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We perform Monte Carlo simulations to study the relaxation of single-domain nanoparticles that
are located on a simple cubic lattice with anisotropy axes pointing into the z-direction, under
the combined influence of anisotropy energy, dipolar interaction and ferromagnetic interaction of
strength J . We compare the results of classical Heisenberg systems with three-dimensional magnetic
monments ~µi to the ones of Ising systems and find that Heisenberg systems show a much richer
and more complex dynamical behavior. Contrary to Heisenberg systems, Ising systems need large
activation energies to turn a spin and also possess a smaller configuration space for the orientation
of the ~µi. Accordingly, Heisenberg systems possess a whole landscape of different states with very
close-lying energies, while Ising systems tend to get frozen in one random state far away from
the groundstate. For Heisenberg systems, we identify two phase transitions, (i) at intermediate J
between domain and layered states and (ii) at larger J between layered and ferromagnetic states.
Between these two transitions, the layered states change their apparence and develop a sub-structure,
where the orientation of the ~µi in each layer depends on J , so that for each value of J , a new
groundstate appears.

PACS numbers: 75.75.+a, 75.40.Mg, 75.50.Lk, 75.50.Tt

INTRODUCTION

In the last decade, systems of ultrafine magnetic
nanoparticles have received considerable interest, both
due to their important technological applications (mainly
in magnetic storage and recordings) and their rich and
often unusual experimental behavior, which is related to
their role as a complex mesoscopic system [1, 2]. The in-
terest on the magnetic structure of these systems is two-
fold. The first question aims at the possible occurence of
spin-glasses, as experiments on disordered magnetic ma-
terials present indications of a spin-glass phase or of a
glassy-like random anisotropy system [2–5]. The second
question aims at the occurence of superferromagnetic do-
mains, since pronounced ferromagnetic states have been
found in metal-insulator multilayers by ac susceptometry
[2, 6], dc magnetometry [6], polarized neutron reflectiv-
ity and magnetometry studies [7] and X-ray and Kerr
microscopy [8].

Ferromagnetic domains should not be expected in the
simple dipolar model. Experimentally, the analysis of
Mössbauer data on closely packed magnetic microcrys-
talline particles indicates that exchange interactions be-
tween different nanoparticles in close contact play an im-
portant role [9, 10] in the formation of ferromagnetic do-
mains. Even in systems where the different nanoparticles
are not in direct contact, an additional ferromagnetic ex-
change interaction is likely, which is mediated via tunnel
exchange over small magnetic particles or clusters (”dark
particles”) in the surrounding matrix [2, 6–8]. However,
also numerical relaxation simulations without exchange
interaction showed final states characterized by a rema-

nent magnetization in random [11] and in ordered sys-
tems [12] when starting from a ferromagnetic alignment.
For a realistic description of systems of ultrafine mag-

netic particles, it is important to include anisotropy en-
ergy, dipolar interaction and ferromagnetic exchange in-
teractions as the relevant energy terms. Monte Carlo
simulations incoporating these three energy contributions
have been performed on disordered systems of ultrafine
magnetic particles [13–15]. These works investigated,
among others, hysterese effects, remanence and coerciv-
ity and found a quite complicated behavior based on
frustration effects between the long-range dipolar interac-
tion (favoring chains and closed-loop configurations [15]
of the magnetic moments) and the short-range exchange
interaction (favoring domains). Simulations incorporat-
ing only anisotropy and dipolar energy with [11, 16–18]
and without [19] Ewald summation on ordered and disor-
dered systems have been performed, regarding the ques-
tion weather spin-glasses can be formed. Most works
favorize a spinglass behavior or at least the occurence
of ageing and memory effects [17–19], frustration [13–15]
and frozen disorder [11, 17–19]. Other numerical works
[20, 21] are dedicated to the competition between dipo-
lar and exchange forces on spherical particles without
the influence of the anisotropy energy. A third class of
works consider Ising [22–24] or modified Ising systems
[25], where only two stable positions of the magnetic mo-
ments are possible. A comparison between Heisenberg
and Ising nanoparticles without dipolar interaction has
been performed in [26]. For an overview, we refer to
Ref. [27].
In this manuscript, we investigate the microscopic de-

tails of the occurence of frozen disorder as well as ferro-
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FIG. 1: Sketch of the nanoparticle system considered here,
where the elongated particles are located at the sites of a
simple cubic lattice with all anisotropy axes ~ni (symmetry
axes of the particles) pointing into the positive z- direction.
The directions of the magnetic moments ~µi that generally
differ from the ones of the ~ni, are not shown. Note the way
the sites are labeled. We will use this labeling in figure 8.

magnetic domains under the influence of local anisotropy
energy, long-range dipole-dipole interaction and short-
range ferromagnetic interaction between the particles.
We concentrate on the most basic structure, where all
three-dimensional magnetic moments ~µi are located on
the sites of a simple cubic lattice, and all anisotropy axes
point into the z-direction (see figure 1), a system that
nevertheless displays a large variety of complex configu-
rations of the ~µi and a rich relaxation dynamics. For the
Ising case, the groundstates of these systems have already
been studied with [23] and without [22] ferromagnetic in-
teraction characterized by the coupling constant J . De-
pending on J , a scenario of very different groundstates
has been found in [23], where the particle spins formed
linear chains pointing into the positive or the negative z-
direction. For the Heisenberg case, ordered systems have
been investigated in [12, 17] for J = 0, but a systematic
analysis for J > 0 has not yet been done.

Here, we consider the groundstates and the relaxation
processes in Ising as well as in Heisenberg systems. Also
in Heisenberg systems, quite stable chains are formed
below a critical temperature that create effects of frozen
disorder [17]. The groundstates for different values of
J can be characterized by different arrangements of the
chains. While in the ”columnar antiferromagnetic state”
(CAF), neighboring chains always point into the opposite
direction, in the ferromagnetic state (F) all chains point
into the same direction and in several kinds of layered
structures the chains form layers of equally oriented ~µi.

Beside these similarities, we also find important dif-
ferences between the Ising and the Heisenberg systems.
First, due the two degrees of freedom of the magnetic
moments ~µi (characterized in spherical coordinates, i.e.
by the angles θi and ϕi) and the therefore much larger

configurational space of the Heisenberg systems, several
configurations may possess energies very close to e.g. the
CAF and the F configuration (see below). In the Ising
system, in contrast, the energies of the different configu-
rations are well distinct, and a very large activation en-
ergy is needed to break a chain (i.e. to turn one single
particle inside an intact chain). As a consequence, for
J > 0, relaxation only occurs at relatively high temper-
atures and freezing effects are quite dominant, an effect
that was not visible in numerical works without dipolar
interaction [26].
The comparatively complex relaxation behavior of the

Heisenberg systems that we find here can be summarized
as follows: Under the influence of the dipole-dipole in-
teraction, neighboring chains prefer to point into oppo-
site directions, which leads without additional ferromag-
netic interactions to antiferromagnetic domains. In the
presence of a small ferromagnetic interaction with J ex-
ceeding a certain limit, the chainlike structures of the
dipoles are maintained, but neighboring chains have a
preference to point into the same direction. Now, fer-
romagnetic domains occur which increase their size with
increasing interaction strength. We believe that this sit-
uation is close to the experimental one. When the fer-
romagnetic interaction strength is further increased, sev-
eral ordered states appear that have the shape of layers,
with the thickness of the layers depending on the sys-
tem size (see below). The layered state of deepest energy
consists of two ferromagnetic domains, each with half
of the system size and with one layer roughly parallel
(θ ≈ 0), the other roughly antiparallel (θ ≈ π) to the
anisotropy axis. When the interaction increases further,
this Ising-like behavior stops and the layers develop sub-
structures, i.e. sub-layers with the thickness of the lattice
constant, where the angles θi of the magnetic moments
take many values between 0 and π but are roughly con-
stant throughout one sub-layer. At even higher values
of J , the ferromagnetic state becomes the groundstate.
In Ising systems, this scenario is not possible. Moreover,
freezing effects occur at larger values of J that suppress
the relaxation behavior.
The paper is organized as follows: In section II, we de-

scribe our model systems and the numerical simulations.
In section III, we calculate the energies of several selected
configurations of the ~µi for Ising and Heisenberg systems
as a function of J and search for the groundstates. In
sections IV and V, we investigate the microscopical de-
tails of the relaxation process and the intermediate states
through which the relaxation evolves. Finally, in the
Conclusion section VI, we discuss the results.

MODEL SYSTEM AND SIMULATIONS

For the numerical simulations [28], we use the same
model as in Refs. [11, 12, 16, 17]. Every particle i is
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considered to be a single magnetic domain with all its
atomic magnetic moments rotating coherently, resulting
in a three-dimensional magnetic moment ~µi of the parti-
cle. Here, all particles are of equal volume V , resulting
in a constant absolute value |µi| ≡ µ = MsV of all ~µi,
where Ms is the saturation magnetization. The energy of
each particle consists of three contributions: anisotropy
energy, dipolar interaction energy and ferromagnetic ex-
change energy. We assume a temperature independent

uniaxial anisotropy energy E
(i)
A = −KV ((µi~ni)/|~µi|)

2,
where K is the anisotropy constant and the unit vec-
tors ~ni denote the easy directions. As usual, the en-
ergy of the magnetic dipolar interaction between two

particles i and j separated by ~rij is given by E
(i,j)
D =

(~µi~µj)/r
3
ij − 3(~µi~rij)(~µj~rij)/r

5
ij . While these two contri-

butions are already explained in [17], the exchange in-
teraction between site i and j is proportional to their

magnetic moments ~µi and ~µj , E
(i,j)
J = −jij(a)~µi~µj with

the coupling constant jij(a) that varies with the distance
between them and thus with the lattice constant a. For
simplicity, we concentrate on samples of N = (L/a)3

particles (with L = 10 a) placed on the lattice points
of a simple cubic lattice with periodic boundary condi-
tions and with all anisotropy axes ~ni pointing into the
positive z- direction (see figure 1). The unitless con-
centration c is defined as the ratio between the total
volume NV occupied by the particles and the volume
L3 = Na3 of the sample. Comparing different system
sizes, we focus on the fixed concentration c/c0 = 0.4,
where c0 = 2K/M2

s (with the anisotropy constantK) is a
dimensionless material-dependent constant with c0 ∼ 1.4
for iron nitride and c0 ∼ 2.1 for maghemite nanopar-
ticles (see also [11, 17]), so that our value of c/c0 re-
sults in a large but not unrealistic filling factor c for el-
lipoidal particles. We can express all energy terms by
the same unit energy E0 by introducing the direction
vector ~ei ≡ ~µi/|~µi| of the magnetic moments and with
jij(a)~µi~µj = jij(a)µ

2~ei~ej = (jij(a)a
3c/c0)(c0M

2
sV )~ei~ej.

With the distance vector ~rij between the sites i and j,

the normalized distance vector ~ℓij = ~rij/a and ℓij = |~ℓij |,
rij = |~rij |, we add the three energy contributions by sum-
ming over all N particles. Expressing all constants by the
unit energy E0 = c0M

2
s V = 2KV , we obtain

ε ≡
E

E0
=

c

c0

1

2

N
∑

i,j 6=i

(

~ei~ej
ℓ3ij

− 3
(~ei~ℓij)(~ej~lij)

ℓ5ij

)

−

−
1

2

N
∑

i

(~ei~ni)
2 −

jij(a)a
3

2

c

c0

N
∑

i

6
∑

k=1

~ei~ei+k, (1)

where the 1st, 2nd and 3rd term represent the dipolar,
anistropy and exchange energy, respectively and the sum-
mation index k runs over the nearest neighbors of i. In
this work, we express the ferromagnetic exchange inter-
action by the dimensionless prefactor J ≡ jij(a)a

3c/c0
that we choose as a constant value for nearest neighbors

(rij = a) and as J = 0 for larger interparticle distances.
Accordingly, as compared to other works, e.g. to [23], the
prefactor J of this work is multiplied with the (constant)
factor c/c0 here that determines the relation of the dipole
as well as the exchange interaction as compared to the
anisotropy energy.
The orientation of the individual magnetic moments ~µi

is described by their two spherical coordinates θi and ϕi

in the Heisenberg case and θi ∈ {0, π} in the Ising case.
For a better comparison between Ising and Heisenberg
systems, we use the energy scale of (1) for both. This
means that also for Ising systems, we add the anisotropy
energy term, which is, of course, only a constant term and
therefore meaningless in the calculations. Our energy
scale can be easily transferred to the one of Ref. [23],
where the energies have been calculated in units of µ2/a3,
which can be expressed in our units by µ2/a3 = E0c/c0.
To simulate the relaxation process as a function of t

(number of Monte Carlo (MC) steps) [26, 29], we use
the standard Metropolis algorithm in combination with
the Ewald sum method [16, 17, 30] that carefully takes
the long-range nature of the dipolar interaction into ac-
count. As in earlier papers [17, 18], the temperature
is expressed in the units of the reduced temperature
T̃ ≡ kBT/(2KV ) = kBT/E0. As the jumps for the ori-
entations of the ~µi are of different sizes in the Ising and
the Heisenberg case [29], the time scales cannot be di-
rectly compared. In the Ising systems, one step refers to
an (attempted) jump of value π, while in Heisenberg sys-
tems, the jumps are much smaller. Therefore, the ”real”
time should be larger in the Ising systems.

GROUND-STATE SCENARIOS

Ising spins on different kinds of ordered cubic systems
have been analyzed by several authors and for several
types of interactions between the spins. While Luttinger
and Tisza [22] investigated pure dipolar systems by renor-
malization and group theory and found that the CAF
state was the state with lowest energy, Kretschmer and
Binder [23] extended these calculations to an additional
exchange interaction J 6= 0 by mean-field theory and
Monte Carlo simulations with Ewald techniques. They
found that depending on J , a whole scenario of different
groundstates appeared. For very small (positive) J , the
columnar antiferromagnetic state (CAF) has the smallest
energy, while for slightly larger values of J , layered states
of varying thickness ∆, where the spins are arranged in
planes parallel to the xz- or the yz-plane, showed lower
energies than the CAF state. In the layered Ising states,
all spins of one layer are oriented into the same direction,
while neighboring layers have opposite spins. In the fol-
lowing, we will call a layered state, where all layers have
the same thickness ∆ = na, a ”layer-n” state (L-n). Ad-
ditionally, in [23], many states, where the chains of up-
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FIG. 2: (a) The (normalized) energy per spin ε/N (see
Eq. (1)) is plotted versus the exchange interaction J for sev-
eral configurations as specified in the legend and for systems
of size L = 10. In (b) and (c), the symbols indicate the states
reached after 104 MC steps when starting in these configu-
rations for (b) Ising and (c) Heisenberg systems. Open and

filled symbols stand for the reduced temperatures T̃ = 1/40
and 1/1.25, respectively. The succession of the (colored) lines
at J = 3 from top to bottom is: AF, CAF, R, L-1/RC, L-5,
F.

and down-spins seemed to be randomly arranged showed
energies close to the groundstate, so that the system nor-
mally did not relax to the groundstate but became frozen
in one of these random states.

In this work, we are basically interested in Heisenberg
systems, where each magnetic moment ~µi possesses two
degrees of freedom. This leads together with the smaller
activation energy to a much more complex dynamics than
in Ising systems, where all spins are either parallel (+) or
antiparallel (-) to the z-axis. However, some similarities
between Heisenberg and Ising systems exist. For exam-
ple, also in Heisenberg systems, magnetic moments with
all anisotropy axes aligned tend to arrange themselves in
linear chains, where all dipoles inside one chain tend to
be oriented either roughly parallel or roughly antiparal-
lel to the anisotropy axes. Here, ”roughly (anti-)parallel”
means that the z-component of all ~µi of a given chain is
(negative) positive, but the opening angles θi are some-
what larger than 0 or smaller than π, respectively. This
has been shown in [17] for J = 0 and of course, the chains
become even stronger for J > 0.

To get a first impression about the possible dynamics
and the differences between Ising and Heisenberg sys-
tems, we calculated their energies for several selected
configurations and for systems of size L = 10. For sim-
plicity, we denote the ~µi also in the Heisenberg systems
as ”plus” (+) or ”minus” (-) moments, when their z-
component is parallel or antiparallel to the z-axis. The
possible configurations can be described as follows: fer-

romagnetic state F (all ~µi are (+) moments), columnar
antiferromagnetic state CAF (see above), antiferromag-
netic state AF (each (+) moment surrounded by (-) mo-
ments and vice-versa), layered states L-1 and L-5 (see
above), random state R (all ~µi completely random) and
the state of random chains RC (all ~µi arranged in chains
into the z-direction with a random configuration between
the chains). Figure 2(a) shows the energies per particle
ε/N as a function of J , when all ~µi are exactly in the
corresponding Ising configuration (all θi ∈ {0, π}). For
the different ordered configurations (F, AF, CAF), we
found exactly the same values as published in [23] (plus
the constant anisotropy energy term), whereas for the
configuration of random chains, the energy is quite high
and corresponds to the energy of L-1 (same number of
(+) and (-) neighbor chains). This shows that in the
corresponding states of [23] of very small energies, the
chains were obviously not really randomly arranged, but
formed domains (see also [17]). In our units and in full
agreement with [23], we find that among all investigated
states, the CAF state is deepest for J < 0.051, while be-
yond this J-value, the layer-1 state has a smaller energy.
In [23], layer-2 and layer-4 states were investigated for
systems of sizes L = 8 that do not lead to periodic states
in our L = 10 systems under periodic boundary condi-
tions. Therefore, we find the next transition between the
layer-1 and the layer-5 state (where the thickness of one
layer corresponds to half the system size) at J = 0.065.
For J > 2.16, the ferromagnetic configuration becomes
groundstate. For comparison, we also tested systems of
size L = 6 and L = 8 and found the considered ener-
gies independent of system size. The layer-2 or layer-3
state, that are not possible for L = 10 (under periodic
boundary conditions) also show up in our calculations for
systems of appropriate sizes L = 8 or L = 6, respectively.

Next, we want to see, which energies are reached af-
ter many Monte Carlo steps, when starting in the above
configurations. The results are shown by the symbols in
figure 2(b) and (c) for the Ising and the Heisenberg sys-
tems, respectively. (The straight lines are the same as in
figure 2(a) and show the energies of the selected states
as a guideline.) In the Ising systems, for some temper-
atures and some values of J , the systems stay frozen in
their start configuration, while this is not the case for the
Heisenberg systems (except, of course, when starting in
the groundstate). If relaxation takes place, the energies
are lowered. In the Heisenberg systems, even for small
temperatures, the systems relax until the groundstate en-
ergy is reached. Moreover, independentely from the start
configuration, all final energies fall onto the same univer-
sal curve, raising the important question, whether the
systems always relax to the same configuration. We will
see in the following sections that this is not the case and
that also in the Heisenberg systems, domain states are
quite often reached. However, due to the much larger
configurational space, the energies of all these configura-



5

tions are very close to each other. This means that we
have a continuum of quasi-degenerated states with nearly
identical energies but clearly distinct orientations of their
magnetic moments. This scenario is one prominent fea-
ture of a spinglass.

Ising systems, on the other hand, due to their smaller
configurational space show a simple freezing behavior
that is different from the frozen disorder of the close-
lying energies in Heisenberg systems. For large values of
J , Ising systems are often frozen, while lower-lying states
are existing but unavailable because of the large activa-
tion energy for a spin flip. For small values of J , as we
will see in the next section, Ising systems can still re-
lax on very large time scales (beyond the 104 MC steps
shown in figure 2) to a more favorable state.

RELAXATION PROCESS AND FINAL STATES:

VISUALIZATION

We now want to take a closer look on the relaxation
process. We are interested in the (”final”) states that
are reached after many MC steps, and in the intermedi-
ate states through which the relaxation evolves. We first
investigate the regime of small exchange interaction J ,
where the ferromagnetic state is not the groundstate, i.e.
for J ≪ 2.15. We start in the ferromagnetic configura-
tion and investigate the states that are reached after 105

MC steps. Now, we are interested in the configuration
pattern, and not in the energy.
As the magnetic moments µi are arranged in linear

chains, oriented parallel or antiparallel to the z-axis, we
follow the lines of Ref. [17] and map the system onto the
xy-plane, where each of the L2 sites stands for one spe-
cific chain. To visualize the relaxation process in Figs. 3
and 4, we call a site in the xy-plane a ”+” site or a ”-
” site, when the z-components of all magnetic moments
in the chain are either positive or negative, respectively.
Otherwise, we call it a ”0” site (gray shade).
First, in Figs. 3 and 4, we illustrate the relaxation pro-

cess on several examples for different values of J , sep-
arately for Ising and for Heisenberg systems. The ex-
amples are drawn at very different temperatures in the
Ising and the Heisenberg case and therefore only serve
as a qualitative picture. Together with the energy cal-
culations of the preceeding section, the observations can
be summarized as follows: Ising systems (figure 3), at
small temperatures T̃ and for intermediate and large J ,
simply stay in the ferromagnetic state and therefore need
quite high temperatures for a relaxation process to occur
in the presence of a ferromagnetic interaction. Here, we
have chosen T̃ = 1/2, where chains can still survive [17],
but Ising systems are not frozen. At this temperature,
Ising systems quite often either reach their groundstate
(i.e. the CAF state for J = 0 and the appropriate layered
state at J = 0.1 and 0.4) or still change their apparence

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (ℓ)

(m) (n) (o) (p)

J=0

J=0.1

J= 0.4

J= 0.4

FIG. 3: Ising systems: Visualization (in the xy-plane) of rep-
resentative relaxation processes from an initial ferromagnetic
configuration at t = 0, for systems of length L = 10a at
temperature T̃ = 1/2, after certain times t (number of MC
steps). (a-d) J = 0 and t = 2, 20, t = 104 and t = 105, (e-h)
J = 0.1 and t = 10, 20, t = 104 and t = 105 (i-ℓ) J = 0.4
and t = 60, 200, t = 104 and t = 105 and (m-p) J = 0.4 and
t = 200, 2000, t = 104 and t = 105. The complete chains are
indicated by ”+” or ”-” signs, depending on the direction of
the chain. Antiferromagnetic domains (in the first row) are
shown in black and white, ferromagnetic domains (in the fol-
lowing rows) in blue and yellow. Domains of the same color
fit to each other and are allowed to emerge, whereas domain
walls exist between clusters of different colors. Sites where
chains have been destroyed are indicated by the gray shade.

between the 104th and the 105th MC step so that fur-
ther relaxation (beyond the scope of our calculations) is
very likely. Heisenberg systems, on the other hand do not
seem to get frozen in some start configuration, as far as
we can tell from our simulations, but find even at small
T̃ a path to relax towards some state with an energy
close to the minimum energy. However, this final state
is normally not the groundstate, but either some domain
state or an irregular layered state. No further chain flips
were observed between the 104th and the 105th MC step,
even if the final states often were very irregular, see e.g.
figure 4(h). We chose T̃ = 1/20 for the Heisenberg sys-
tems, but checked their behavior for T̃ = 1/2 as well,
to allow for a direct comparison with the Ising systems.
The details can be described as follows:

In the absence of a ferromagnetic interaction (J = 0),
(Figs. 3(a-d) and 4(a-d)), the CAF state is groundstate.
Accordingly, in both cases, two kinds of antiferromag-
netic domains are formed during the first 104 MC steps.
First, in the very beginning of the process, a large frac-
tion of the original chains are broken (i.e. many ~µi change
their direction from (+) to (-)), until an irregular pat-
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FIG. 4: Heisenberg systems: Visualization of the relaxation
processes (as in figure 3) from an initial ferromagnetic config-

uration, for T̃ = 1/20. (a-d) J = 0 and t = 80, 400, t = 104

and t = 105, (e-h) J = 0.1 and t = 100, 200, t = 104 and
t = 105, (i-ℓ) J = 0.5 and t = 200, 400, t = 104 and t = 105

and (m-p) J = 0.5 and t = 200, 400, t = 104 and t = 105.
For colors and symbols see explanations in figure 3.

tern of quite stable (+) chains has survived. Then, anti-
ferromagnetic domains grow around these ”seed” chains
and many of the broken chains are now rebuilt as (-)
chains, while only few of them turn back into (+) chains.
When the domains grow and different domains contact
each other, they either emerge and form larger domains
(if they fit to each other) or establish quite stable do-
main walls between them. In the figures, both types of
domains are shown in black and white, respectively, such
that domains of the same shade fit to each other. In
the Ising case, due to the quite high temperature, chains
still change their direction beyond the 104th MC step
until only one CAF domain remains. (For T̃ = 1/20, on
the other hand, a similar picture as in the Heisenberg
case evolves.) In Heisenberg systems, the irregular two-
domain patterns stay unchanged between the 104th and
the 105th MC step for most of the temperatures. For
comparision, we also tested systems at much higher tem-
peratures in the Heisenberg case. For T̃ = 1/2, no stable
pattern arises, i.e. the chains are permanently broken
and rebuilt. Already for slightly smaller temperatures,
as e.g. T̃ = 1/3 or 1/5, the irregular two-domain pat-
terns become stable in most systems (with some broken
chains, i.e. some gray sites along the domain walls and
few systems achieving the CAF state at T̃ = 1/3). Of
course, we cannot totally exclude that on much larger
time scales beyond the means of current computer sim-
ulations, also in the Heisenberg case whole chains might
change their direction. However, as we have already seen

that these irregular states possess energies more or less
identical to the minimum energy, further relaxation is
not likely.

In the presence of a weak ferromagnetic interaction,
J = 0.1 (Figs. 3(e-h) and 4(e-h)), layered states have
lower energy than the CAF state. Now, less chains are
broken at the beginning of the relaxation process and
turned into (-) chains. Ferromagnetic (-) domains grow
around these chains in a second time regime, thereby
eventually destroying further chains. The ferromagnetic
(+) and (-) domains are symbolized by the blue and the
yellow colors of the sites. At the end, ferromagnetic
domains are being formed, which can have the shape
of layers. Especially in Ising systems at the high tem-
peratures considered here, layered states are quite often
reached. When the ferromagnetic interaction is increased
to J = 0.4− 0.5 (see Figs. 3(i-p) and 4(i-p), this picture
does not change qualitatively, but the domains become
more compact and in Heisenberg systems, the layered
states become more frequent (sometimes still disordered,
i.e. with irregular thickness of the single layers). Again,
the Ising systems often change their pattern between the
104th and the 105th MC step, while this is not the case
for the Heisenberg systems, where the pattern is already
fixed after some 100 MC steps and further relaxation only
takes place by adjustments of the single θi and ϕi, but
not by turning (+) into (-) chains and vice versa.

RELAXATION PROCESS AND FINAL STATES:

QUANTITATIVE DESCRIPTION

To see how often a given state occurs, we investi-
gate Ntot = 100 different relaxation processes for many
J ≥ 0.1 and count how many end in each of the differ-
ent configurations after 105 MC steps. The system size
is still fixed to L = 10. To distinguish between the dif-
ferent formations, we go back to the description in the
xy-plane. We first define an intact row as a line into
the x- or the y-direction, where all chains point into the
same (positive or negative) z- direction. A state is called
a layered state L, when (within a small tolerance level)
either in x- or in y- direction all rows are intact. When all
rows into the x- and the y-direction are simultaneously
intact, we call the state a ferromagnetic state F and if
a state is neither ferromagnetic nor layered, we call it
a domain state D (where, for simplicity, we do not dis-
tinguish between ferro- and antiferromagnetic domains).
We calculate the ratios NF/Ntot, ND/Ntot and NL/Ntot

between the numbers NF , ND, NL of F, D and L states,
respectively and the total number Ntot of investigated
states. The results are shown in Figs. 5 and 6 for the Ising
and the Heisenberg systems, respectively, for start in (a)
the ferromagnetic and (b) the random configuration. We
show the relative number of systems that relax towards
a layered state (blue squares), a domain state (green cir-



7

(b)

(a)

FIG. 5: Ising systems: Fraction of states in the ferromagnetic
(yellow triangles), layered (blue squares) and mixed domain
state (green circles) after 105 MC steps, when the initial con-
figuration is (a) ferromagnetic or (b) random. The reduced

temperatures are T̃ = 1/1.5 (large filled symbols), T̃ = 1/2
(open symbols) and 1/5 (small filled symbols).

(b)

(a)

FIG. 6: Heisenberg systems: Fraction of states in the ferro-
magnetic (yellow triangles), layered (blue squares) and in the
mixed domain state (green circles) after 105 MC steps, when
the initial configuration is (a) ferromagnetic or (b) random.
The symbols are the same as in figure 5 and the reduced tem-
peratures are T̃ = 1/5 (large filled symbols) and T̃ = 1/20
(open symbols).

cles) or the ferromagnetic state (yellow triangles) as a
function of J for several temperatures. Remember that
among the states of section III, for J < 0.0654, the CAF
state, for 0.0654 < J < 2.16, the layer-5 state and for
J > 2.16, the ferromagnetic state is the state of lowest
energy. Again, a very different behavior occurs for the
Ising and the Heisenberg systems:

In the Heisenberg systems, a temperature-independent

phase transition takes place for J = Jc1 between the do-
main states and the layered states, where exactly at Jc1
half of the systems end in the domain state and half of
the systems in layered configurations. For J < Jc1 , do-
main states are dominant, while layered states are more
frequent for J > Jc1 . Jc1 depends slightly on the start
configuration, i.e. Jc1 ≈ 0.75 when starting in the fer-
romagnetic state and slightly smaller when starting in
the random configuration. Ferromagnetic (final) states
do not occur in the regime of small J . (For a discussion
of the regime of larger J see below). In the Ising sys-
tems, in contrast, depending on the start configuration,
either domain or ferromagnetic states are dominating,
while layered states – even if energetically favorable – are
negligable except for very small J . The behavior of the
Ising systems looks quite unsystematic and does not lead
to a well-defined phase transition that is quite obviously
supressed by trivial freezing effects. Especially for start
in the ferromagnetic configuration, the system simply

stays there for J
>
≈ 0.5 (yellow triangles in figure 5(a)),

while for start in a random configuration, frozen domain
states dominate. By comparison with figure 2, we can see
that these frozen domain states (red squares in figure 2)
possess energies that are indeed clearly higher than the
groundstate energies. Quite obviously, even if present,
states of lower energy are unreachable because of the high
activation energy of the spin flips, so that the final con-
figuration of the ~µi is quite arbitrary.

Therefore, in the following, we concentrate on Heisen-
berg systems. It is likely that the different behavior found
in Figs. 5 and 6 is due to a different microscopic behavior
and that many intermediate orientations of the magnetic
moments relative to their easy axes play a strong role in
Heisenberg systems, not only for the energies of the final
states but also for the relaxation process itself. There-
fore, for a more microscopic description, we now investi-
gate the time development of the distribution P (θ, t) of
the angles θi between the z-axis and ~µi, when starting in
the ferromagnetic configuration. Figure 7 shows P (θ, t)
at several times t (number of MC steps) for the reduced
temperature T̃ = 1/20 for several values of J between 0
and 1. Again, we can observe the two time regimes of
figure 4 and now take a closer look at their microscopic
details (left and right columns of figure 7).

In the first regime (Figs. 7(a,c,e)), P (θ, t) shows one
single maximum that moves towards larger values of θ
with increasing time and broadens. Accordingly, the
magnetic moments ~µi relax in a quite collective fashion
towards the xy-plane (away from their anisotropy axes
~ni) with some of them changing their orientation. Ob-
viously, the relaxation is governed by the dipole-dipole
interaction and therefore neighboring chains do not stay
in parallel orientations, which leads to a weakening and
even breaking of most of the chains along the z-direction
(see also figure 4). Clearly, the ferromagnetic interaction
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(a) (b)

(c) (d)

(e) (f)

FIG. 7: Heisenberg systems: Distribution P (θ) of the angle θi
between ~µi and the z-axis, averaged over 100 systems of size
N = 103 for T̃ = 1/20 and (a, b) J = 0, (c, d) J = 0.5 and
(e,f) J = 1 for several t (number of MC steps) as indicated in
the legend during the 1st and the 2nd regime of the relaxation
process (1st and 2nd column, respectively).

slows this process down, i.e. the respective relaxation
times increase considerably with J . At the end of this
1st relaxation process, the systems are balanced with re-
spect to the dipolar interaction, but unbalanced with re-
spect to the anisotropy energy that favors a parallel or an
antiparallel alignment of the dipoles with respect to the
anisotropy axes (that point into the z-direction for the
systems considered here). Therefore, at the beginning
of the second relaxation process, the anisotropy energy
starts to govern the relaxation and causes the dipoles to
align again in chains that can point either into the posi-
tive or into the negative z-direction. As a result, for not
too large J , the single maximum splits into two max-
ima (Figs. 7(b,d)). With increasing time, both maxima
separate from each other moving towards θ = 0 + δ and
θ = π− δ, where δ decreases with T and approaches zero
in the limit of T → 0. During this second time regime,
the additional ferromagnetic interaction favors a parallel
instead of an antiparallel alignment of the chains. Espe-
cially for small and intermediate values of J , where the
spin flips occur very fast and randomly, this leads to the
observed disordered domain structure, where in response
to the orientation at t = 0, the positive domains are
slightly larger (note the different height of the peaks in
figure 7(d)). For larger J , the relaxation process is slowed
down and less chains are destroyed during the first time
regime and randomly rebuilt, leading to more ordered
structures, i.e. to a dominance of the layered structures.

A new behavior arises for J ≥ 1, as we can see

(a)

(b)

(c)

(d)

FIG. 8: Heisenberg systems: The normalized values of the
angles θi of the ~µi are plotted for several typical configurations
after 105 MC steps versus the site index i in the order as shown
in figure 1 for the first 2 planes of the cube. The values are
shown for (a) J = 1.2, (b) J = 1.5, (c) J = 2 and (d) J = 3
and for start in (i) a random configuration (black filled circles)
and (ii) the ferromagnetic configuration (red open squares).
The arising pattern is repeated for each plane (therefore, the
other 8 planes are omitted). The shift between the red and the
black curves is meaningless because of the periodic boundary
conditions.

from Figs. 7(e,f). Due to the larger contribution of
the ferromagnetic interaction energy (compared with the
anisotropy energy), many different values of θ are found
in the final states of the histogram. Already for J = 1,
we can see a double-structure of the maximum during
the first time regime in figure 7(e). In the second time
regime of figure 7(f), many different peaks appear in the
histogram, i.e. the condition of an (anti)-parallel orien-
tation of the ~µi relative to the z-axis is now relieved.
Obviously, the anisotropy energy term is compensated
by the larger value of the ferromagnetic interaction, so
that the larger configurational space of the ~µi becomes
relevant not only for the relaxation process but also for
the final states.

In figure 8, we plot the angles θi for some typical sys-
tems after 105 MC steps versus the site index i (defined
in figure 1), for J = 1.2, 1.5, 2, and 3. The black filled
circles refer to a random and the red open squares to
a ferromagnetic start configuration. As the curves are
periodic and repeat after 100 sites (one layer in the xy-
plane), we only show the first two planes, i.e. from site
index i = 1 to i = 200. The figure shows a new kind of
layered state that can be described as a ”modified layer-5
state”. Contrary to the layered states at small J , the ~µi

are now arranged in planes, where the inclination angles
between the planes can accept many different values (not
only 0 and π as in the case of small J). Accordingly, a
new sub-structure of many planes of thickness ∆ = a ap-
pears. For different values of J , we find different values
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FIG. 9: Sketch of the ~µi, when the system (for the geometry
of the particles see figure 1) is in the ”modified layer-5” state,
i.e. when the ~µi are arranged in planes of similar moments
(here in yz-planes) and the inclination angles of the individual
planes accept many different moments. In (a), the three-
dimensional structure of the system is shown and in (b) the
two-dimensional front side (1st chain of each plane).

of the inclination angles and thus for the values of θ, i.e.,
the shape of the groundstate depends on J . A sketch of
a typical modified layer-5 is shown in figure 9

A new phase transition to ferromagnetic states occurs
at still larger values of J , as we have already seen in
figure 6. The transition point between layered and fer-
romagnetic states depends strongly on the initial condi-
tions. When we start in the ferromagnetic configuration,
the transition Jc2 where ferromagnetic and layered states
occur in equal number, takes place at Jc2 ≈ 1.7 and for

J
>
≈ 2.15, when the energy of the ferromagnetic config-

uration becomes smaller than the energy of the layer-5
state, all final states are ferromagnetic. When we start
in a random configuration, on the other hand, Jc2 ≈ 4.00
so that layered states still dominate even for quite large
values of J . Therefore, the final states as well as the
details of the phase transition between layered and fer-
romagnetic states are strongly history-dependent. We
know already from the energy calculations of section III
that the energies of these different final states are more
or less identical. This means that again, a competition of
energetically very close-lying states leads to this scenario.

SUMMARY AND CONCLUSIONS

In summary, we have investigated the role of the fer-
romagnetic exchange interaction, characterized by the
strength of the coupling constant J , on magnetic relax-
ation in systems of ultrafine magnetic particles, where
also the magnetic dipole interaction and the anisotropy
energy are taken into account. For transparency, we have
considered the most basic structure, where all dipoles

are located on the sides of a simple cubic lattice, with
anisotropy axes pointing into the z-direction and com-
pared Ising systems with Heisenberg systems. We have
found that in both kinds of systems, essentially dipolar
chains are formed, but that the details of the relaxation
process are quite different in both cases.

Ising systems have a tendency to get frozen in configu-
rations with relatively high energies. The freezing effects
can be so strong that no relaxation could be observed
during our simulations (even when starting at energies
much higher than the groundstate energy). But even
when – at smaller values of J and larger temperatures
T – relaxation takes place, the groundstate energies are
quite often not reached and the system gets frozen in
some domain state of higher energy. Heisenberg systems,
on the other hand, always show relaxation (except, when
starting in the groundstate). Contrary to the Ising sys-
tems, they possess a landscape of states with different
configuration of the magnetic moments but with close-
lying energies, typical for spinglasses.

Consequently, in Heisenberg systems a more complex
relaxation scenario takes place: For J close to zero, the
chains form antiferromagnetic domains, while in the pres-
ence of a larger ferromagnetic interaction, the chains pre-
fer ferromagnetic ordering between them and thus form
ferromagnetic domains that grow with J . Around a crit-
ical Jc1 , a phase transition between domain states and
layered states occurs where the exact value of Jc1 de-
pends slightly on the start configuration. For even larger
J , these layers develop a substructure where many in-
dividual layers are inclined against each other with the
inclination angle depending on J . Finally, at a second
phase transition at J = Jc2 > Jc1 , the system becomes
ferromagnetic.

Our Heisenberg systems, even if very simple and ge-
ometrically ordered, clearly show history-dependence,
frozen disorder and a rich landscape of states of close-
lying energies, as it is typical for spinglasses. Frozen dis-
order occurs in the regime of small and intermediate J ,
where the system often relaxes into quite stable domain
states of (+) and (-) domains with energies very close
to the groundstate energy. At larger values of J , the
modified layered states again show energies very close to
the energy of the ferromagnetic state, so that again, two
different states are in competition for the groundstate en-
ergy, leading to a history-dependence of the relaxation.
Contrary to the situation at smaller J , both states are
now ordered.

It could be interesting to investigate the change of Jc1
and Jc2 in response to system parameters as e.g. the sys-
tem size L and the constant c/c0 that determines the ra-
tio between the dipole-dipole as well as the exchange en-
ergy as compared to the anisotropy energy (see Eq. (1)).
While a thorough investigation would require additional
time-consuming simulations, some qualitative considera-
tions can be drawn from our present results. First of all,
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as mentioned in section III, the ground state energies of
the ordered Ising configurations were independent of the
system sizes for L ≥ 6, which means that the Ewald sum-
mation technique provides reliable energy values. There
are, however minor effects, as e.g. the participation of
states of different symmetry, as e.g. the layer-2 state in
systems of side length L = 8 or the layer-3 state for L = 6
or L = 12 (as also mentioned in section III). Whenever
these states are possible, they have some influence on the
transition point to the ferromagnetic state, by serving as
intermediate states through which the system can evolve.
Moreover, the energy of the layer-L/2-state that is in
direct competition to the ferromagnetic state, decreases
with L. However, these can be considered as finite-size
effects that should disappear in very large systems where
very many different layered states states exist. For the
dependence of the transitions with c/c0, more simulations
will be necessary in the future. The parameter J as well
as the strength of the dipole interaction, both scale with
c/c0. Therefore, the transition value Jc1 should in first
approximation also scale with c/c0. The second transi-
tion point, Jc2 , on the other hand, strongly depends on
the anisotropy energy. Therefore, its behavior under a
change of c/c0 cannot be determined on the basis of the
current simulations.
Remanent magnetization could at best occur in the

regime, where domains are formed. Due to the develop-
ment of domains of different sizes for small and interme-
diate J , the numbers of positive and negative chains may
differ, leading to a small finite magnetization. Since the
relaxation depends on the history, there exists a slight
excess of (+) chains, when starting in the ferromagnetic
configuration, resulting in a small remanent magneti-
zation and the appearance of a spurious ferromagnetic
state. In the range of larger J , where the domain states
disappear and transform into ordered layered states, the
remanent magnetization naturally disappears, so that –
in a counterintuitive way – the remanent magnetization
disappears, when the ferromagnetic exchange interaction
is increased. However, on the basis of the present simu-
lations we cannot decide if the remanent magnetization
at small J is a finite-size effect or not.
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