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The squared reciprocal tortuosityκ−2 = D/D0 for linear diffusion on lattices and in pores in the Knudsen
regime is calculated analytically for a large variety of disordered systems. Here,D0 andD are the self diffusion
coefficients of the smooth and the corresponding disordered system, respectively. To this end, a building block
principle is developed that composes the systems into sub-structures without cross-correlations between them.
It is shown how the solutions of the different building blocks can be combined to gainD/D0 for pores of high
complexity from the geometrical properties of the systems,i.e. from the volumes of the different sub-structures.
As a test, numerical simulations are performed that agree perfectly with the theory.
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I. INTRODUCTION

Diffusion in random media has been a subject of large inter-
est in the last decades (for some latest reports see e.g. [1]). In
the last years, the interest has focused on the experimentally
accessible subject of diffusion of gas molecules in pores (see
Fig. 1), as e.g. the human lung [2], linear silicon nanochan-
nels [3] or zeolithes and other micro- and nanopores [4–6].
As recent progress in synthesizing nanostructured porous ma-
terials has provided the options of designing specific pore ar-
chitectures [7], an exact analytical understanding of the dif-
fusion process is of great importance. Of particular interest
is the tortuosity factorκ =

√
D0/D that describes the relation

between the diffusion coefficientsD andD0 of systems with
and without geometrical disorder [8]. Both,D and D0, can
be gained by studying either the transport or the self-diffusion
problem, where in the Knudsen regime, the self- and the trans-
port diffusion coefficients are the same for a given geometry.
Theoretical calculations ofD on complex pores have mostly
been based on numerical simulations of the transport- [9–12]
or the self diffusion problem [11–15] and/or phenomenologi-
cal or semi-analytical approaches [16], whereas exact analyti-
cal results of specific pore geometries have only been provided
along loopless curved one-dimensional paths [17] and for sys-
tems with dead ends [18, 19]. Whereas in loopless curved
systems (see Fig. 2(b,e)), the tortuosity factor is determined
by the longer path, the particle has to travel along the curvein
order to overcome a smaller distance inx-direction, the diffu-
sion time of a particle in pores with dead ends (as shown in
Fig. 2(c,f)) is increased by detours into the dead ends that do
not contribute to the diffusion along thex-direction.

The purpose of this work is to create a new approach, based
on the self diffusional problem, for the exact analytical calcu-
lation ofD/D0 of more complex systems as the ones of Fig. 2.

FIG. 1: [Color online] Sketch of the diffusion process inside a
(smooth) pore. The particle is reflected with different angles between
the pore walls, leading to jump lengths of very different sizes.
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FIG. 2: [Color online] Sketch of the geometries of special well-
known sub-units for lattices ((a-c), left column) and the correspond-
ing pores ((d-f), right column), i.e. regular units (a,d), curved units
(b,e) and systems with dead-end units (c,f). In the pores, all x-
channels (red dashed lines) are of square cross section (with side
lengthh) and up to 1000 of these (identical) blocks are sticked to-
gether to account for an infinite elongation into thex-direction. For
further geometric details see caption of Tab. I.

To this end, we consider the lattice problem and its connection
to diffusion in linear pores in the Knudsen regime [20] (see be-
low). To calculateD/D0, we decompose the considered com-
plex systems (see Fig. 3 for examples) into simpler exactly
solvable geometric sub-structures (building blocks) without
cross-correlations between them and show how the results of
the single sub-units must be combined to calculateD/D0 as
a function of simple geometrical data, i.e. of the different
lengths, widths and volumes as given in Tab II. We verify
our results by numerical simulations that agree perfectly with
the theoretical predictions. In this work, we are only inter-
ested in systems where a fully analytical treatment is possible,
i.e. where all individual building blocks can be solved analyt-
ically. However, we would like to point out that this method
can also go beyond these cases by combining analytical and
numerical data of different building blocks.
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FIG. 3: [Color online] Geometries for lattices (left column) and the
corresponding pores (right column) that are analyzed by thebuilding
block principle: (a, e) curved system with dead ends, (b, f) curved
system in parallel with a channel, (c, g) curved system intersected
by a channel and (d, h) system of two intersecting curves. Allx-
channels (red dashed lines) of pores are of square cross section with
side lengthh and up to 1000 of these (identical) blocks are sticked
together to account for an infinite elongation into thex-direction (for
further geometric details see Tab. II).

Fig. Sym. ℓx ℓy ℓx,2 ℓy,2 d Vx,1 V D/D0, Eq.

2(b), 6(a)� (black) 400 19 - - - 800 838 0.91, (4)
2(b), 6(a)N (blue) 200 49 - - - 400 498 0.65, (4)
2(c), 6(a)� (red) 10 5 4 4 1 10 32 0.31, (3)

2(e), 6(b)� (black) 400 20 - - - 798 836 0.91, (4)
2(e), 6(b)N (blue) 200 50 - - - 398 496 0.64, (4)
2(f), 6(b) � (red) 20 9 3 3 1 20 61 0.33, (3)

TABLE I: Table of the geometries and the analytical results of the
simple units from Fig. 2. Upper half: lattice systems, lowerhalf:
pores. All units are the same as in Tab. II.

The paper is organized as follows: In section II, we present
the random walk on a lattice and the diffusion problem in
pores, while the underlying theory for the calculation ofD for
systems made of various building blocks is explained in sec-
tion III. In section IV, we present the theoretical results and
verify them by numerical simulations. In the last section V,
we discuss the results and give an outlook.

Figs. Sym. ℓx ℓy ℓx,2 ℓy,2 Vx,1 VC Vx,2 V D
D0

, Eq.

3(a), 7(a)© (black) 200 19 200 1 400 438 - 638 0.57, (6)
3(a), 7(a)⋆ (red) 200 49 200 1 400 498 - 698 0.46, (6)
3(a), 7(a)� (blue) 200 89 200 1 400 578 - 778 0.36, (6)

3(b), 7(a)� (black) 200 59 98 9 400 498 398 953 0.75, (7)

3(c), 7(a)^ (black) 20 20 10 10 30 70 30 98 0.44, (7)
3(c), 7(a) � (red) 20 20 20 10 40 80 40 118 0.51, (7)

3(d), 7(a)△ (black) 20 20 - 10 40 98/78⋆ 40 176 0.21, (8)
3(d), 7(a)N (red) 10 10 - 10 40 80/60⋆ 40 136 0.35, (8)

3(e), 7(b)© (black) 200 20 200 - 398 438 - 639 0.57, (6)
3(e), 7(b)⋆ (red) 200 50 200 - 398 496 - 699 0.46, (6)
3(e), 7(b)� (blue) 200 90 200 - 398 576 - 779 0.35, (6)

3(f), 7(b) � (black) 200 20 - 10 398 436 400 874 0.87, (7)

3(g), 7(b) � (blue) 200 6 - 14 399 435 397 832 0.92, (7)

3(h), 7(b) N (red) 200 21 - 19 400 467/437⋆ 400 904 0.78, (8)
∗ Vc,1, Vc,2

TABLE II: Table of the geometries and analytical results based of
the combined systems of several building blocks from Fig. 3.Upper
half: lattice systems, lower half: pores. All lengths on lattices and in
pores are given in units of the lattice constanta and the pore diameter
h, respectively.D is referred to the valueD0 = a2/(4τ) for the lattice
(d = 2) and toD0 = 0.37hv0 for the pores. All omitted numbers are
equal to 1.

II. DIFFUSION ON LATTICES AND IN PORES

In a linear random walk, a particle jumps inside ad-
dimensional lattice (see left column of Figs. 2 and 3) and we
are interested in its displacement inx-direction. We concen-
trate on problems, where dispite an irregular structure of the
systems the long-time diffusion stays normal, which means
thatD for long times is defined by the Einstein relation,

lim
t→∞
〈x2(t)〉 = 2Dt, (1)

where the mean square displacement〈x2(t)〉 is the squared dis-
tance, a particle has traveled during timet in x-direction. For
anomalous diffusion, as e.g. on fractal structures, we refer to
the literature [21–24]. For simplicity, we concentrate on cubic
(square) lattices, where in the absence of disorder each lattice
site has 2d neighbors and on unbiased walks, where jumps to
the neighboring sites occur with equal probability. Disorder is
created by the removal of sites or of links between neighbor-
ing sites. On a lattice, a walker chooses one of the 2d possible
directions for the following jump at random. If the link to the
chosen neighbor is existing, the walker jumps, thereby per-
forming a jump of lengtha (lattice constant) during a time
stepτ. If the link has been removed, the walker stays for this
time step where it is (waiting time).

Diffusion in pores (right column of Figs. 3 and 2) repre-
sents a more complex problem where, in general, the track
of the gas molecules through the pores depends on the colli-
sions between the gas molecules as well as on the collisions
of the gas with the pore walls. In cases where Knudsen diffu-
sion [20] dominates, as it has been shown in various transport
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FIG. 4: [Color online] Sketch of the construction of the chemical
distanceℓ between the pointsA andB for the curved geometry. The
length of thex-distancex is indicated at the bottom of the figure,
while ℓ is the length of the red curved line.

situations through porous media [3, 25], the interactions of
the molecules with the pore walls play the crucial role and
the intermolecular collisions can be neglected. In this case,
the molecules perform a series of free flights and change the
flight direction independently from each other after collisions
with the pore walls as shown in Fig. 1. Therefore the prob-
lem is reduced to many independent individual flights. In this
work, we concentrate on Knudsen diffusion under Lambert’s
reflexion law in three-dimensional regular and irregular pores
[4, 11, 12, 15]. In this picture, the particle is absorbed from
the wall after collision and after a very short time (that is ne-
glected) re-emitted into a random direction, where the new
directionϑ ∈ [−π/2, π/2] to the normal component of the
surface occurs with probabilitydP(ϑ, ϕ) ∼ cosϑ dΩ, where
dΩ = sinϑdϑdϕ in d = 3.

It is clear that disorder slows down the diffusion process,
leading to a smaller value ofD as compared toD0 of a smooth
system. Quantitative calculations that connectD/D0 to sim-
ple geometrical properties, as volumes and lengths of the dif-
ferent segments exist for loopless curved geometries and for
systems with dead ends (dangling bonds) that are connected
to the main channel by a thin entry, examples of which are
both shown in Fig. 2:

In loopless curved geometries [17] (see Fig. 2(b,e)), the ef-
fective lengthℓ (also called ”chemical length” [23, 24]) of
the path a particle has to travel in order to come fromA to
B is larger than thex-distance between the same points (see
Fig. 4 for an illustration). Therefore, normal diffusion with
〈ℓ2(t)〉 = D0t applies for the effective length and with the re-
lation 〈x(t)2〉 = (x/ℓ)2 〈ℓ(t)2〉 betweenx- and ℓ-space, one
finds D = D0 (x/ℓ)2 = D0 (Vx/V)2 [17], where the last ex-
pressions refers to pores withVx andV as defined below. In
dead-end geometries (see Fig. 2(c,f)), as it was first discussed
in [26], the walker only proceeds in thex-channels (indicated
by the red dashed lines in Fig. 2), while the time inside the
dead ends increases the total timet of the walk without in-
creasing〈x2〉. Quantitative considerations [18, 19, 22] show
thatD/D0 = Vx/V, with the volumeVx of thex-channels and
the system volumeV (of channel plus dead ends).

In this work, we want to combine these well-known sys-
tems to more complex geometries by connecting them using
additional segments or by intersecting them directly with each
other, thereby forming networks. To this end, we show how a
system of different sub-units, where the diffusion may be (i)
uncorrelated (as in a straight channel), (ii) strongly correlated
(as in dead ends, where each jump is compensated by a jump
into the opposite direction) and (iii) intermediately correlated
(as in curved channels, where correlated forward-backward

jumps occur at all times) must be combined to obtainD/D0

and thusκ. The approach uses the self diffusion picture but
clearly, as the self- and transport diffusion coefficients of a
given geometry are equal, is also valid for transport diffusion.

III. CALCULATION OF THE DIFFUSION COEFFICIENT

A. General Considerations

Generally, we can write〈x2(t)〉 afterN time steps as

〈x2(t)〉 =
〈















N
∑
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〉

=
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∑
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〉
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ξiξ j

〉

, (2)

whereξi andξ j are the single jump lengths inx-direction. In
the following, we call the 1st term of the rhs of Eq. (2) the
”quadratic term” and the 2nd term the ”correlation term”.

To calculateD directly from the geometry of the system,
we refer to the well-known principles that (i) the particle con-
centration (as well as the gas pressure) is identical all over
the system and (ii) correlations among different walks do not
exist (Knudsen condition). Condition (i) tells us that in the
average over many walks, all places of the system are visited
with equal probability. This is true for real experiments as
well as for computer simulations, provided that the starting
point is chosen with equal probability among all sites.

As the sequential order of the single time steps does not
play a role for evaluating the quadratic term of Eq. (2), the
single steps of the sum, even if they belong to different walks
may be interchanged. Then, we can replace the time average
of the quadratic term by the ensemble average and describe it
solely by all jumps that occur at the same time on all places,
i.e. by the geometric properties of the system and indepen-
dently of the track of the single walks. We thus replace the
quadratic term by

〈

∑N
i=1 ξ

2
i

〉

= N〈ξ2〉, where〈ξ2〉 is the mean
quadratic jump length inx-direction over allN jumps. The
total time of the walk ist = N〈t〉, with the average duration of
the time steps〈t〉. Jumps into they- andz-direction count as
waiting times, as they increaset without increasingx.

On lattices, all time steps are equal and〈t〉 = τ, whereas
〈ξ2〉 depends on the number of waiting times. For the diffu-
sion coefficentD0 of a d-dimensional ordered lattice of lat-
tice constanta (where the correlation term is zero), we find
〈ξ2〉 = a2/d and thereforeD0 = a2/(2dτ). On a disordered lat-
tice, on the other hand, some jump-trials into thex-direction
find no bond and lead to additional waiting times. Further-
more, the correlation terms may give an additional negative
contribution and accordingly,D < D0.

In pores, the jump lengths and time steps are not constant
and thereforeD0 depends on the cross-section of the pore.
For the smooth pore with square surface section of side length
h (see Fig. 2(d)),D0 = 〈ξ2〉/(2〈t〉) is numerically found as
≈ 0.37hv0, with the velocityv0 of the particle along the tra-
jectory (see also [12]) and withh as unit length. (The time
steps can be defined asτ = h/v0). The generalization to circu-
lar or rectangular cross sections is straightforward, but not the
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purpose of the present work. Therefore, we refer all values of
D in pores to the valueD0 of the corresponding smooth pore
with unit lengthh of Fig. 2(d) that we use as the basic element.
Smooth pores with side lengthnkh possess the diffusion coef-
ficientnkD0.

B. The building block principle

We now turn to more complex geometries. The first step
for a rigorous treatment is the decomposition of the consid-
ered system into well-known analytically treatable sub-units
k as e.g.A: smoothx-channels,B: loopless curved units,C:
dead ends andD: vertical links. The sub-units must be cho-
sen without cross-correlations, i.e. such that the steps a walker
performs in a given sub-unit do not influence the steps in an-
other unit or during a second visit of the same unit.

The relative timetk/t, the particles spend in a given unitk
can be expressed bytk/t = Nk/N = Vk/V, with the relative
number of sitesNk/N (in lattices) or the relative volumeVk/V
(in pores) of thekth unit. We also need the relative time, the
particles spend in thex-channels (indicated by the red dashed
lines in Figs. 2 and 3),tx,k/t = Nx,k/N = Vx,k/V, where
Nx,k andVx,k are the number of sites and the volume of the
x-channels of thekth unit, respectively. Dead-ends, even if
oriented inx-direction do not count asx-channels. In the ab-
sence of cross-correlations between the different units,

〈

x(t)2
〉

can be gained from Eq. (2) by the sum over all quadratic terms
and correlation terms of all unitsk. As the mean quadratic
jump length〈ξ2〉k of the kth unit normally grows quadrati-
cally with the pore thicknessnkh (except for possible cut-off
effects in the jump-length distribution, see below) we have
〈ξ2〉k = n2

k〈ξ
2〉 and get for the quadratic terms witht = N〈t〉

∑

i

ξ2i
2t
=

∑

k

Nx,k〈ξ2〉k
2N〈t〉

=
∑

k

nkD0
Nx,k

N
=

∑

k

nkD0
Vx,k

V
, (3)

where the indexi runs over the time steps andk runs over the
geometric sub-units. For simplicity, we investigate networks
with units of identical thickness here, i.e. allnk = 1. If all cor-
relation terms of all units are equal to zero, as e.g. for a system
of parallel pores,D/D0 can be gained from (3). Otherwise, we
also have to calculate the correlation terms of Eq. (2), which
can be done analytically for several types of building blocks.
Here, we treat the following cases:

(A): The simplest units are regular ordered lattices and
straight channels (see Fig. 2(a,d)), where each jump is fol-
lowed by a positive or a negativex-jump with equal proba-
bility. It is common knowledge that the correlation terms of
these sub-units are 0.

(B): ”Curved geometries” (see Fig. 2(b,e)) consist of one
loopless curved backbone, where the particles perform a large
number of forward-backward jumps before they pass the cor-
ners. So, thex-jumps are correlated, because positivex-jumps
to corner sites are more likely followed by negative (than by
other positive)x-jumps. As described above,D can be calcu-
lated by considering the problem inℓ-space, whereℓk is the
effective or chemical length of the curvek. So, if thekth unit

is a loopless curve,D of this unit alone can be written as [17]

D = D0

(

xk

ℓk

)2

= D0

(

Vx,k

Vk

)2

, (4)

where for the case of pores,ℓk andxk have been replaced by
the total volumeVk and thex-volumeVx,k. From Eqs. (1)-(4)
we find the correlation term of the loopless curves,

2
N

∑

i, j>i

ξiξ j = 2tk

(

D − D0
Vx,k

Vk

)

= 2tkD0

(

Vx,k

Vk

)2

− 2tkD0
Vx,k

Vk
,

(5)
wheretk is the total time the particle spends ink. As Vx,k <
Vk, the correlation term is negative, but its absolute value is
smaller than the quadratic term. So, diffusion is not supressed,
but a given jump changes the probabilities for the directions of
the next jump(s) resulting in a slowing-down of the diffusion.

(C): The simplest correlated sub-units are dead ends [19,
26], i.e. units that are connected to the other parts by a thin
entry (see Fig. 2(c,f)). The entry and the exit point to the dead
ends coincide or otherwise speaking, the whole path inside
the dead ends is considered as pure delay. This means that the
correlation term cancels with the quadratic term, so that here,
the diffusion is supressed and both terms can be set to zero
(even if, strictly speaking, none of them is zero, but one term
has the negative value of the other).

(D): In straightz-or y-paths (”vertical links”),x-jumps are
not possible and therefore the quadratic as well as the corre-
lation term are both equal to zero. Vertical links only increase
t without increasingx and therefore act in the same way as
dead ends. Indeed, these pathes need not even be completely
straight – it is sufficient if the lower and the upper entrance
point possess the samex-value.

We now turn to complex systems that can be considered as
combinations of the described systems. We discuss in which
way the sub-units (A)-(D) can be combined without generat-
ing cross-correlations between them, so that the combined ge-
ometries can be simply treated by summing over all quadratic
and all correlation terms of all blocks.

(i) Dead ends (C) can be added to all systems at arbitrary
positions (see Fig. 3(a,e)). As we have seen, they don’t bring
new terms, but increaset. (ii) Several infinite units, e.g. (A)
and (B), can be connected by vertical links (D) to form a sim-
ple network of interconnected parallel pores (see Fig. 3(b,f)).
There are no cross-correlations between (A) and (B) as long
as both are infinitely elongated into thex-direction: if a ran-
dom walker changes from (A) to (B) (or vice versa) it can
continue its path in (B) into both directions with equal prob-
ability, so that no step in (A) influences later steps in (B) and
vice-versa. Alsox-correlations between (A) and (D) (or (B)
and (D)) cannot exist, asx-jumps in (D) either do not exist (if
the link is completeley straight) or exist in pairs where posi-
tive and negative steps always cancel. Therefore terms〈xi x j〉
with xi or x j in (C) are either zero or appear with a negative
counterpart. So, also systems of several units (A) and/or (B)
connected by vertical links can be calculated by the building-
block principle. (iii) A more complex combination appears,
when two inifinite units (A) and (B) are intersected without
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(a) (b)

FIG. 5: Geometries (shown here as lattices) that cannot be treated by
decomposing them into the building blocks (A) - (D) without cross-
correlations between them: (a) curve with finite connections between
itself, (b) system, where two possible building blocks are intercon-
nected by step-like units containing finite horizontal pieces.

intermediate pieces as shown in Fig. 3(c,d,g,h). Again, no
cross-correlations between (A) and (B) take place (by the same
argument as before) and the total system can again be treated
by the building-block principle. (iv) Unfortunately not treat-
able this way are structures as shown in Fig. 5(a) involving
finite pieces creating short-cuts inside the same structure(B),
because in those cases new correlations are created (inside(B)
as well as between the finite units). (v) Also non-treatable in
this way are systems where the connection between two sub-
units contains finitex-paths, i.e., where the lower and the up-
per entry point do not have the samex-value (see Fig. 5(b)),
because in those cases cross-correlations between the different
finite units take place. We would like to point out, however,
that in both cases new sub-units could be defined, calculated
numerically and then combined with the analytical results of
other exactly treatable building blocks. But this goes beyond
the purpose of the present paper.

In summary, there is a large variety of combinations of
well-known building blocks, leading to quite complex geome-
tries, from whichD/D0 can be calculated analytically which
we will show in detail in section IV and verify by numeri-
cal simulations. The method is equally applicable to random
walks on lattices and to diffusion in pores.

C. Numerical calculations

The analytical calculations (explained in the next section)
are compared to numerical simulations on the systems shown
in Figs. 2 and 3. The particle flow takes place along thex-
direction and the figures of the geometries are meant to be
infinitely elongated along thex-axis. The simulations have
been performed for different geometric details (as listed in the
tables) and 100− 1000 elementary units have been sticked to-
gether. For technical reasons, namely for a faster generation
of the systems in the computer simulations and for the pre-
sentation of the results in tables, the systems are periodic, but
all calculations are valid for completely disordered structures
as well. In order to choose the starting point among all lat-
tice sites with equal probability, periodic boundaries should
be chosen in non-periodic systems to enable walks of arbi-
trary length to both sides of the starting point. In the periodic
systems calculated here, it is sufficient to choose the starting
point with equal probability among all sites of one unit.

The computation of the random walk on a lattice is well-
known, so that we refer to the literature (see e.g. [23, 24]).
For the diffusion processes through pores, all walls of a given
geometry have been stored and ordered according to their po-
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FIG. 6: [Color online] The numerical values ofD/D0 (symbols) of
some simple units are plotted versust/τ and compared to the theo-
retical values (straight lines) for (a) different lattice geometries (see
Fig. 2(a-d)) and (b) the corresponding pores (see Fig. 2(e-g)) of dif-
ferent lengths of the segments. For the symbols and the geometric
details see Tab. I.

sition and orientation (normal vector~n). For the computations
of the particle flights from wall to wall with a given direction,
the possible intersections of the flight trajectory with walls of
increasing distance from the particle position have been com-
puted. Once an intersection point is found, the computation
can be stopped for all walls of the same~n but with larger
distance to the actual particle position. The computation of
〈x2(t)〉, once the collision point with the next wall has been
found, is straightforward and takes place as on a lattice.

Note that for the sub-unit of the curved systems (Fig. 2(e)),
some specialities exist in pores (as compared to lattices) that
we mention briefly: First, due to Lambert’s reflexion law, the
probability for long jumps into thex-direction is slightly dif-
ferent when starting on a vertical and on a horizontal wall,
which should influence the results of rough systems slightly.
However, in three-dimensional pores, these differences are not
large, so that we neglect them here. (They would be more im-
portant in 2d-pores, see Ref. [11]). Second, finitex-segments
lead to an upper cut-off of the jump lengths distributionP(ξi)
and therefore to a modified value of〈ξ2〉k that cannot be taken
into account analytically. Clearly, the correct jump length dis-
tribution could be determined numerically for each system,
but this is not the aim of the present work. Therefore, we
choose systems with lengths of thex-segments larger than the
average jump length of the smooth system, so that both dis-
tributionsP(ξi) are nearly the same. The other segments (ori-
ented along they- or z-direction) may be of arbitrary lengths
because there, the cut-off of the jump-lengths leads to addi-
tional factors in the relation〈ℓ2(t)〉 = D0t and Eq. (4) that
cancel.

We test the numerical calculations on the simple units of
Fig. 2, i.e. on one smooth system, one system with dead ends
and one curved system and compare them to Eqs. (3) and (4),
respectively. The results are shown in Fig. 6 for lattices and
pores and agree perfectly with the expectations.

IV. NETWORKS OF DIFFERENT BUILDING BLOCKS

In this section, we apply the building block principle to the
geometries of Fig. 3. To this end, we need for each sub-unitk
the number of sitesNk or the volumeVk (for lattices and pores,
respectively) as well as the numberNx,k or the volumeVx,k of
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FIG. 7: [Color online] The numerical values ofD/D0 (symbols) of
the systems calculated by the building block principle are plotted ver-
sust/τ and compared to the theoretical values (straight lines) for(a)
different lattice geometries (see Fig. 2(b,c)) and (b) the correspond-
ing pores (see Fig. 2(e,f)) of different lengths of the segments. For
the symbols and the geometric details see Tab. II.

the x-channels (red dashed lines in Fig. 3, see also above).
Clearly, for the total systemV =

∑

k Vk and Vx =
∑

k Vx,k

applies.
As a first example, we consider a curved system with addi-

tional dead ends (see Fig. 3(a,e)). In this case, the total system
consists of two unitsk = 1 (curve) andk = 2 (dead ends) with
the x-volumesVx,1 ≡ Vx,C, Vx,2 = 0, the volumesV1 ≡ VC,
V2 ≡ Vd and the total volumeV = VC + Vd. As described, the
contributions of the dead ends cancel, so that we obtainD/D0

by adding the quadratic term (3) and the correlation term (5)
of VC, yielding with Eq. (1),nk = 1 andtk/t = Vk/V

D =

∑

i ξ
2
i

2t
+

∑

i, j>i ξiξ j

t
= D0

V2
x,C

VVC
. (6)

As a second example, we consider the curved system in par-
allel with a channel (see Figs. 3 (b,f)), to which it is connected
by additional thin vertical links. This time, the system is com-
posed of three sub-unitsk = 1 (curve),k = 2 (channel) and
k = 3 (links) with thex-volumesVx,1 ≡ Vx,C, Vx,2 ≡ Vx,Ch,
Vx,3 = 0, the volumesV1 = VC, V2 = Vx,2 = Vx,Ch, V3 ≡ Vl

andVx = Vx,C+Vx,Ch, V = VC+VCh+Vl . With both quadratic
terms (3), the correlations term of (5),nk = 1 andtk/t = Vk/V,
we find

D = D0
Vx,Ch

V
+ D0

V2
x,C

VVC
. (7)

In both examples, the dead ends as well as the vertical links
only enter by increasing the total system volume.

As a third example, we consider the system of Fig. 3(c,g),
consisting of the same two sub-units as above. But this time,
instead of being connected by additional links, they intersect
each other directly, resulting in a more complex configuration
as before. Also this system, even if it looks very different from
the one of Figs. 3(b,f), is described by Eq. (7) and the lack of
additional links only influences the total volumeV that is now
equal toV = VC + VCh.

As the last example, we intersect two curves with volumes
V1 ≡ VC1, V2 ≡ VC2, x-volumesVx,1 ≡ Vx,C1, Vx,2 ≡ Vx,C2 and
V = VC1 +VC2, Vx = Vx,C1 +Vx,C2. We getD/D0 by adding the
quadratic and the correlation terms of both systems, yielding

D = D0

V2
x,C1

VVC1

+ D0

V2
x,C2

VVC2

. (8)

We can see that in all described cases, the ratioD/D0 can
be directly obtained from purely geometrical data without per-
forming numerical simulations. If we consider lattices instead
of pores, all values ofV, Vk andVx,k have to be replaced by
the respective values ofN, Nk andNx,k.

Nevertheless, we performed numerical simulations over an
average of 105 systems (except for the pore systems of Eq. (7)
and (8), where due to larger calculation times an average over
only 103 systems has been performed) to put the relations
(6)-(8) to a direct test. The results of the simulations (sym-
bols) are shown in Fig. 7 and compared to the theoretical val-
ues (straight lines) for systems of different geometrical details
as listed in Tab. II. The figures show the results for lattices
(Fig. 7(a)) as well as for pores (Fig. 7(b)) and in all considered
cases, the agreement between numerical and theoretical data
is excellent. (Larger fluctuations in the pore realizationsof the
two last systems are due to the poorer statistics.) Clearly,also
more than two units can be combined and additional dead ends
can be easily included to all considered systems to increaseV,
i.e. the same calculation scheme can also be applied to various
other geometries, including real large networks.

V. CONCLUSION AND OUTLOOK

We have presented an analytical method to calculate the tor-
tuosity factorκ that describes the decrease of the diffusion co-
efficientD in the presence of disorder as compared to the the
diffusion coefficientD0 of a smooth system for a large variety
of complex disordered systems. To this end, we have devel-
oped a building block principle that is based on a careful anal-
ysis of the correlation effects of the diffusion process. For the
systems of this work, we could expressκ simply by the vol-
umes of the different sub-structures. The procedure has been
demonstrated on many different systems and it is clear that
many more systems can be constructed accordingly.

We only considered systems, where an analytical treatment
is possible for both, the random walk on lattices and for the
pore diffusion. However, the building block principle can also
be combined with correlations obtained from numerical sim-
ulations, as e.g. dangling bonds with a thicknessδ > h (where
the correlation term does not exactly cancel with the quadratic
term), curved systems where thex-paths are small or back-
bones of varying thickness. So, additionally to the systems
considered here, a large variety of pores can be manufactured
and understood by combining building blocks of numerically
and exactly obtained correlation terms along the lines of the
present paper.

We also pointed out that not all types of combinations
between sub-units are suited for this treatment – if cross-
correlations between the sub-units are created, the described
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method fails. We showed several examples, where this is the
case. However, a large variety of quite complex systems can
be treated in the way decribed and it is straightforward to cross
e.g. many loopless curved systems to get real networks that
can be calculated by this building block principle.
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