Exact calculation of the tortuosity in disordered linear poresin the Knudsen regime
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The squared reciprocal tortuosity?> = D/Dy for linear difusion on lattices and in pores in the Knudsen
regime is calculated analytically for a large variety ofadifered systems. HerB, andD are the self dfusion
codficients of the smooth and the corresponding disorderedrayséspectively. To this end, a building block
principle is developed that composes the systems into subtgres without cross-correlations between them.
It is shown how the solutions of theftérent building blocks can be combined to g&ifiD, for pores of high
complexity from the geometrical properties of the systdrasfrom the volumes of the flerent sub-structures.
As a test, numerical simulations are performed that agrdegily with the theory.

PACS numbers: 05.40.Fb 47.56.66.30.je

I. INTRODUCTION (a) (d)

Diffusion in random media has been a subject of large inter-
est in the last decades (for some latest reports see e.glr1])
the last years, the interest has focused on the experimental
accessible subject offilusion of gas molecules in pores (see
Fig. 1), as e.g. the human lung [2], linear silicon nanochan-
nels [3] or zeolithes and other micro- and nanopores [4—6].
As recent progress in synthesizing nanostructured porads m
terials has provided the options of designing specific pore a
chitectures [7], an exact analytical understanding of tifie d
fusion process is of great importance. Of particular irgere
is the tortuosity factok = v/Do/D that describes the relation
between the diusion codicientsD and Dg of systems with
and without geometrical disorder [8]. Botb, and Do, can
be gained by studying either the transport or the seffidion
problem, where in the Knudsen regime, the self- and thetrans ] ] )
port diffusion codficients are the same for a given geometry.FlG' 2: [Colo_r online] _Sketch of the geometries of speciallwe
Theoretical calculations dd on complex pores have mostly <"OWN SUb'gn'tS TOLlatt'lces ((a-c), left C?'“m”.) and theregpon.d'
been based on numerical simulations of the transport- [9—1 ng pores ((d-), right column), i.e. regular units (a,dyneed units

. . b,e) and systems with dead-end units (c,f). In the pordsx-al
or the self difusion problem [11-15] aridr phenomenologi- channels (red dashed lines) are of square cross sectiom idie

cal or semi-analytical approaches [16], whereas exacynal |engthh) and up to 1000 of these (identical) blocks are sticked to-
cal results of specific pore geometries have only been peavid gether to account for an infinite elongation into theirection. For
along loopless curved one-dimensional paths [17] and f&r Sy further geometric details see caption of Tab. I.
tems with dead ends [18, 19]. Whereas in loopless curved
systems (see Fig. 2(b,e)), the tortuosity factor is deteechi
by the longer path, the particle has to travel along the cirve
order to overcome a smaller distancexidirection, the ditu-
sion time of a particle in pores with dead ends (as shown i
Fig. 2(c,f)) is increased by detours into the dead ends that d
not contribute to the diusion along the-direction.

The purpose of this work is to create a new approach, bas
on the self difusional problem, for the exact analytical calcu-
lation of D/Dg of more complex systems as the ones of Fig. 2.

To this end, we consider the lattice problem and its conagcti

Jo diffusionin linear pores in the Knudsen regime [20] (see be-
low). To calculateD /Dy, we decompose the considered com-
plex systems (see Fig. 3 for examples) into simpler exactly
esoolvable geometric sub-structures (building blocks) with
cross-correlations between them and show how the results of
the single sub-units must be combined to calcult®, as

a function of simple geometrical data, i.e. of thefelient
lengths, widths and volumes as given in Tab Il. We verify
our results by numerical simulations that agree perfecitly w
the theoretical predictions. In this work, we are only inter
ested in systems where a fully analytical treatment is pessi

i.e. where all individual building blocks can be solved aial
FIG. 1: [Color online] Sketch of the fiusion process inside a ically. However, we would like to point out that this method
(smooth) pore. The particle is reflected witlfteient angles between can also go beyond these cases by combining analytical and
the pore walls, leading to jump lengths of veryfdient sizes. numerical data of dierent building blocks.
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- .
toe TABLE II: Table of the geometries and analytical resultsdzhsf
) . ﬁ the combined systems of several building blocks from FidJ@per
e ==V half: lattice systems, lower half: pores. All lengths oritas and in
T - pores are given in units of the lattice constaand the pore diameter
. X h, respectivelyD is referred to the valuB, = a?/(4r) for the lattice
FIG. 3: [Color online] Geometries for lattices (left colujrand the ~ (d = 2) and toDo = 0.37hy, for the pores. All omitted numbers are
corresponding pores (right column) that are analyzed bptilding ~ €dqualto 1.
block principle: (a, €) curved system with dead ends, (bufyed
system in parallel with a channel, (c, g) curved system &etetied
by a channel and (d, h) system of two intersecting curves. xAll II. DIFFUSION ON LATTICESAND IN PORES
channels (red dashed lines) of pores are of square crossrseith
side lengthh and up to 1000 of these (identical) blocks are sticked |, 5 Jinear random walk, a particle jumps insideda

together to account for_ an infinite elongation into #adirection (for dimensional lattice (see left column of Figs. 2 and 3) and we
further geometric details see Tab. II). . S . i -

are interested in its displacementjirdirection. We concen-
trate on problems, where dispite an irregular structurénef t
systems the long-time fllision stays normal, which means
thatD for long times is defined by the Einstein relation,

!,

i

|
1
y

Fig. |Sym. O | by |bx2|ly2|d|| Vx| V ||D/Do, Eq. lim () = 2Dt, 1)
2(b), 6(a) @ (black)||400[19| - | - |-|/800|838|| 0.91, (4) (e
2(b), 6(a) 4 (blue) | 200)49| - | - |-|400/498) 0.65, (4) where the mean square displacem@at)) is the squared dis-
2(c), 6(ajm(red) ||10]5]4]4]1]]10]32] 031 (3) tance, a particle has traveled during titria x-direction. For
2(e), 6(b) @ (black)||400[20| - | - |-||798/836| 0.91, (4) anomalous dfusion, as e.g. on fractal structures, we refer to
2(e), 6(b) a (blue) ||200/50| - | - |-|/398/496|| 0.64, (4) the literature [21-24]. For simplicity, we concentrate obic
2(f), 6(b)|m (red) || 20| 9| 3|3 [1||20|61] 0.33,(3) (square) lattices, where in the absence of disorder eattelat

site has @ neighbors and on unbiased walks, where jumps to
TABLE I: Table of the geometries and the analytical resuftshe  the neighboring sites occur with equal probability. Disanris
simple units from Fig. 2. Upper half: lattice systems, loweif:  created by the removal of sites or of links between neighbor-
pores. All units are the same as in Tab. II. ing sites. On a lattice, a walker chooses one of ithp@ssible
directions for the following jump at random. If the link toeth
chosen neighbor is existing, the walker jumps, thereby per-
forming a jump of lengtha (lattice constant) during a time
stepr. If the link has been removed, the walker stays for this
The paper is organized as follows: In section Il, we presentime step where it is (waiting time).
the random walk on a lattice and theffdsion problem in Diffusion in pores (right column of Figs. 3 and 2) repre-
pores, while the underlying theory for the calculatiorDofor ~ sents a more complex problem where, in general, the track
systems made of various building blocks is explained in secef the gas molecules through the pores depends on the colli-
tion Ill. In section 1V, we present the theoretical resultgla sions between the gas molecules as well as on the collisions
verify them by numerical simulations. In the last section V, of the gas with the pore walls. In cases where Knudsé&o-di
we discuss the results and give an outlook. sion [20] dominates, as it has been shown in various trahspor
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jumps occur at all times) must be combined to obfajD,
m ] m 7 and thusk. The approach uses the selffdsion picture but

A clearly, as the self- and transportfdision codficients of a
given geometry are equal, is also valid for transpdfudion.

X

FIG. 4: [Color online] Sketch of the construction of the clieah
distancef between the pointd andB for the curved geometry. The
length of thex-distancex is indicated at the bottom of the figure,
while ¢ is the length of the red curved line.

I1l. CALCULATION OF THE DIFFUSION COEFFICIENT
A. General Considerations

situations through porous media [3, 25], the interactiohs 0  Generally, we can writéx?(t)) afterN time steps as
the molecules with the pore walls play the crucial role and
the intermolecular collisions can be neglected. In thiegcas N2 N N
the molecules perform a series of free flights and change the OC(t)) = <(Z fi] > = <Z §,2> + <ZZ§i§j>’ (2)
flight direction independently from each other after caiis i=1 i=1
with the pore walls as shown in Fig. 1. Therefore the prob-
lem is reduced to many independent individual flights. Is thi Whereg andé; are the single jump lengths aadirection. In
work, we concentrate on Knudserffdsion under Lambert’s the following, we call the 1st term of the rhs of Eq. (2) the
reflexion law in three-dimensional regular and irregulargso ~ "quadratic term” and the 2nd term the "correlation term”.
[4, 11, 12, 15]. In this picture, the particle is absorbedrfro ~ To calculateD directly from the geometry of the system,
the wall after collision and after a very short time (thatés n  we refer to the well-known principles that (i) the partictene
glected) re-emitted into a random direction, where the nevgentration (as well as the gas pressure) is identical alt ove
direction® € [-n/2,7/2] to the normal component of the the system and (ii) correlations amongfeient walks do not
surface occurs with probabilitgP(, ) ~ cos?dQ, where  exist (Knudsen condition). Condition (i) tells us that ireth
dQ = sindddde in d = 3. average over many walks, all places of the system are visited
It is clear that disorder slows down theffdision process, with equal probablllty This is true for real eXperimentS as
leading to a smaller value @f as compared tB, of a smooth ~ Well as for computer simulations, provided that the startin
system. Quantitative calculations that connB¢b, to sim-  Pointis chosen with equal probability among all sites.
ple geometrical properties, as volumes and lengths of fhe di As the sequential order of the single time steps does not
ferent segments exist for loopless curved geometries and f@lay a role for evaluating the quadratic term of Eq. (2), the
systems with dead ends (dangling bonds) that are connectétngle steps of the sum, even if they belong tetient walks
to the main channel by a thin entry, examples of which arénay be interchanged. Then, we can replace the time average
both shown in Fig. 2: of the quadratic term by the ensemble average and describe it
In loopless curved geometries [17] (see Fig. 2(b,e)), the efsolely by all jumps that occur at the same time on all places,
fective length? (also called "chemical length” [23, 24]) of 1-€. by the geometric properties of the system and indepen-
the path a particle has to travel in order to come frarto ~ dently of the track of the single walks. We thus replace the
B is larger than thew-distance between the same points (segjuadratic term bKZiNzl §.2> = N(£?), where(£?) is the mean
Fig. 4 for an illustration). Therefore, normalfflision with  quadratic jump length irx-direction over allN jumps. The
(£%(t)) = Dot applies for the fiective length and with the re- total time of the walk ig = N(t), with the average duration of
lation (x(t)2) = (x/£)? (£(t)%) betweenx- and ¢-space, one the time stepgt). Jumps into the- andzdirection count as
findsD = Do (x/€)> = Do (Vx/V)? [17], where the last ex- waiting times, as they increasaithout increasing.
pressions refers to pores withy andV as defined below. In On lattices, all time steps are equal afd = 7, whereas
dead-end geometries (see Fig. 2(c,f)), as it was first diszlis (£2) depends on the number of waiting times. For th&udi
in [26], the walker only proceeds in thechannels (indicated sion codlicentDy of a d-dimensional ordered lattice of lat-
by the red dashed lines in Fig. 2), while the time inside thetice constante (where the correlation term is zero), we find
dead ends increases the total titnef the walk without in-  (£2) = a?/d and therefor®, = a?/(2dr). On a disordered lat-
creasingx?). Quantitative considerations [18, 19, 22] show tice, on the other hand, some jump-trials into shdirection
thatD/Dg = V«/V, with the volumeVy of the x-channels and find no bond and lead to additional waiting times. Further-
the system volum¥ (of channel plus dead ends). more, the correlation terms may give an additional negative
In this work, we want to combine these well-known sys- contribution and accordinghp < Dy.
tems to more complex geometries by connecting them using In pores, the jump lengths and time steps are not constant
additional segments or by intersecting them directly wibte  and thereforeDy depends on the cross-section of the pore.
other, thereby forming networks. To this end, we show how &or the smooth pore with square surface section of sideliengt
system of diferent sub-units, where thefflision may be (i) h (see Fig. 2(d))Do = (£?)/(2(t)) is numerically found as
uncorrelated (as in a straight channel), (ii) strongly etmted  ~ 0.37hv, with the velocityvy of the particle along the tra-
(as in dead ends, where each jump is compensated by a junjgctory (see also [12]) and with as unit length. (The time
into the opposite direction) and (iii) intermediately edated  steps can be defined as- h/vp). The generalization to circu-
(as in curved channels, where correlated forward-backwarthr or rectangular cross sections is straightforward, buitime

>
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purpose of the present work. Therefore, we refer all valdies ois a loopless curve) of this unit alone can be written as [17]
D in pores to the valu®, of the corresponding smooth pore

with unit lengthh of Fig. 2(d) that we use as the basic element. D-D X\ _D Vi 2 4
Smooth pores with side lengtihh possess the ffusion coef- ) T v ) 4)
ficientngDo.

where for the case of pore&, andx, have been replaced by
the total volumeVy and thex-volumeVyk. From Egs. (1)-(4)

B. Thebuildingblock principle we find the correlation term of the loopless curves,
. . N 2
We now turn to more complex geometries. The first step e xk\ _ Vixk Vixk
for a rigorous treatment is the decomposition of the consid- 225'51 = 2| D - DOTK = 24Do Ve ZtkDOTK’

i,j>i

ered system into well-known analytically treatable sultain )
k as e.g.A: smoothx-channelsB: loopless curved unit<;:
dead ends anb: vertical links. The sub-units must be cho-
sen without cross-correlations, i.e. such that the stepsleew
performs in a given sub-unit do not influence the steps in an
other unit or during a second visit of the same unit.

The relative time/t, the particles spend in a given ukit
can be expressed hly/t = Nx/N = Vi/V, with the relative
number of sitedNy/N (in lattices) or the relative volumé,/V
(in pores) of thekth unit. We also need the relative time, the
particles spend in the-channels (indicated by the red dashed
lines in Figs. 2 and 3)ixk/t = Nxxk/N = Vii/V, where
Nyxk andVyy are the number of sites and the volume of the
x-channels of theékth unit, respectively. Dead-ends, even if
oriented inx-direction do not count as-channels. In the ab- has the negative value of the other).
sence of c_ross-correlatlons between thedént un|ts<x(t?2> (D): In straightz-or y-paths ("vertical links”),x-jumps are
can be gained from Eg. (2) by the sum over all quadratic termg ot possible and therefore the quadratic as well as the-corre
and correlation terms of all units As the mean quadratic |4tion term are both equal to zero. Vertical links only irese
jump I‘?ngth@Z)k of the kth unit normally grows quadrati- { \ithout increasingk and therefore act in the same way as
cally with the pore thicknessch (except for possible cutfb  jeaqd ends. Indeed, these pathes need not even be completely
effects in the jump-length distribution, see below) we havegiraight — it is séicient if the lower and the upper entrance
(€% = nX&?) and get for the quadratic terms with: N(t) point possess the samevalue.

2 N2 N v We_novy turn to complex_ systems that can bg consi(_jered_ as
Z ?.t _ Z k(&7 _ Z Dok = Z nkDovx'k, 3) combinations of the described systems. We discuss in which
i K k

wherety is the total time the particle spendskn As Vyx <

Vi, the correlation term is negative, but its absolute value is
smaller than the quadratic term. Soffdsion is not supressed,
but a given jump changes the probabilities for the directioh
the next jump(s) resulting in a slowing-down of théfdsion.

(C): The simplest correlated sub-units are dead ends [19,
26], i.e. units that are connected to the other parts by a thin
entry (see Fig. 2(c,f)). The entry and the exit point to thadle
ends coincide or otherwise speaking, the whole path inside
the dead ends is considered as pure delay. This means that the
correlation term cancels with the quadratic term, so theg,he
the ditusion is supressed and both terms can be set to zero
(even if, strictly speaking, none of them is zero, but oneter

2N(t) N way the sub-units4)-(D) can be combined without generat-
ing cross-correlations between them, so that the combieed g
where the index runs over the time steps akduns over the  ometries can be simply treated by summing over all quadratic
geometric sub-units. For simplicity, we investigate net@o and all correlation terms of all blocks.
with units of identical thickness here, i.e. ajl= 1. If all cor- (i) Dead ends() can be added to all systems at arbitrary
relation terms of all units are equal to zero, as e.g. for tesys positions (see Fig. 3(a,e)). As we have seen, they don’gbrin
of parallel poresD/Dg can be gained from (3). Otherwise, we new terms, but increade (ii) Several infinite units, e.g.A)
also have to calculate the correlation terms of Eq. (2), tvhic and B), can be connected by vertical link®)to form a sim-
can be done analytically for several types of building bkack ple network of interconnected parallel pores (see Figf3(b,
Here, we treat the following cases: There are no cross-correlations betweAhgnd B) as long
(A): The simplest units are regular ordered lattices andas both are infinitely elongated into tixedirection: if a ran-
straight channels (see Fig. 2(a,d)), where each jump is foldom walker changes fromAj to (B) (or vice versa) it can
lowed by a positive or a negativejump with equal proba- continue its path inB) into both directions with equal prob-
bility. It is common knowledge that the correlation terms of ability, so that no step in4) influences later steps ifBf and
these sub-units are 0. vice-versa. Alsax-correlations betweend) and O) (or (B)
(B): "Curved geometries” (see Fig. 2(b,e)) consist of oneand D)) cannot exist, ag-jumps in O) either do not exist (if
loopless curved backbone, where the particles perfornge lar the link is completeley straight) or exist in pairs whereipos
number of forward-backward jumps before they pass the cortive and negative steps always cancel. Therefore t¢xms)
ners. So, the-jumps are correlated, because positjemps  with x; or x; in (C) are either zero or appear with a negative
to corner sites are more likely followed by negative (than bycounterpart. So, also systems of several ujsahdor (B)
other positivex-jumps. As described abovB,can be calcu- connected by vertical links can be calculated by the bugdin
lated by considering the problem #space, wheréy is the  block principle. (iii) A more complex combination appears,
effective or chemical length of the curke So, if thekth unit ~ when two inifinite units ) and B) are intersected without



WHHE o TEED g

0.7¢

FIG. 5: Geometries (shown here as lattices) that cannothést by 05 05
decomposing them into the building block&) (- (D) without cross-
correlations between them: (a) curve with finite connectiogtween 0.3
itself, (b) system, where two possible building blocks antericon-

nected by step-like units containing finite horizontal piec
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FIG. 6: [Color online] The numerical values Bf/ Dy (symbols) of

some simple units are plotted verdys and compared to the theo-
intermediate pieces as shown in Fig. 3(c,d,g,h). Again, n(ge_tical values (straight lines) for (a)_fﬂirent lattice ge_ometries_(see
cross-correlations betwee)@and @) take place (by the same F9- 2(@-d)) and (b) the corresponding pores (see Fig. J(efglif-

. ferent lengths of the segments. For the symbols and the ggome
argument as before) and the total system can again be treatgd .
L . . tails see Tab. I.

by the building-block principle. (iv) Unfortunately notetat-

able this way are structures as shown in Fig. 5(a) involving
finite pieces creating short-cuts inside the same stru¢B)te  s;tion and orientation (normal vectdy). For the computations
because in those cases new correlations are created ((Byide f the particle flights from wall to wall with a given directip
as well as between the finite units). (v) Also non-treatahle i {he possible intersections of the flight trajectory with leaif
this way are systems where the connection between two sullicreasing distance from the particle position have beem-co
units contains finite-paths, i.e., where the lower and the up- pyted. Once an intersection point is found, the computation
per entry point do not have the samealue (see Fig. 5(b)), can be stopped for all walls of the samiebut with larger
because in those cases cross-correlations betweerffixedt  yjsiance to the actual particle position. The computatibn o
finite units take place. We would like to point out, however,<xz(t)>, once the collision point with the next wall has been
that in both cases new sub-units could be defined, calculategnq, is straightforward and takes place as on a lattice.
numerically and then combiped with the analytical results 0 Note that for the sub-unit of the curved systems (Fig. 2(e)),
other exactly treatable building blocks. But this goes m&yo ¢yme specialities exist in pores (as compared to lattites) t
the purpose of the present paper. o we mention briefly: First, due to Lambert's reflexion law, the
In summary, there is a large variety of combinations ofpropability for long jumps into the-direction is slightly dif-
well-known building blocks, leading to quite complex geeme ferent when starting on a vertical and on a horizontal wall,
tries, from whichD/Do can be calculated analytically which yhich should influence the results of rough systems slightly
we will show in detail in section IV and verify by numeri- However, in three-dimensional pores, thededences are not
cal simulations. The method is equally applicable to randonjgrge, so that we neglect them here. (They would be more im-
walks on lattices and to ffusion in pores. portant in 2l-pores, see Ref. [11]). Second, finkesegments
lead to an upper cutfbof the jump lengths distributioR(&;)
and therefore to a modified value @f), that cannot be taken
C. Numerical calculations into account analytically. Clearly, the correct jump ldmdis-
tribution could be determined numerically for each system,

The analytical calculations (explained in the next segtion Put this is not the aim of the present work. Therefore, we
are compared to numerical simulations on the systems showffl00se systems with lengths of tk@egments larger than the.
in Figs. 2 and 3. The particle flow takes place alongxhe average jump length of the smooth system, so that both dis-
direction and the figures of the geometries are meant to b&iPutionsP(¢&) are nearly the same. The other segments (ori-
infinitely elongated along the-axis. The simulations have €nted along thg- or zdirection) may be of arbitrary lengths
been performed for dlierent geometric details (as listed in the Pecause there, the cuffaf thg jump-lengths leads to addi-
tables) and 108 1000 elementary units have been sticked to-fional factors in the relatior¢“(t)) = Dot and Eq. (4) that
gether. For technical reasons, namely for a faster geperati cancel. _ _ _ _
of the systems in the computer simulations and for the pre- We test the numerical calculations on the simple units of
sentation of the results in tables, the systems are periodic ~ Fig- 2, i.e. on one smooth system, one system with dead ends
all calculations are valid for completely disordered stiues ~ @nd one curved system and compare them to Egs. (3) and (4),
as well. In order to choose the starting point among all lat'espectively. The results are shown in Fig. 6 for lattices an
tice sites with equal probability, periodic boundariesiddo ~Pores and agree perfectly with the expectations.
be chosen in non-periodic systems to enable walks of arbi-
trary length to both sides of the starting point. In the peido
systems calculated here, it isfBaient to choose the starting V. NETWORKSOF DIFFERENT BUILDING BLOCKS
point with equal probability among all sites of one unit.

The computation of the random walk on a lattice is well- In this section, we apply the building block principle to the
known, so that we refer to the literature (see e.g. [23, 24])geometries of Fig. 3. To this end, we need for each subkunit
For the difusion processes through pores, all walls of a giverthe number of sitell, or the volumeéV (for lattices and pores,
geometry have been stored and ordered according to their poespectively) as well as the numbéyy or the volumeVy of



As the last example, we intersect two curves with volumes
Vi = VC11 Vo = VCZ, x-volumesVle = VX,Cla Vx’g = VX,C2 and
V = Vg, + Ve, Vx = Vi, +Vxc,. We getD/Dg by adding the
guadratic and the correlation terms of both systems, yigldi

V2 V2
D = Dot 4 Dy, 8
OVV(;l + OVV(;2 (8)

We can see that in all described cases, the f@fiDy can
be directly obtained from purely geometrical data withaertp
forming numerical simulations. If we consider latticest@ssl
of pores, all values oY/, Vi andVyx have to be replaced by
the respective values of, Ny andNy.

Nevertheless, we performed numerical simulations over an
average of 19systems (except for the pore systems of Eq. (7)
FIG. 7: [Color online] The numerical values Bf/Dy (symbols) of ~ and (8), where due to larger calculation times an average ove
the systems calculated by the building block principle do&ted ver-  only 10° systems has been performed) to put the relations
sust/r and compared to the theoretical values (straight linesfafpr  (6)-(8) to a direct test. The results of the simulations (sym
different lattice geometries (see Fig. 2(b,c)) and (b) the spmed-  bols) are shown in Fig. 7 and compared to the theoretical val-
ing pores (see Fig. 2(e,f)) of itierent lengths of the segments. For yes (straight lines) for systems offdirent geometrical details
the symbols and the geometric details see Tab. II. as listed in Tab. Il. The figures show the results for lattices
(Fig. 7(a)) as well as for pores (Fig. 7(b)) and in all conséide

the x-channels (red dashed lines in Fig. 3, see also above}2SeS: the agreement between numerical and theoretieal dat

=~ _ S excellent. (Larger fluctuations in the pore realizatiofithe
;:Flgﬁg’ for the total systenV' = Vi andVx = 2 Vxk two last systems are due to the poorer statistics.) Clezldy,

As a first example, we consider a curved system with addi[nore than two units can be combined and additional dead ends

tional dead ends (see Fig. 3(a,e)). In this case, the tattdisy can be easily |nc|ude(_j to all considered systems to mcf\éasg
' . . i.e. the same calculation scheme can also be applied tasgario

consists of two unit& = 1 (curve) ank = 2 (dead ends) with other aeometries. including real larae networks

the x-volumesV, 1 = Vxc, Vx2 = 0, the volumed/; = V, 9 ' 9 9 :

V, = Vy4 and the total volum& = V¢ + V4. As described, the

contributions of the dead ends cancel, so that we ol#Dy

by adding the quadratic term (3) and the correlation term (5)

of Vg, yielding with Eq. (1) nx = 1 andty/t = Vi/V

V. CONCLUSION AND OUTLOOK

We have presented an analytical method to calculate the tor-
i€ Xipsi&d Vie tuosity factork that describes the decrease of thugiion co-
= + t = DOVVC' (6)  efficientD in the presence of disorder as compared to the the
) ~diffusion codicientDg of a smooth system for a large variety
As a second example, we consider the curved system in pagf complex disordered systems. To this end, we have devel-
allel with a channel (see Figs. 3 (b)), to whichitis corteec  oped a building block principle that is based on a carefulana
by additional thin vertical links. This time, the system & ysjs of the correlationféects of the dfusion process. For the
posed of three sub-units= 1 (curve),k = 2 (channel) and  systems of this work, we could expressimply by the vol-
k = 3 (links) with thex-volumesVy1 = Vyc, Vx2 = Vxcn,  umes of the dferent sub-structures. The procedure has been
Vxs = 0, the volumes/; = V¢, V2 = Vi = Vien, Va = Vi demonstrated on manyftérent systems and it is clear that
andVy = Vyc +Vycn, V = Ve + Ven + V1. With both quadratic  many more systems can be constructed accordingly.

D

terms (3), the correlations term of (8), = 1 andtc/t = Vi/V, We only considered systems, where an analytical treatment
we find is possible for both, the random walk on lattices and for the
vV V2 pore difusion. However, the building block principle can also
x,Ch x,C . . . . . .
D =Dy v + DOVV . @) be combined with correlations obtained from numerical sim-
C

ulations, as e.g. dangling bonds with a thicknéssh (where
In both examples, the dead ends as well as the vertical linkthe correlation term does not exactly cancel with the quadra
only enter by increasing the total system volume. term), curved systems where tligaths are small or back-
As a third example, we consider the system of Fig. 3(c,g)bones of varying thickness. So, additionally to the systems
consisting of the same two sub-units as above. But this timegonsidered here, a large variety of pores can be manufalcture
instead of being connected by additional links, they irgets and understood by combining building blocks of numerically
each other directly, resulting in a more complex configorati and exactly obtained correlation terms along the lines ef th
as before. Also this system, even if it looks verffelientfrom  present paper.
the one of Figs. 3(b,f), is described by Eq. (7) and the lack of We also pointed out that not all types of combinations
additional links only influences the total volurkighat is now  between sub-units are suited for this treatment — if cross-
equal toV = V¢ + Vch. correlations between the sub-units are created, the teskri



method fails. We showed several examples, where this is the VI. ACKNOWLEDGEMENTS

case. However, a large variety of quite complex systems can

be treated in the way decribed and it is straightforwarddssr

e.g. many loopless curved systems to get real networks that The author would like to thank Prof. Karger for valuable
can be calculated by this building block principle. discussions.
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