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Single-qubit lasing in the strong-coupling regime
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Motivated by recent “circuit QED” experiments we study the lasing transition and spectral properties of
single-qubit lasers. In the strong coupling, low-temperature regime, quantum fluctuations dominate over thermal
noise and strongly influence the linewidth of the laser. When the qubit and the resonator are detuned, amplitude
and phase fluctuations of the radiation field are coupled and the phase diffusion model, commonly used to
describe conventional lasers, fails. We predict pronounced effects near the lasing transition, with an enhanced
linewidth and nonexponential decay of the correlation functions. We cover a wide range of parameters by using
two complementary approaches, one based on the Liouville equation in a Fock-state basis, covering arbitrarily
strong coupling but limited to low photon numbers, the other based on the coherent-state representation, covering
large photon numbers but restricted to weak or intermediate coupling.
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I. INTRODUCTION

A strong, coherent coupling between a superconducting
qubit and an electrical resonator was first realized experi-
mentally by Wallraff et al. and Chiorescu et al. [1,2]. Their
work stimulated substantial theoretical [3–9] and experimental
activities [10–16] devoted to the study of further quantum
electrodynamic effects in electric circuits. In these “circuit
QED” setups a superconducting qubit plays the role of an
artificial atom, while the radiation field is replaced by the
modes of an electric resonator. In some of these experiments
a strong enhancement of the resonator field and lasing were
observed [14,15].

In contrast to conventional lasers where many atoms are
coupled weakly to the light field in an optical interferometer,
in the single-qubit laser, a single superconducting qubit is
coupled strongly to the microwave field of the resonator
circuit. Furthermore, typical circuit QED setups operate at low
temperatures where thermal noise is weak and quantum fluc-
tuations, arising from the qubit-resonator coupling, become
dominant [17–19].

In this work we study the lasing transition and the spectral
properties of single-qubit lasers focusing on the regime
of strong qubit-resonator coupling at low temperatures. In
this regime we find qualitatively new behavior of the laser
linewidth. In earlier work [20,21] we observed that the
linewidth depends in a nonmonotonous way on the coupling
strength: approaching the lasing transition from weak coupling
one observes the well-known linewidth narrowing. However,
for stronger coupling the linewidth of the single-qubit laser
increases again, and the lasing state deteriorates, a behavior
not observed in conventional lasers.

If the qubit and the laser are detuned from resonance we
find an even more surprising behavior: The linewidth, which
generally increases with detuning, is strongly enhanced near
the lasing transition and for strong coupling or low damping
rate of the resonator shows a local maximum as a function

of detuning. In this regime, the correlation functions of the
resonator decay nonexponentially in time. As we demonstrate
in the following, this behavior is due to the coupling between
phase and amplitude fluctuations, which are neglected in the
commonly used phase diffusion model [22].

To cover a wide range of parameters we analyze the
properties of the laser using two approaches. One is based
on a numerical analysis of the Liouville equation in a basis
of Fock states. It allows for arbitrarily strong coupling, but
is limited by the size of the basis which we can handle. This
puts constraints on the thermal photon number and the quality
factor of the resonator. The other is based on the coherent-state
representation. It covers large photon numbers (and thus low
damping rate of the resonator), but fails in the strong coupling
regime. The results of the two approaches coincide well in an
interesting overlapping parameter regime.

The paper is organized as follows. In Sec. II, we describe
the model and in Sec. III the two approaches are employed to
solve the master equation. Stationary properties, such as the
average photon number, are evaluated in Sec. IV. In the central
part of this paper, Sec. V, we investigate the spectral function
and the linewidth near the lasing transition in the frame of the
two approaches. The consequences of amplitude fluctuations
and the failure of the phase diffusion model are discussed. We
draw conclusions in Sec. VI.

II. THE MODEL

The single-qubit laser realized by Astafiev et al. [14]
consists of a Cooper pair box (CPB) [23], characterized by
the charging energy scale Ech and the Josephson coupling
energy EJ, which is coupled capacitively to a superconducting
coplanar waveguide resonator with frequency ωR . In the
regime typically explored in the experiments, only two charge
states of the CPB, indicated as |0〉 and |2〉 and differing by one
Cooper pair, are coherently and (near) resonantly coupled to
the cavity. In this situation, the system can be modelled as a

1050-2947/2010/82(5)/053802(9) 053802-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.053802
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two-level system (qubit) coupled to a harmonic oscillator with
Hamiltonian [3]

H = − 1
2 (Echτ̂z + EJτ̂x) + h̄ωRa†a + h̄g0τ̂z(a + a†). (1)

Here we set τ̂z = |0〉〈0| − |2〉〈2|, τ̂x = |0〉〈2| + |2〉〈0|, while a

and a† are the annihilation and creation operators of photons in
the resonator. The qubit-resonator coupling strength is denoted
by g0. In the considered single-qubit laser experiments, the
qubit level spacing and ωR are in the range of 10 GHz (i.e.,
microwave frequencies) while the strength of the coupling
g0 reaches 100 MHz. This is much stronger than usual
for conventional lasers, but still small enough to allow for
the rotating-wave approximation. Switching to the qubit’s
eigenbasis, we can recast the Hamiltonian in the Jaynes-
Cummings form [24]

HJC = 1
2h̄ωQσz + h̄ωRa†a + h̄g(σ+a + σ−a†). (2)

Here we introduce new Pauli matrices σx,y,z and σ± =
σx ± iσy . Furthermore, the the qubit’s level spacing h̄ωQ =√

E2
ch + E2

J and the effective coupling strength g = sin θg0

with θ = − arctan(EJ/Ech) have been introduced. In the
following we allow the qubit and the resonator to be detuned
by � = ωQ − ωR . Although we consider the experiment of
Ref. [14] as a motivation for this analysis, our model also
applies to many further circuit QED experiments in the lasing
regime [5].

As discussed in detail in Refs. [21,25], the pumping
mechanism implemented by Astafiev et al. [14] depends on the
current injection in a superconducting single-charge transistor
and actually involves three charge states. Besides the states
|0〉 and |2〉, an additional one-excess-electron charge state is
incoherently coupled to the system and excited via an external
voltage bias. For the present discussion it is sufficient to model
this driving simply by adding an incoherent excitation term to
the qubit’s dynamics.

In this case, within the usual Markov approximation, for
weak system-environment coupling and using the secular
approximations, we can analyze the dynamics of a single-qubit
laser in the frame of a Bloch-Redfield master equation [26,27].
The reduced qubit-resonator density matrix ρ obeys the master
equation in Lindblad form [28], which in the laboratory frame
reads

ρ̇ = − i

h̄
[HJC,ρ] + LQρ + LRρ. (3)

Here the Liouville superoperators LR and LQ account for the
resonator’s and the qubit’s dissipative processes

LRρ = κ

2
(Nth + 1) (2aρa† − a†aρ − ρa†a)

+ κ

2
Nth(2a†ρa − aa†ρ − ρaa†), (4)

and

LQρ = �∗
ϕ

2
(σzρσz − ρ)

+ �↓
2

(2σ−ρσ+ − ρσ+σ− − σ+σ−ρ)

+ �↑
2

(2σ+ρσ− − ρσ−σ+ − σ−σ+ρ). (5)

The dissipative dynamics of the resonator depends on the bare
damping rate κ and the thermal photon number Nth, while the
qubit’s dynamics are described by excitation, relaxation, and
pure dephasing with rates �↑, �↓, and �∗

ϕ , respectively. For
later use, we also introduce the inverse of the T1 time, �1 =
�↑ + �↓, the total dephasing rate �ϕ = �1/2 + �∗

ϕ , as well as
the bare population inversion of the qubit τ0 = (�↑ − �↓)/�1.

As mentioned in the Introduction, in single-qubit lasers the
lasing transition and state depend on the coupling strength
g and the qubit-resonator detuning �. To characterize the
lasing state in these systems we therefore study the stationary
properties of the radiation field, such as average photon
number and photon number fluctuations as a function of these
parameters. To fully characterize the lasing state we further
investigate the emission spectrum of the field

Se(ω) =
∫ ∞

−∞
dte−iωt 〈a†(t) a(0)〉, (6)

and the linewidth of the laser radiation. This allows us to
describe the transition between the incoherent and the coherent
state of the resonant cavity and to draw a phase diagram of the
lasing state.

III. METHODS

We address the lasing state and the resonator spectrum
by two different methods, by a direct numerical diagonal-
ization of the master equation for the density matrix and
by a Fokker-Planck equation approach. The two methods
cover different parameter regimes and provide complementary
physical pictures.

A. Direct integration of the Liouville equation

After projecting on the Fock states basis, we can recast the
master equation (3) in vector form

�̇ρ = G �ρ. (7)

The reduced density matrix ρ is arranged as a vector �ρ, and G

is a superoperator acting in the space of the system operators.
This form is convenient for the numerical evaluation of both
the static and spectral properties of the field.

From the stationary solution of the master equation G �ρs =
0 we obtain equilibrium values such as the photon number
in the resonator 〈n〉 = Tr{a†aρs}. From Eq. (7) we can also
derive expressions for time-dependent correlation functions
[29] [e.g., 〈a†(t) a(0)〉]. To do so, we employ the quantum
regression theorem [28,30]

〈a†(t) a(0)〉 = Tr{a†eGtaρs}. (8)

To proceed it is convenient to diagonalize the superoperator
G and express the product aρs in terms of eigenvectors of G,
aρs = ∑

k ck �vk . Acting on the equation with the exponential
exp(Gt) leads to

eGtaρs =
∑

k

cke
λkt �vk,

where λk is the eigenvalue corresponding to the eigenvector
�vk . Once the eigenvalues λk and expansion coefficients ck are
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known, we can easily obtain the correlation function for all
times t .

We solved Eqs. (7) and (8) numerically with the results to
be presented in the following. For this purpose we truncate the
Hilbert space of the resonator to a finite number N of photon
number states. In this case the superoperator G is represented
by a 4N2 × 4N2 matrix, growing fast with N , which limits
the method in our case to N � 30. This puts constraints to the
values of rates κ and �1. As will be shown in Sec. IV, the
average photon number 〈n〉 in the resonator obeys the relation
〈n〉 <∼ �1/(2κ). Hence the damping rate κ should not be too
small (i.e., κ >∼ �1/N). On the other hand, for the calculation of
average steady state values, as well as for the linewidth exactly
at resonance (� = 0), the calculations reduce to solving a
system of linear equations. In these cases, we can cover a
much higher number of photon number states, N <∼ 200.

B. Fokker-Planck equation

Alternatively, following the route outlined in Ref. [28],
we can derive a Fokker-Planck equation (FPE) for the single
qubit-laser in the coherent state representation. In this case
we represent the qubit-oscillator density matrix as ρ(t) =∫

d2αρ̃(α,t)|α〉〈α|, where ρ̃(α,t) is a 2 × 2 matrix in the
qubit basis states. Substituting this expansion into Eq. (3) we
obtain a master equation for the operator ρ̃(α,t). Its trace,
TrQ[ρ̃(α,t)] ≡ P (α,t), yields the probability for the radiation
field to be in a coherent state |α〉.

In typical experimental configurations [14], the dynamics of
the qubit are much faster than that of the resonator. As a result
the qubit decays on short time scales to a quasisteady state,
which still depends on the slowly varying state of the radiation
field α(t). We can adiabatically eliminate the qubit’s degrees
of freedom via a projective technique [28]. The resulting FPE
contains a noise term arising from the qubit fluctuations.
Generally, this noise term contains all orders of derivatives
∂/∂α and ∂/∂α∗. If the coupling is weak compared to the
dephasing rate of the qubit g � �ϕ , the noise term can be
truncated to second-order derivatives, and the resulting FPE in
the rotating frame reads [28]

∂P

∂t
= κ

2

{
∂

∂α

[
α − α(1 − i�/�ϕ)C0(

1 + �2
/
�2

ϕ

)
(1 + |α|2/n0)

]

+ ∂2

∂α∂α∗ (Nth + Q) + ∂2

∂α2
R + c.c.

}
P. (9)

Here C0 = 2g2τ0/(κ�ϕ) and n0 = �1�ϕ/(4g2). The resonator-
qubit coupling leads to the noise terms

Q = g2

κ
Re

{∫ ∞

0
dt[〈σ+(t)σ−(0)〉q − 〈σ+〉q〈σ−〉q]

}
,

R = −g2

κ

∫ ∞

0
dt

[〈σ−(t)σ−(0)〉q − 〈σ−〉2
q

]
, (10)

which can be again calculated using the quantum regression
theorem [28,30]. Here 〈· · ·〉q denotes the average over the qubit
in the quasisteady state.

To proceed, we introduce polar coordinates r and ϕ

denoting the amplitude and phase of the radiation field in a
coherent state, respectively. In the stationary limit, we expect
that the field distribution function is independent of the phase.
Hence we seek for the solutions limt→∞ P (α,t) = Ps(r). In
this way we obtain for the steady-state distribution

Ps(r) = Ne−
(r), (11)

normalized such that 2π
∫

drrPs(r) = 1. The expression for

(r) along with further details of the derivation is given in
Appendix A.

The correlation function of the resonator 〈a†(t)a(0)〉 can
be calculated by introducing the conditional probability
P (r,ϕ,t/r0,ϕ0,0) for the radiation field to be in the coherent
state (r,ϕ) at time t , given that it was in the state (r0,ϕ0) at t = 0.
In terms of distribution functions, the correlation function is
given by [31]

〈a†(t) a(0)〉 =
∫

dr r2
∫

dϕ dϕ0 dr0 r2
0 Ps(r0)

× ei(ϕ0−ϕ) P (r,ϕ,t/r0,ϕ0,0)

≡
∫

dr r2 W (r,t), (12)

where W (r,t) obeys the differential equation

∂W/∂t = L̂W. (13)

The explicit form of the differential operator L̂ can be obtained
from the FPE equation [32] and it is given in Appendix A. To
solve Eq. (13) we discretize the amplitude r and diagonalize
the L̂ matrix on the resulting lattice. We can then expand
W (r,t) = ∑

k ckχk(r)e−λkt in eigenfunctions of L̂, where λk

is the eigenvalue corresponding to the eigenfunction χk , and
the coefficients ck are determined by the initial condition
W (r,t = 0) = 2πrPs(r).

Each of the two methods described so far, based on different
representations of the density matrix, has its advantages and
limitations. The Fock-state representation used in the direct
integration of the Liouville equation (DILE) is exact, but for
practical reasons, can only deal with low photon numbers.
The coherent-state representation and FPE approach provide
insight into the distinction between the quantum and classical
descriptions and can be employed in the large photon number
limit. But the condition g/�ϕ � 1 must be satisfied to allow
truncating the derivatives to second order. Hence it fails when
the coupling is too strong.

IV. PHASE DIAGRAM AND STATIONARY PROPERTIES

In this section we investigate the stationary properties of
single-qubit lasers for different values of the qubit-resonator
coupling g and detuning �. In all results presented in the
following we assume Nth = 0 and keep the bare qubit inversion
fixed at τ0 = 0.975. The study presented here serves a two-fold
purpose, on one hand it aims at characterizing the state of
the radiation field in the different parameter regimes explored
in the experiment [14], on the other hand it gives us the
opportunity to compare the FPE and the DILE methods.
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FIG. 1. (Color online) Phase diagram (and in the inset distribution
functions) in the lasing (light), nonlasing (dark), and the transition
regimes (intermediate) as a function of the detuning � = ωQ − ωR

and coupling g between the qubit and resonator. The distribution func-
tions are plotted with κ = 10−4ωR , g = 0.002 ωR , and detuning � =
0 at point a, � = 0.027 ωR at point b, and � = 0.06 ωR at point c.
Other parameters are �ϕ = 1.2 × 10−2ωR , �1 = 1.6 × 10−2ωR , τ0 =
0.975, and Nth = 0. The solid line represents the transition curve
obtained from the semiclassical approximation.

A. Lasing transition

To study the nature of the radiation field we first analyze the
photon distribution function Ps(r), with the results shown in
Fig. 1. For weak coupling or large detuning the system is in the
thermal regime, where the resonator behaves like a black-body
cavity and Ps(r) decays monotonically as a function of r

(curve c in Fig. 1). Increasing the coupling strength or
decreasing the detuning brings the system into a transition
regime, where Ps(r) has a maximum at a nonzero value of r ,
but the field still has some probability at r = 0 (curve b). A
further change of parameters pushes the system into the lasing
regime with a photon distribution having a negligible weight
at r = 0. We note that the lasing threshold (solid line in Fig. 1)
estimated within the semiclassical approximation [21]

2g2�ϕ

�2
ϕ + �2

= κ

τ0
, (14)

coincides with the boundary of the thermal regime (found by
evaluating whether the minimum of 
(r) occurs at r = 0 [22]).

A further hint at the nature of the radiation field in
the different regimes is provided by the Fano factor F =
(〈n2〉 − 〈n〉2)/〈n〉. As one may expect, deep in the thermal
regime the photon distribution is simply a Bose distribution
and since Nth = 0, the Fano factor equals 1. As one approaches
the transition regime, due to large fluctuations in the photon
number, the Fano factor is strongly enhanced, reaching a
maximum in the transition region. Deep in the lasing regime,
the field is in a coherent state and the Fano factor equals one
again, F ≈ 1. Figure 2 shows that there is a wide region in
the (�,g) plane where F is significantly larger than 1. In this
region, even well above the semiclassical lasing threshold, the
field is not yet in a coherent state.
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FIG. 2. (Color online) Fano factor for different values of detuning
and coupling between qubit and resonator. Points a, b, and c are
defined as in Fig. 1.

B. Photon number and fluctuations

The lasing transition is evident in the average photon
number 〈n〉. Results are shown in Fig. 3 for varying coupling
strength g. In the nonlasing regime, the photon number is
small. Remarkably, even for a single-qubit laser 〈n〉 increases
sharply near the threshold before it saturates deep in the lasing
regime. Within the semiclassical approximation, the saturation
photon number can be estimated as

n̄sat = �1τ0

2κ
. (15)

In Fig. 3 we compare the results obtained from the DILE
and FPE methods. Both coincide for weak coupling g. They
differ when the coupling becomes stronger since the condition
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FIG. 3. (Color online) Average photon number on resonance
obtained from the DILE (solid) and the FPE approach (dotted).
Parameters are (a) κ = 10−4ωR and (b) κ = 5 × 10−4ωR . The dot-
dashed line indicates the lasing threshold (LT) estimated using
Eq. (14).
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FIG. 4. (Color online) (a) Relative fluctuations as function of g at
resonance and (b) as function of � at g = 0.002 ωR . In both panels
κ = 10−4ωR .

g/�ϕ � 1 needed for the FPE approach is violated. The
comparison of the two panels in Fig. 3 shows that both
approaches describe the lasing transition well if the bare
damping rate of the resonator is weak (upper panel), but for
a higher damping rate (lower panel) the FPE approach is not
sufficient.

Of interest for the following discussions are also the
relative fluctuations of the photon number δn/〈n〉 and of the
field amplitude δr/〈r〉 shown in Fig. 4. (For the parameters
used, DILE and FPE coincide well.) The relative fluctuations,
although they are rather weak in the lasing regime, have
important effects on the spectral properties of the single-qubit
laser, which we will discuss in the next section.

In the nonlasing regime, the correlations between the qubit
and the resonator are negligible and the distribution function
for the steady state can be approximated as Ps(r) = πe−b r2

/b

with

b = τ0

2(1 + τ0)

(
1 − 2τ0�ϕ

κ

g2

�2
ϕ + �2

)
, (16)

which is positive in this regime. The relative fluctuations
of the photon number are thus given by δn/〈n〉 = √

1 + b,
which grow with decreasing g or increasing �. The relative
amplitude fluctuations are constant in this regime, namely,
δr/〈r〉 = √

4/π − 1 � 0.5, as shown in Fig. 4.

V. LASER LINEWIDTH

This section is devoted to the study of the emission spectrum
of the single-qubit laser radiation and the dependence of
its linewidth on the qubit-resonator coupling and detuning.
Both in the FPE and the DILE approaches the correlation
function of the resonator can be expanded as 〈a†(t) a(0)〉 =∑

k αk exp (−λkt), where −λk are the eigenvalues of the
discretized differential operator L̂ defined in Appendix A or
of the superoperator G introduced in Sec. III A (both in the

0 δω

Se ω arb. unit

ωR 0.02

0

FIG. 5. (Color online) Emission spectrum Se(ω) in the rotating
frame for g = 0.003 ωR and κ = 5 × 10−4 ωR . The frequency shift
δω at � = 0.02 ωR is about 0.56κ .

rotating frame), respectively. Using this expansion in Eq. (6)
we obtain

Se(ω) = 2
∑

k

1

[ω + Im(λk)]2 + [Re(λk)]2

×{Re(αk)Re(λk) + Im(αk)[ω + Im(λk)]}. (17)

This equation serves as a starting point for the calculation
of the resonator spectrum once the eigenvalues λk and the
coefficients αk are known.

The results for two different values of the detuning are
plotted in Fig. 5. The spectrum is characterized by a linewidth,
which we define, even in cases where the spectrum is not
Lorentzian, to be the half-width at half-maximum (HWHM).
We note that a detuning between the qubit and resonator shifts
the emission spectrum away from the bare frequency ωR of the
resonator. Near resonance, this frequency shift grows linearly
with the detuning � [20,21].

When analyzing the emission spectrum using the two
approaches described previously we arrive at the following
main conclusions:

(i) The linewidth depends in a nonmonotonous way on the
coupling strength, consistent with Refs. [20,21].

(ii) Away from resonance (but deep in the lasing regime),
amplitude fluctuations contribute significantly to the linewidth.
But they are neglected in the phase diffusion model.

(iii) For strong coupling or weak damping of the resonator
the linewidth is strongly enhanced in the transition regime. In
this case the emission spectrum is no longer purely Lorentzian.

A. Dependence on the coupling strength

One of the central results of Refs. [20,21] was the non-
monotonic dependence of the linewidth on the qubit-resonator
coupling strength. This is demonstrated in Fig. 6, where the
average photon number in the resonator and the linewidth
of the emission spectrum are plotted as functions of the
coupling strength g at resonance � = 0. We see that, while
the photon number rapidly increases at the lasing transition
and then saturates, the linewidth shows a nonmonotonic
behavior. For increasing, but still weak coupling, we observe
the linewidth narrowing which is typical for lasers. However,
in the deep lasing regime, the linewidth grows again with
coupling strength, leading to a deterioration of the lasing state.
This effect is very pronounced for low photon numbers in the
resonator and strong coupling. In this regime, the linewidth can
even become larger than the bare linewidth of the resonator.
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FIG. 6. (Color online) Average photon number and linewidth as
functions of the coupling strength on resonance with (a) κ = 10−4ωR

and (b) κ = 5 × 10−4ωR . Results obtained from the DILE and the
FPE methods are represented by the solid and the dashed lines,
respectively.

As described in Sec. II, the DILE can be used if the photon
number is not too high (i.e., if the damping rate κ of the res-
onator is not too small). On the other hand, the FPE approach
requires that the coupling strength is much smaller than the
dephasing rate of the qubit, g � �ϕ . Figures 3 and 6 show good
agreement between both approaches for parameters where both
are valid (i.e., for weak coupling and low photon number).

B. Linewidth as function of the detuning

At resonance (deep in the lasing regime), a satisfactory
picture of the linewidth properties can be derived using the
phase diffusion model (PDM) [22,33]. Within this model the
effects of amplitude fluctuations on the spectrum are neglected,
and the linewidth coincides with the phase diffusion rate,
which is only affected by phase fluctuations.

The PDM turns out to be no longer valid away from
resonance when the quantum noise dominates. As shown in
Fig. 7, when amplitude fluctuations are taken into account,
the laser linewidth increases with growing detuning. This is
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FIG. 7. (Color online) Linewidth as a function of the detuning
with κ = 5 × 10−4ωR , g = 0.003 ωR .

obtained both in the DILE and the FPE approaches and in
agreement with the findings of Ref. [25]. In contrast, the PDM,
although working well at resonance, predicts the wrong slope
and curvature of the linewidth as a function of detuning.

The failure of the PDM is due to the coupling of phase
and amplitude fluctuations. To describe their effects on the
linewidth, we consider the FPE in polar coordinates (see
Appendix A for details),

∂P (r,ϕ,t)

∂t
= κ

4r

∂

∂r

{
[Nth + Q(r) + 2u(r)]r

∂

∂r

+ 4v(r)
∂

∂ϕ
+ F (r)

}
P (r,ϕ,t)

+κ

(
D2(r)

∂2

∂ϕ2
+ D1(r)

∂

∂ϕ

)
P (r,ϕ,t). (18)

The mixed derivative (∝ ∂2/∂r∂ϕ) couples the dynamics of
phase and amplitude. The coefficient v(r) is given by

v(r) = Im[e−2iϕR(r,ϕ)]. (19)

In the limit of full population inversion τ0 = 1 and vanishing
pure dephasing �∗

ϕ = 0, it reduces to

v(r) = �r2
[(

5 + �2
/
�2

ϕ

)
n0 + 2r2

]
4κ

[(
1 + �2

/
�2

ϕ

)
n0 + r2

]3 . (20)

This form illustrates that the coupling term vanishes on
resonance. But off-resonance in the lasing regime v(r) couples
amplitude fluctuations to the phase dynamics and, as shown in
the following, qualitatively influences the linewidth.

In the transition regime, the linewidth is enhanced and, as
shown in Fig. 8, exhibits a peak structure for strong coupling
or low damping of the resonator. This phenomenon arises
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FIG. 8. (Color online) Linewidth as (a) functions of the detuning
obtained from the DILE approach and (b) from the FPE method.
Parameters are given in Table I.
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TABLE I. Parameters in Fig. 8. Here g and κ are in units of ωR .

Fig. 8(a) : Fig. 8(b) :
κ = 5 × 10−4 g = 0.003

curve I: ξ = 1.125 g = 0.003 κ = 5.0 × 10−4

curve II: ξ = 3.125 g = 0.005 κ = 1.8 × 10−4

curve III: ξ = 8 g = 0.008 κ = 7.2 × 10−5

curve IV: ξ = 18 g = 0.012 κ = 3.1 × 10−5

due to the coupling of amplitude and phase fluctuations. For
an estimate, we expand v(r) of Eq. (20) (neglecting pure
dephasing and setting τ0 = 1) near the lasing transition in
the small amplitude of the radiation field r2 � n̄sat. The result
is v(r) � a1r

2/n̄sat with the expansion coefficient

a1 =
√

4ξ − 1

4ξ
(1 + ξ ). (21)

In the derivation of the above equation, we use the relation
between the coupling strength g, the damping rate of the
resonator κ , and the detuning � at the transition, which is
given by Eq. (14). The expansion coefficient a1 depends on
the ratio between the coupling and damping rate

ξ = g2

κ�1
. (22)

It grows with increasing g or decreasing κ , which leads to
an increased coupling of the amplitude fluctuations and hence
increased linewidth.

In the two panels of Fig. 8 we plot the linewidth as a function
of the detuning for different g and κ , as obtained in the two
approaches. Since the coefficient a1 depends on the ratio ξ , we
choose the parameters such that each curve in Fig. 8(a) has a
corresponding one in Fig. 8(b), which has the same value for ξ ,
as shown in Table I. The linewidths represented by curves with
the same ratio of coupling to the damping rate show similar
behavior around the lasing transition. When ξ is small (e.g.,
ξ = 1.125), the linewidth grows monotonically with detuning
and no peculiar features show up. For larger values of ξ , the
linewidth is enhanced around the transition regime, which
becomes more pronounced as ξ increases. Moreover, for strong
coupling (e.g., for g/ωR = 0.012) the peak of the linewidth can
be even exceed the bare value κ/2. In this case, the linewidth
at resonance κL(� = 0) is already comparable to κ/2.

In the nonlasing regime for strong detuning, the linewidth
can be well approximated by [21]

κL = κ

2
− g2�ϕ

�2
ϕ + �2

τ0 <
κ

2
, (23)

approaching the bare linewidth of the resonator κ/2 in the
infinite detuning limit.

C. Nonexponential decay

Generally, as described in Eq. (17), the emission spectrum
Se(ω) is the sum of contributions from different eigenvalues.
We find that both in the deep lasing and the nonlasing regimes,
a single eigenfunction, the one corresponding to the eigenvalue
with the smallest real part (denoted as λ1), is sufficient to
describe the spectral properties. In this case, the correlation
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κ ωR 7.2 10 5
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FIG. 9. (Color online) Relative distance γ between the HWHM
and the real part of the first eigenvalue as a function of the detuning
for (a) different values of g with κ/ωR = 5 × 10−4 (DILE) and
(b) for different values of κ with g/ωR = 0.003 (FPE).

function of the radiation field decays exponentially in time and
the spectrum is a Lorentzian. However, in the transition regime,
where the linewidth shows the nonmonotonic behavior, more
than one eigenfunction contributes to the spectrum.

As a measure of the deviation of the correlation function
from the simple exponential form, we define the relative dis-
tance between the HWHM linewidth κL and the real part of λ1

γ = |κL − Re[λ1]|
κL

. (24)

Figure 9 shows γ as a function of detuning for different
values of g and κ . At resonance (deep lasing regime) and
far off-resonance (nonlasing regime) the first eigenvalue
is sufficient to describe the linewidth, and the decay of
the correlation function is simply exponential. However,
when approaching the transition regime where a peak in
the linewidth shows up, the weights of further eigenvalues
increase, indicating that more eigenvalues must be taken into
account. More details are presented in Appendix B.

VI. CONCLUSION

We have studied a single-qubit laser consisting of a qubit
coupled strongly to the resonator. The lasing behavior was
investigated in a parameter space spanned by the coupling
strength g and the detuning �. Increasing g or decreasing �

pushes the system toward the lasing state, characterized by an
increase of the average photon number and a decrease of its
relative fluctuations.

In single-qubit lasers at low temperature the linewidth
of the emission spectrum is dominated by the quantum
noise arising from the correlation between the qubit and
the resonator. On resonance, at � = 0, the linewidth can
be described by the PDM for the phase fluctuations of the
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laser field. In this case, the emission spectrum is Lorentzian
with the linewidth simply given by the diffusion coefficient
in the FPE. Away from resonance but still deep in the lasing
regime, although the amplitude fluctuations are still weak, their
contribution to the linewidth is magnified via the coupling to
the phase fluctuations. In this case, the PDM is no longer
sufficient.

With increasing coupling strength g or decreasing damping
rate of the resonator, the coupling between the phase and
amplitude dynamics and hence the contribution of amplitude
fluctuations to the linewidth becomes stronger. In the
transition regime to the lasing state the correlation function of
the resonator does not simply decay exponentially in time, and
the Fourier transform is no longer Lorentzian. Their behavior
is no longer governed by a single eigenvalue λ1, distinguished
from the other ones by having a much smaller real part. Instead,
several eigenvalues, with similar real parts, contribute to the
spectrum.

In our studies, we employed two complementary ap-
proaches to cover a wide range of parameters. The DILE
method in the Fock-state representation is free from approx-
imations on the relative strengths of the coupling, damping
rate of the resonator, and that of the qubit. A practical
limitation arises from the fact that it can deal only with
low photon numbers. In the large-photon number limit, the
FPE approach can be employed. The constraint on it is set
by the approximation that the coupling strength should be
lower than the damping rate of the qubit. In an overlap-
ping parameter regime, where both methods are sufficient,
the results obtained in the two approaches show good
agreement.
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APPENDIX A: FPE IN POLAR COORDINATES

In polar coordinates, the FPE is given by

∂P (r,ϕ,t)

∂t
= κ

4r

∂

∂r

{
[Nth + Q(r) + 2u(r)] r

∂

∂r

+ 4v(r)
∂

∂ϕ
+ F (r)

}
P (r,ϕ,t)

+ κ

(
D2(r)

∂2

∂ϕ2
+ D1(r)

∂

∂ϕ

)
P (r,ϕ,t),

(A1)

where u(r) and v(r) denote the real and imaginary parts of
e−2iϕR, respectively, and

F (r) = r
d

dr
[Nth + Q(r) + 2u(r)] + 2r2

[
1 − C0

X(r)

]
+ 4u(r),

D2(r) = Nth + Q(r) − 2u(r)

4r2
,

D1(r) = �C0

2�ϕX(r)
+ v(r)

r2
,

X(r) = n0
(
�2

ϕ + �2
)

�2
ϕ(n0 + r2)

. (A2)

In the steady state we expect the distribution function not to
depend on the phase. It can be written in the form of Eq. (11)
with


(r) = ln[Nth + Q(r) + 2u(r)]

+ 2
∫

dr
r2[1 − C0/X(r)]+2u(r)

r[Nth + Q(r) + 2u(r)]
. (A3)

The correlation function of the resonator 〈a†(t) a(0)〉 can
be obtained by introducing [32]

W (r,t) =
∫

dϕ dϕ0 dr0 r2
0 Ps(r0)

× ei(ϕ0−ϕ) P (r,ϕ,t/r0,ϕ0,0), (A4)

which obeys the differential equation

∂W

∂t
≡ L̂W = κ

4r

∂

∂r

{
[Nth + Q(r) + 2u(r)]r

∂

∂r

+ 4iv(r) + F (r)

}
W + κ[−D2(r) + iD1(r)]W. (A5)
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FIG. 10. (Color online) (a) Real parts of the eigenvalues λi and
(b) their weights Wi as a function of the detuning. The results
are obtained from the DILE method with κ = 5 × 10−4ωR and
g = 0.008 ωR .
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FIG. 11. (Color online) (a) Real parts of the eigenvalues λi and (b)
their weights Wi as a function of the detuning. The results are obtained
from the FPE method with κ = 7.2 × 10−5ωR and g = 0.003ωR .

We numerically solve this problem by discretizing the am-
plitude r and diagonalizing the L̂ matrix on the lattice.

We expand W (r,t) in terms of eigenfunctions of L̂,
namely, W (r,t) = ∑

n cnχn(r)eλnt with λn being the eigen-
value corresponding to the eigenfunction χn. The expan-
sion coefficients are determined by the initial condition
W (r,t = 0) = 2πrPs(r).

APPENDIX B: EIGENVALUES CONTRIBUTING
TO THE LINEWIDTH

For strong coupling or weak damping of the resonator the
linewidth is enhanced around the transition regime. In this
case, more than one eigenvalue contribute to the spectrum,
and it no longer has a Lorentzian form. Since the eigenvalues
with small real parts are of importance for the linewidth, we
consider the first three {λk} (ordered with growing real part).
Their weights defined as

Wi = |αi |2∑
k |αk|2 , (B1)

determine how much the corresponding eigenfunctions con-
tribute to the spectrum. As shown in Figs. 10 and 11,
when approaching the transition regime, the weight of the
first eigenvalue, which dominates in the nonlasing and deep
lasing regimes, decreases while the second or even the third
eigenvalues become important.
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