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Geometric symmetries cause orbital degeneracies in a molecule’s spectrum. In a single-molecule junction,
these degeneracies are lifted by various symmetry-breaking effects. We study quantum transport through such
nanostructures with an almost degenerate spectrum. We show that the master equation for the reduced density
matrix must be derived within the singular-coupling limit as opposed to the conventional weak-coupling limit.
This results in strong signatures of the density matrix’s off-diagonal elements in the transport characteristics.
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I. INTRODUCTION

The Anderson model of localized interacting electronic
states coupled to two Fermi-gas electrodes is the archetypical
model for studying electronic transport through quantum
nanostructures. The model accurately describes a wide range
of experimentally accessible transport regimes of quantum
dots including the Coulomb blockade and the Kondo regime.
It has been successfully extended to describe single-molecule
junctions by coupling the electrons to the vibrational degrees
of freedom of the molecule. The study of molecular electron-
ics using this model has received enormous attention in re-
cent years.1

An important issue that in contrast to the vibrational
structure has been studied much less arises from the orbital
degeneracies due to the geometric symmetries of molecules.
The transport properties due to orbital degeneracies differ
from those due to spin degeneracy, which are being studied
extensively in the quantum-dot literature. Since there, the
underlying SU�2� symmetry is respected both by the elec-
trons in the reservoirs and by the tunnel couplings to the
localized system, the low-temperature phenomenology is
characterized by Kondo physics.2

The symmetry-induced orbital degeneracies of a molecule
are in general lifted by binding it to metallic electrodes or the
interaction with an underlying substrate. Asymmetries in the
coupling of the orbitals to the leads cause a tunneling-
induced splitting of the degenerate levels as the result of
perturbation theory. The problem with orbital degeneracies,
therefore, naturally extends to studying the role of near de-
generacies in quantum transport theory.

The importance of coherent superpositions of degenerate
localized levels for quantum transport has already been men-
tioned in the literature.3,11 In this Brief Report, we generalize
the discussion from the nongeneric case of exact degeneracy
and show how the breaking of symmetries and the lifting of
molecular degeneracies can be consistently accounted for in
a master-equation formalism by employing the “singular-
coupling limit” 4 in the derivation of the kinetic equation for
sequential tunneling. Contrary to the weak-coupling limit,
the singular-coupling limit can properly describe the coher-
ent dynamics in the near-degenerate orbital subspace of the
reduced density matrix and its competition with the transport
dynamics due to electron tunneling. Our approach shows that
this competition causes rich and interesting physics in the
transport characteristics.

The singular-coupling limit also remedies the shortcom-
ings of the Bloch–Redfield equation, which is a master equa-
tion that explicitly keeps the coherences between nondegen-
erate states in the density matrix5 but is known to produce
negative probabilities.6 The master equation in the singular-
coupling limit is included in the general theoretical frame-
work of master equations and rate equations. It closes the
gap between the description by rate equations and degenerate
master equations enabling us to study high-temperature se-
quential tunneling for all possible energy regimes.

We illustrate the physics of an orbital near degeneracy
within a minimal model; a two-level interacting but spinless
Anderson impurity coupled to two electrodes

H = eVg�n↑ + n↓� +
�

2
�n↑ − n↓� + Un↑n↓ + �

k�

�kck�
† ck�

+ �
k��

t��ck�
† d� + H.c. �1�

The on-site electronic orbitals are labeled by a pseudospin
�= ↑ ,↓ and are separated in energy by �. This splitting is
assumed to be due to symmetry-breaking mechanisms other
than electronic tunneling. Double occupation of the system is
suppressed by Coulomb repulsion of strength U and both
orbitals are coupled to Fermi-gas electrodes �=L ,R, held in
thermal equilibrium at temperature kBT, via lead- and orbital-
dependent amplitudes t��.

In Fig. 1�a�, we show the stationary current through the
model system for eVg=0. It is evaluated both for vanishing
� using a master equation that includes the off-diagonal el-
ements of the reduced density matrix � and for finite �,
which is small compared with kBT, using a rate equation for
the diagonal elements of �. The qualitative difference be-
tween the two results is striking. While the rate equation
yields a simple steplike increase in the current, the master
equation produces additional structure; a suppression of the
current and pronounced negative differential conductance.
The phenomenological discrepancy between the two curves
of Fig. 1�a� illustrates that there can be interesting and non-
intuitive physics in the crossover regime, where � is of the
order of the tunneling-induced broadening � of the electronic
orbitals.
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II. THE SINGULAR-COUPLING LIMIT

The emergence of additional physics in the crossover re-
gime ��� can already be understood with the help of the
noninteracting, U=0, version of the two-level Anderson
model, Eq. �1�. Due to the absence of interactions, the re-
tarded propagator of the model can be computed exactly, and
a straightforward calculation yields for the off-diagonal ele-
ment of the spectral function

A↑↓��� =
���� − �

2 ��� + �
2 � − 	

4 �
��� − �

2 + ı
�↑
2 ��� + �

2 + ı
�↓
2 � + �2

4 �2
. �2�

The self-energy 
= ı �
� 
0W†W, where �W���ª t��, gives rise

to the broadenings ���ª
2�
� 
0t��

2 and ��ª
2�
� 
0t�↑t�↓, with a

missing index indicating that it has been summed over;
the density of states 
0 in the electrodes is assumed
to be uniform. We also set ��ª�↑−�↓. The parameter
	ª�↑�↓−�2 is proportional to det�
�. A vanishing 	 allows
for a complete decoupling of one electronic level from both
electrodes by a unitary transformation of the Hamiltonian.7,8

We therefore focus on the generic situation 	�0 in the fol-
lowing.

The stationary coherences of the nondegenerate system
are described by the equal-time correlator �RA↑↓���d�. In
the weak-coupling limit, when �→0, these are expected to
vanish for every finite �. To confirm this explicitly, we res-

cale t����t�� and shift the energy �ª�− �
2 . As � tends to

zero, the rescaled spectral function A↑↓
� ��� converges to zero

almost everywhere except at the four roots of its denomina-
tor
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and �3,4=�1,2
� . By use of the residue theorem, we find that

also the contribution of these poles to the integral converges
to zero such that �RA↑↓

� ���d�→0 as �→0. When, on the
contrary, both � and � are of the same order, we have to
rescale not only t�� but also ���2�, such that ��� /� and
�� /� remain fixed in the limit process. This simultaneous
scaling is known as singular-coupling limit in contrast to the
weak-coupling limit, in which � is kept constant.4 Repeating
the above calculation, the roots of the spectral function’s
denominator are now proportional to �2 and the integral

FIG. 1. �Color online� Numerical evaluation of the stationary current Eq. �9� through an interacting two-level Anderson model,
tL↑= tR↓=1, tL↓= tR↑=1.5, U=2.35, and kBT=0.02. The tunnel amplitudes t�� and the splitting � are measured in units of 2�

� 
0. �a� illustrates
the difference between the description by the degenerate master equation �Eqs. �7� and �8�� �solid� and the �=0 rate equation, which is
obtained from the master equation by setting �↑↓=0 �dashed�. Both models are evaluated at eVg=0 in order to highlight the quantitative as
well as qualitative discrepancy. In �c� and �d�, we show a full scan of the �eVg ,eVsd� plane for both equations illustrating the fundamental
difference of the dynamics due to the two equations in the parameter space. While the rate-equation result is the familiar sequence of steps
in the stationary current, the master-equation result shows a strong current suppression for voltages below the double-charging threshold.
Using the master equation in the singular-coupling limit as it is derived in the text, we interpolate the two different curves of �a� by letting
�→� in �b�.
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is independent of the scaling parameter and finite. Although
the system is nondegenerate, some coherences between the
electronic levels are retained. As we let �→�, these con-
verge to zero. In this limit, our approach reproduces the
weak-coupling result.

III. MASTER EQUATION

We now derive the master equation for the near-
degenerate interacting two-level Anderson model in the
singular-coupling limit. The underlying challenge of the re-
gime ��� is that the tunneling dynamics takes place on the
very same time scale as the coherent on-site dynamics due to
the almost degenerate electronic levels. We consider the
Hamiltonian, rescaled according to the previous observation,
H�=�2HS+HE+�HS−E. The term �2HS describes the system,
that is the near-degenerate electronic orbitals. We set
eVg=0 for convenience—it can easily be restored later on.
HE is the bath, in our case the Fermi-gas electrodes, and
�HS−E is the system-bath interaction, the tunnel Hamiltonian.
We rewrite the von Neumann equation as an integral equa-
tion for the reduced density matrix �S=TrE���. The limit
�→0 then generates the markovian dynamics.9 The
reduced density matrix itself is obtained by a projection
P�ªTrE��� � �E with �E being the equilibrium
distribution of the bath. With the complementary projection
Qª1−P, the von Neumann equation �̇=−ı�H� ,��=−ıL��
=−ı��2LS+LE+�LS−E�� reads in the interaction picture6,9

�S
I �t� = �S

I �0� − �2�
0

t

eı�2LSv

���
0

t−v

eı�2LSs TrE�LS−EQe−ıL�sQLS−E�E�ds�
�e−ı�2LSv�S

I �v�dv . �5�

This equation incorporates the Born approximation by
choosing ��0�=�S�0� � �E as the initial condition. On the
slow markovian time scale �=�2t, the term in curly brackets
converges to a time-independent quantity9 and the master
equation assumes the markovian form

�̇S = − ıLS�S − �
0

�

TrE�LS−Ee−ıLEsLS−E�E�ds�S. �6�

If HS had not been rescaled by �2, the exponential factors
enclosing the curly bracket in Eq. �5� due to the interaction
picture would have taken the form exp��ıLS� /�2� on the
markovian time scale �. In this case, letting �→0 would
have caused faster and faster oscillations for coherences be-
longing to nondegenerate states. In the limit, those terms
would have been averaged to zero, commonly known as the
secular approximation.10

As it is plausible from Eq. �6�, the master equation in the
singular-coupling limit is formally obtained by setting �=0
in the dissipative term but retaining the nonzero � in the

free-evolution Hamiltonian.3 The splitting � must not appear
in the Fermi functions coming from the trace over the bath
degrees of freedom because due to the limit �→0, the tem-
perature of the bath is too large to resolve the splitting. The
Bloch–Redfield equation would, however, have such a de-
pendence on �.

We now evaluate the master equation �6� for the Anderson
model Eq. �1� and recast it as a Bloch equation for the pseu-
dospin S�ª �2 Re �↑↓ ,2 Im �↑↓ ,�↑↑−�↓↓�, which is defined by
the electronic two-level system coupled to an equation for
the populations pi, i being the number of electrons on the
device,
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I� = ���f�p0 − ��1 − f�� − f�2�p1 − �1 − f�2�p2�

−
1

2
��1 − f�� + f�2�n�� · S� . �9�

Equation �9� gives the stationary current through lead � by

I�=TrS��Î��.The pseudomagnetic fields are determined by
the principal-value integrals

B� ª

1

2�
�
�

P� f����� 1

U − �
+

1

�
�d�n��, �10�

with n��ª �2�� ,0 ,��↑−��↓�. The Fermi functions are abbre-
viated by f�ª f�eVg−��� and f�2ª f�eVg+U−���. For
�=0, Eqs. �7�–�9� are reminiscent of the ones derived in.11

In Eqs. �7� and �8�, the electronic splitting term −ıLS�S
appears as a contribution to the pseudomagnetic field di-
rected along êz. Due to this interpretation, the pseudomag-
netic fields describe the tunneling-induced energy renormal-
izations of the electronic levels in exactly the same way as
any other term in the Hamiltonian of this order would have
to be treated, namely, in the singular-coupling limit. The
singular-coupling limit provides a nondiscriminating descrip-
tion for both, the tunneling-induced renormalization of the
on-site levels as the result of perturbation theory and any
other splitting of the same order, which has to be included in
the model explicitly.

IV. RESULTS

Based on our theoretical considerations, we understand
the qualitative behavior of the stationary current-voltage
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characteristics of the two-level Anderson model and its re-
markable sensitivity to �. The rate-equation results of Figs.
1�a� and 1�d� show the familiar steps in the stationary current
whenever the voltage is large enough to add another electron
to the device. Since ��kBT, the near degeneracy remains
unresolved.

The �=0 master equation also yields a finite linear con-
ductance at zero bias, but below the double-charging thresh-
old, in Figs. 1�a� and 1�c�, the stationary current is strongly
suppressed. Since the equation is one for the full reduced
density matrix of the system’s on-site levels, the underlying
mechanism is explained by choosing a particular electronic
basis. The key idea is: for general tunneling amplitudes t��,
there always exists a unitary transformation to eliminate at
least one of them and hence decouple one of the levels from
one electrode. Let this level be �↑ � and let the electrode it is
decoupled from be the drain electrode, �d↑=0. Then �d=0. If
we neglect the pseudomagnetic fields for the time being, the
degenerate master equation is actually only a rate equation,
whose physics is easily understood. The tunneling dynamics
will eventually populate the decoupled state �↑ �, which due
to �d↑=0 cannot be left again. Below the double-charging
threshold, Coulomb repulsion then obstructs any current
through the device.

The pseudomagnetic fields, which describe virtual switch-
ing processes between the degenerate levels, soften this pic-
ture. They induce a precession of the pseudospin that corre-
sponds to moving the electron from the decoupled state �↑ �
via virtual intermediate states on the source electrode into the
conducting state �↓ �.11 Except for those voltages, for which
�B� �=0 and the above argument for complete current suppres-
sion applies, the device carries the highly voltage-dependent
stationary current shown in Figs. 1�a� and 1�d�.

In the singular-coupling limit, the splitting � generates an
additional pseudomagnetic field of the same order as the
tunneling-induced one. Its orientation along êz distinguishes
this direction in the system’s Hilbert space. As � is being
increased, the precession frequency of S� about the z axis will
dominate the virtual tunneling dynamics, which are on the
order of the electronic dwell time on the device. In the limit
�→�, the residual precession dynamics is too fast com-
pared with the average tunneling time, such that only the
projection of S� onto the z axis is relevant for the tunneling
dynamics. For very large �, the pseudospin is effectively
oriented along êz. Since then Sx+ ıSy =2�↑↓�0, the master
equation is rendered a rate equation for the electronic occu-

pations. As still ��kBT, the Fermi functions cannot resolve
the physics due to � and the system is effectively described
by the �=0 rate equation.

The numerical results shown in Fig. 1�b� support this rea-
soning; as the splitting � is numerically increased, the
current-suppression curve is shifted toward positive bias. The
suppression of the stationary current is lifted and eventually
lost in the flat current profile of the �=0 rate-equation result.

V. CONCLUSIONS

The omnipresence of orbital degeneracies in molecular
physics and their lifting due to various symmetry-breaking
effects in single-molecule junctions requires the modeling of
degenerate and near-degenerate systems in quantum trans-
port theory.

We have shown that within the framework of master
equations for sequential tunneling, such near-degenerate sys-
tems fall into a descriptive gap between the energy regimes
that are discussed in the theoretical literature: whereas for
degenerate systems a master equation for the full reduced
density matrix is used, systems with energy differences
larger than the tunneling-induced broadening � have to be
described by rate equations. In the interesting crossover re-
gime, the tunneling of electrons, the tunneling-induced split-
ting, and the coherent on-site dynamics are both of order �.
By using the notion of the singular-coupling limit, we have
derived a master equation for this regime. We have, thereby,
also given meaning to the rate-equation treatment of degen-
erate systems as being the proper description when
����kBT. Since for the high-temperature regime �
�kBT is always implied, we have actually presented a
method to describe all possible energy regimes for sequential
tunneling through multilevel quantum nanostructures.

Aside from the simple model that we have used to illus-
trate and explain its physics, our approach has a wide range
of applications in molecular electronics. It provides a means
to generically account for symmetry-breaking mechanisms in
single-molecule junctions. And it allows the study of com-
plex molecular models such as Jahn–Teller active systems,
pseudo-Jahn–Teller structures, the valley degeneracy in car-
bon nanotubes, or the interaction of orbital symmetries and
vibrational degrees of freedom, which is a leitmotif in the
theory of molecular electronics.
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