s))

require instead Tp_(¢) [or TDT_(t)] and N.(t —s). R4: All

PHYSICAL REVIEW B 90, 085417 (2014)

possible combinations of Tsl(sz), TDL(S3) should be inserted,
such that the inequality s3 > s, > s; is satisfied by the
operators appearing in the same branch. R5: Vertices should
be connected in all possible ways through the appropriate
propagators. R6: Each time interval between two subsequent
vertices is labeled by the corresponding charging energy (U)
(cf. Sec. II). This charging energy is set to 0 at t = —oo.
Following the time contour, each vertex changes the value
of this energy in a well-defined definite way. We label the
charging energy at a certain time in terms of the vertices
that precede that time on the contour. We thus introduce
(U(Ts)) = Ec and (U(T}))) = E}. (cf. Fig. 5 ). All the other
charging energies are determined in terms of these two values.
In particular, (U(T}Ts)) = —eV and (U(T{Tp)) = eV. An
example of energy labeling is shown in the diagram in the
inset of Fig. 2.

So far, we have listed the rules for drawing and labeling
the diagrams. We complement this list by the rules for
calculating these diagrams. R7: Each vertex corresponds to
Tp = Y Tk(’rh), Ts —> Y i Tk(’l/)l, and the respective complex-
conjugate expressions for T4, T[T,. R8: The propagators
associated with the dot’s dynamics are given by the expressions
in Fig. 5(c); analogous expressions hold for the leads’
propagators, where the energy ¢ is replaced by the energy
of the modes in the lead €\’ R9: A factor e~V =" should be
included for the corresponding charging energy (U) between
times # and ¢'. R10: Integration over times should be executed,
accounting for the inequalities of R4.
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