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Manipulating Majorana fermions using supercurrents
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Topological insulator edges and spin-orbit-coupled quantum wires in proximity to s-wave superconductors
can be tuned through a topological quantum phase transition by a Zeeman field. Here we show that a supercurrent
flowing in the s-wave superconductor also drives such a transition. We propose to use this mechanism to generate
and manipulate Majorana fermions that localize at domain walls between topological and nontopological regions
of an edge or wire. In quantum wires, this method carries the added benefit that a supercurrent reduces the critical
Zeeman field at which the topological phase appears.
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Introduction. Emergent Majorana fermions in a condensed
matter setting are currently attracting much attention.1–5 Zero-
energy Majorana fermions comprise the simplest non-Abelian
anyon and promise fascinating applications to topological
quantum-information processing.6,7 Recently, the set of can-
didate systems supporting Majorana fermions has greatly
expanded beyond quantum Hall systems8,9 with the realiza-
tion that several materials can be driven into a topological
superconducting phase when placed in proximity to a conven-
tional s-wave superconductor. This was initially understood
for topological insulators,10,11 followed by two-dimensional
s-wave superfluids with Rashba spin-orbit interaction,12

spin-orbit-coupled quantum wells13,14 and nanowires,15,16

half-metals,17–19 and three-dimensional topological insulator
nanoribbons.20

Nanowire proposals are attractive because they involve
widely available materials and provide detailed recipes for
manipulating the Majorana fermions21—a prerequisite for
verifying their non-Abelian statistics and performing topolog-
ical quantum-information processing. While initial proposals
examined simple mean-field models of clean wires proximate
to a superconductor, more recent work indicates that the
induced topological phase persists in the presence of moderate
interactions22–24 or disorder,25–29 and considered setups for
probing the Majorana bound states.11,30–33 Experimental chal-
lenges nevertheless remain: realizing the topological phase
requires control over the wire’s global electron density and
the application of significant Zeeman fields without destroy-
ing superconductivity. Furthermore, manipulating Majorana
fermions by locally controlling the electron density using gate
electrodes16,21,34 is nontrivial due to strong screening by the
superconductor.

Here we show that the latter two challenges can be greatly
alleviated by applying supercurrents in the bulk superconduc-
tor. These supercurrents cause a spatial gradient of the phase
of the proximity-induced pair potential in the wire, which
drives a transition between the nontopological and topolog-
ical superconducting phases. Remarkably, the supercurrent
also allows one to access the topological phase at weaker
Zeeman fields. Spatially varying the phase gradient along
the wire moreover generates controllable Majorana-carrying
domain walls between nontopological and topological regions.

Switching the supercurrents (and hence the phase gradient)
along sections of the quantum wire transports these Majorana
fermions while preserving the gap, obviating the need for
local gating. Schematically, this can be achieved by the
device shown in Fig. 1. Our scheme, in fact, applies equally
well to the edge of a two-dimensional topological insulator
with proximity-induced superconductivity.11,35 We start by
elucidating the physics in this setting since it is somewhat
simpler to analyze and then turn to the quantum wire case.

Topological insulators. Our analysis begins from the
Bogoliubov-de Gennes equation describing a topological
insulator edge proximate to an s-wave superconductor and
subjected to a magnetic field:10,11

H = (upσx − μ)τz − Bσz + �eiφ(x)τ+ + �e−iφ(x)τ−. (1)

Here, p is the momentum along the edge, u measures the
edge-state velocity, μ is the chemical potential, � and φ(x)
denote the magnitude and (position-dependent) phase of the
proximity-induced pair potential, and B � 0 is the Zeeman
field. The Pauli matrices σi and τi respectively act in spin and
particle-hole space. Equation (1) is written in a Nambu basis
with spinors of the form ψ = [u↑,u↓,v↓, − v↑]T .

In the absence of a phase gradient, say φ = 0, the spectrum
of Eq. (1) is easily derived by repeatedly squaringH, exploiting
the fact that the Bogoliubov spectrum is symmetric about zero
energy.10 Focusing for simplicity on μ = 0 until specified oth-
erwise, one finds energies E±(p) = {(up)2 + |� ± B|2}1/2.
With B < �, H describes a topological superconducting
state11 similar to that of Kitaev’s model for a one-dimensional
p-wave superconductor.36 The gap closes when B = �,
signifying a topological quantum phase transition into a trivial
superconducting state, and reopens at larger B; see Fig. 2.

Consider now Eq. (1) with a nonuniform phase φ(x). Rather
than studying the Hamiltonian (1) directly, it is advantageous
to gauge away φ(x) from the pairing term using the unitary
transformation

U = exp{iφ(x)τz/2}. (2)

Note that this gauge transformation multiplies the electron
and hole components of the Bogoliubov-de Gennes spinor by
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FIG. 1. (Color online) Schematic device for manipulation of
Majorana fermions by supercurrents. Different sections of the
proximity-inducing s-wave superconductor carry different currents,
putting the quantum wire into an alternation of topological (T)
and nontopological (NT) phases. Changing the supercurrent in the
segments allows manipulation of the Majorana fermions γ associated
with the domain walls.

opposite phase factors. The transformed Hamiltonian H′ =
UHU † becomes

H′ =
[
u

(
p − ∇φ

2
τz

)
σx − μ

]
τz − Bσz + �τx, (3)

which depends only on the gradient of φ, making gauge
invariance explicit.

For uniform phase gradients ∇φ along the wire, the
Hamiltonian H′ in Eq. (3) is readily diagonalized; Fig. 2
summarizes the resulting phase diagram. Representative spec-
tra, corresponding to the points in the phase diagram marked
in Fig. 2, appear in Fig. 3. When the system resides in the
nontopological phase (B > �) one finds an enhancement of
the gap as the phase gradient increases from zero. Conversely,
when the system begins in the topological phase (B < �),
the gap initially decreases when applying a nonzero phase
gradient. Eventually the gap closes at the critical phase gradient

(∇φ)∗ = (2�/u)[1 − (B/�)2]1/2, (4)

which signals the transition into a nontopological phase as
indicated by the full line in Fig. 2. Note that (∇φ)∗ is of
the order of the inverse of the proximity-induced (zero-B)
coherence length of the edge state, ξ = u/�. Increasing
the phase gradient beyond (∇φ)∗ reopens the gap for any
nonzero B. (At zero B, there is a transition into a gapless
phase.) This shows that a gradient of the phase of the gap
function, originating from supercurrents in the bulk s-wave
superconductor, can indeed induce a transition between the
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FIG. 2. (Color online) Phase diagram for the topological insulator
case with μ = 0. Increasing the Zeeman field B or the superconduct-
ing phase gradient ∇φ induces a phase transition from the topological
phase (TP) into a nontopological phase (NTP). The latter has two
regimes, separated by the dotted line, depending on whether the
minimal excitation energy �min is located at zero or nonzero p.
The red dots indicate representative points at which the spectrum
is illustrated in Fig. 3.
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FIG. 3. (Color online) Bogoliubov-de Gennes spectrum of the
topological insulator at μ = 0 for various Zeeman fields and
superconducting phase gradients. The corresponding points are also
marked in the phase diagram of Fig. 2. By symmetry, only the
positive-energy dispersion is shown. E and p are measured in units
of εso and 2mu, respectively.

topological and nontopological superconducting phase. One
can understand this result intuitively by observing from
Eq. (3) that the phase gradient behaves exactly as a magnetic
field oriented along x, which effectively shifts the electrons’
momenta (in contrast to the Zeeman field B which opens
a gap). When ∇φ = 0 and � > B, electrons with opposite
momenta are resonant and can easily form Cooper pairs,
driving the system to the topological phase with a �-dominated
gap. A nonzero phase gradient, however, breaks the resonance
between p and −p states and suppresses Cooper pairing. If
this shift is too large, the Zeeman field B dominates the gap
and the edge forms a trivial phase.

When increasing the phase gradient even further in the
nontopological phase, there is another characteristic line where
the minimal gap in the excitation spectrum is no longer located
at p = 0, but rather at a finite p. This crossover line is indicated
by the dotted line in Fig. 2.

Quantum wire. We now turn to the phase diagram for a
quantum wire, proximity coupled to a supercurrent-carrying
s-wave superconductor. Just as for the topological insulator
edge, this phase diagram is obtained from the quantum wire
Hamiltonian15,16

H = (p2/2m + upσx − μ)τz − Bσz

+�eiφ(x)τ+ + �e−iφ(x)τ− (5)

by performing the gauge transformation (2). In this Hamilto-
nian, m denotes the effective mass and u the Rashba spin-orbit-
coupling strength. When φ(x) is uniform, the quantum wire
forms a nontopological superconducting phase for B < �,
undergoes a topological quantum phase transition at B =
�, and enters a topological superconducting state at larger
Zeeman fields.15,16

To understand the resulting phases when a uniform phase
gradient is present, we first focus on the excitation spectra for
μ = 0 in the vicinity of the Fermi points (for � = B = 0) at
p = 0 and ±pF = ±2mu. Figure 4 shows the resulting phase
diagram in the Zeeman-field–phase-gradient plane. The full
line indicates where the gap in the excitation spectrum closes
at p = 0 while remaining finite on both sides of the line. The
dashed line meanwhile indicates where the gap closes near the
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FIG. 4. (Color online) Phase diagram of a quantum wire prox-
imity coupled to a supercurrent-carrying s-wave superconductor
for � = εso in the Zeeman-field–phase-gradient plane at μ = 0
(main panel) and the chemical-potential–phase-gradient plane at
B/� = 1.2 (inset). In both panels the full (dashed) line indicates
where the gap vanishes at zero momentum (near p = ±pF ), leading
to gapped topological (TP) and nontopological (NTP) phases as well
as a gapless phase (GLP). The red dots indicate representative points
at which the spectrum is illustrated in Fig. 5.

Fermi momentum pF . In this case, the gap is finite only on
the low phase gradient side of the line, while it remains closed
on the high phase gradient side. Figure 5 shows representative
excitation spectra for the parameters indicated by red dots in
the phase diagram of Fig. 4. These figures show that for B

below a critical value B∗ a uniform phase gradient drives the
wire from the nontopological phase directly into a gapless
state. More interestingly, at B∗ < B < � we find that the
quantum wire enters the topological phase at intermediate
phase gradients before reaching the gapless state at even larger
phase gradients. Finally, when B > � the quantum wire forms
a topological phase all the way up to a critical phase gradient
where it becomes gapless.

Quantitatively, we find for μ = 0 that the phase boundary
between the gapped topological and nontopological phases
(solid line in Fig. 4) is implicitly given by(

u(∇φ)∗

4εso

)4

− 4

(
u(∇φ)∗

4εso

)2

= B2 − �2

ε2
so

, (6)

where εso = mu2/2. Note that for |B2 − �2| � ε2
so, this

yields the phase boundary u(∇φ)∗ = 2(�2 − B2)1/2 which is
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FIG. 5. (Color online) Bogoliubov-de Gennes spectrum of the
quantum wire in proximity to a supercurrent-carrying s-wave su-
perconductor, focusing on positive energies due to the symmetry
(p,E) → (−p,−E). The chemical potential has been set to μ = 0;
other parameters are specified above and indicated by red dots in
Fig. 4. E and p are measured in units of εso and 2mu, respectively.

independent of εso. For � � εso, the junction of the full and
the dashed lines in Fig. 4 can be readily accessed analytically
and occurs at B∗ = �2/4εso.

The inset in Fig. 4 illustrates the effect of a phase gradient at
a nonzero chemical potential for B > �. At ∇φ = 0 the wire
is topological for |μ| <

√
B2 − �2. Remarkably, a finite (but

not too large) phase gradient extends the topological region to
larger |μ|, making the existence of Majorana bound states less
sensitive to the tuning of the chemical potential.

As for the topological insulator edge, these phase diagrams
indicate that a phase gradient induces a topological phase
transition over a wide region of Zeeman fields, allowing
one to realize Majorana-carrying domain walls by spatially
varying supercurrents. Moreover, these results show that in
the presence of a phase gradient, the Majorana-carrying
topological phase can be induced in the quantum wire at
weaker Zeeman fields. Both of these facts may significantly
simplify the experimental realization of Majorana fermions in
quantum wires.

To further illustrate the supercurrent-driven transition into
a topological phase, we computed the lowest two excitation
energies of a finite-length wire subjected to a uniform phase
gradient across the entire system using a lattice model that
recovers Eq. (5) in the low-density limit.24 Figure 6 shows
the results for a 1000-site wire with μ = 0, B/� = 0.9, and
�/εso = 2. Since B < � here, one finds that both excitation
energies remain finite up to a critical phase gradient, indicating
that the system forms a nontopological phase. Above the
critical phase gradient, the lowest excitation energy drops
essentially to zero due the formation of localized Majorana
end states associated with the entry into the topological
phase, while the second energy remains finite reflecting the
wire’s bulk gap. Beyond a second critical phase gradient,
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FIG. 6. (Color online) Lowest two excitation energies of a 1000-
site quantum wire vs the phase twist generated by a supercurrent
through the entire wire for μ = 0, B/� = 0.9, �/εso = 2. At zero
twist, the wire is in the nontopological phase with B < �. At
larger twists, the wire enters the gapped topological phase where
the lowest excitation energy drops to zero—due to the formation
of Majorana modes—before reaching the gapless phase at even
higher phase gradients, in line with the phase diagram in Fig. 4.
Inset (lower left): Probability distribution for the near-zero mode
obtained when current flows only through the central half of the
wire, creating a trivial-topological–trivial-domain structure with two
Majorana modes.
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the bulk gap closes and the system enters a gapless phase,
in agreement with the phase diagram in Fig. 4. The lower
left of Fig. 6 displays the probability distribution for the
near-zero mode generated by a phase gradient u∇φ/(2�) =
0.6 induced only over the central half of the same 1000-
site wire. The phase gradient creates two domain walls
between the trivial outer ends and topological inner region,
each of which clearly binds a localized Majorana mode as
expected.

Estimates. The proposed scheme to manipulate Majorana
fermions requires one to establish a sufficient phase gradient to
drive the quantum wire (or topological insulator edge) between
the topological and nontopological phase without hitting the
critical current density of the s-wave superconductor. This
critical current density corresponds to approximately one 2π

phase winding within the superconductor’s coherence length
ξsc. In comparison, the topological phase transition occurs for
a phase gradient of roughly one phase winding per coherence

length of the wire ξwire = u/�. Thus, our scheme requires
ξsc � ξwire.37 Both parameters entering the coherence length
ξsc = vF /�sc of a clean superconductor, namely, the Fermi
velocity vF and the pairing amplitude �sc, typically exceed
the corresponding quantities for the wire. Thus, if both the
wire and superconductor are clean, it is in general possible to
satisfy the requirement by a suitable choice of materials and
device parameters. The estimates become yet more favorable
for a dirty s-wave superconductor with coherence length ξ =
(ξsc�)1/2, where � is the elastic mean free path.
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