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RELATION BETWEEN f AND WINDING

Here we prove the relation between f (φ1, φ2, φ3), that
appears in Eq. (2) of the main text, and phase winding.
Without loss of generality, let us set φ3 = 0 and φ2 > φ1,
and examine

f (φ1, φ2, 0) = cos (φ1) + cos (φ2) + cos (φ2 − φ1) . (S1)

It is instructive to factor this expression using trigono-
metric identities:
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The phases wind, i.e., the triangle connecting them en-
circles the origin, if and only if

0 ≤ φ1 ≤ π, π ≤ φ2 ≤ π + φ1. (S3)

It follows that
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(S4)
Therefore, the first term in Eq. (S2) is non-positive, and
thus f ≤ −1. In addition, it is straightforward to show
that along the boundaries defined by Eq. (S3), f = −1
exactly, and that f (φ1, φ2, 0) has extrema only at the
points (φ1, φ2) =

(
2π
3 ,

4π
3

)
, (0, π) , (π, π) , (π, 2π). This

concludes the proof that phase winding occurs if and only
if f ≤ −1.

FURTHER ANALYSIS OF THE PHASE
DIAGRAM

In this section we provide further details of the phase
diagram in the coupled-wires model. The derivations are
based on Eq. (2) of the main text, which determines the
phase boundaries.

We begin by setting t⊥ = 1, and writing the solution
of Eq. (2) which is a quadratic equation for Λ:
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]
. (S5)

In order to have a real solution, the argument of the
square root must be non-negative. Treating the argument
of the square root as a second-order polynomial in µ2, we

find that the condition for a real solution is

(f − 3)(f + 1)
(
∆2(f + 1)2 + 8f + 12

)
≥ 0. (S6)

Since −3/2 ≤ f ≤ 3, the first factor is negative whereas
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the last factor is positive. Therefore, this inequality is
fulfilled only when f ≤ −1. This result, combined with
our previous proof that f ≤ −1 corresponds to phase
winding, is in agreement with Ref. [1].

The manifold in µ, ∆, Λ parameter space defined by
Eq. (S5) is shown in Fig. S1 for several values of f . As
explained in the main text, the parameters µ,∆,Λ are
said to be “optimal” if they support a solution of Eq. (2)
for f = −1, i.e., if the necessary condition f ≤ −1 is also
sufficient. Solving again for Λ, we obtain
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(S7)
The only way to make this expression real is demanding
µ2 + ∆2 = 1. In this case the two solutions Λ± are
identical and equal to µ/t⊥. This gives us the optimal

curve C – the circle
(
µ,
√

1− µ2, µ
)

.

It is worth noting that along this circle, one can make
a simple connection to the continuum description, thus
finding an optimal condition for topological superconduc-
tivity in experimental system parameters. If we take
∆/t⊥ to be small (which means µ ≈ t⊥), we obtain
λ ≈ ∆/t⊥ (assuming λ1 = λ2 = λ3 = λ). In our
minimal three-wires tight-binding description, the effec-
tive lattice spacing is the typical distance between two
superconductors W . Using a continuum description of
the tight-binding model along the circumference, we get
∆SO ≈ t⊥λ

2. Since λ is the spin-dependent angle accu-
mulated when hopping between nearest neighbors, and
`SO is the distance where a phase of 2π is accumulated,
we have W/`SO ≈ λ. Therefore, we obtain the condition

W

`SO
≈ ∆SO

∆
, (S8)

which expresses the ideal geometry as a function of the
continuum parameters only.

Let us exemplify the practical use of this relation. In
the main text, we assumed a superconducting gap of
∆ = 1 meV, which is appropriate for e.g. Nb and Pb [2].
Let us now take ∆ = 0.5 meV, which is appropriate for
e.g. Sn and V [2]. Using the relation Eq. (S8) above,
we simulate a larger system compared to that of Fig. 3b,
with WSC = 100 nm, WN = 100 nm. Fig. S2 shows the re-
sulting topological phase diagram, which indeed exhibits
topological regions with a topological gap comparable to
∆SO, but the topological region is smaller, indicating that
further optimization might be necessary.

BOUNDS ON THE TOPOLOGICAL GAP

Here we discuss the bounds limiting the topological
gap, in order to justify the choice of comparing it to ∆SO,
which we made in Fig. 3b of the main text.

To set the stage, we study the topological nanowire
model [3, 4]

H =

(
k2

2m∗
+ ukσz − µ

)
τz −Bσx + ∆τx, (S9)

where B is the applied Zeeman field and u is the SOC
parameter. For simplicity, we focus on µ = 0 where the
condition for a topological phase is B > ∆. The two
relevant energy scales are ∆ and ∆SO = mu2/2, and the
question is whether or not they both set a bound on the
energy gap in the topological phase.

At finite B and ∆ there are two minima of the gap
in the spectrum as a function of the momentum k, one
at k = 0 and the other near the Fermi momentum.
The topological gap of the system is determined by the
smallest of the two, when B > ∆. It is maximized at
B = B∗ > ∆, for which the gap at k = 0 is equal to the
gap near the Fermi momentum. A closed-form expression
for B∗ is hard to obtain, but it is straightforward to find
it numerically given the values of the other parameters.

Fig. S3(a) shows the maximal topological gap as a
function of ∆/∆SO, normalized by ∆ and by ∆SO. For
InAs/InSb nanowires proximitized by Al, ∆ and ∆SO

are of the same order of magnitude. However, for a
InAs/InSb 2DEG such as the one we studied, ∆� ∆SO

and therefore we analyze the asymptotic behavior of the
maximal topological gap in this limit—see the dashed
lines in Fig. S3(a). By fitting the asymptotes, which
can be obtained numerically or analytically, we find that
the maximal topological gap in this limit is ∼

√
2∆SO∆.

Therefore, the gap can be parametrically larger than
∆SO. However, it is evident and also seen in Fig. S3(a)
that the gap cannot exceed ∆.

The situation is qualitatively different for the
quantum-well model studied here, see Eq. (4) and Fig. 3.
We demonstrate this by using the same parameters as in
Fig. 3b, with the phases optimally chosen, and vary the
ratio ∆/∆SO. The results are shown in Fig. S3(b). It
is clear from this figure that for our system, the maxi-
mal gap in the topological region is of order ∆SO (at the
optimal configuration), but it is much smaller than ∆.

STABILITY TO PERTURBATIONS

In this section, we analyze the stability of the topolog-
ical phase in the quantum-well model to perturbations in
the model’s parameters. We demonstrate the robustness
of the topological gap to various realistic imperfections,
which makes our proposal favorable for experiments.

The parameters used in Fig. S4 are the same as those
of Fig. 3b of the main text, with θ = 0.55π, φ = 0.88π,
a representative point inside the topological region. On
top of these, we add perturbations as listed below. We
plot the topological invariant Q multiplied by the energy
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FIG. S1. Critical manifold, marking the topological phase boundaries, in µ/t⊥, ∆/t⊥, Λ space for (a) fcrit = −1, (b) fcrit = −1.1,
(c) fcrit = −1.5, determined by the solution given in Eq. (S5). As fcrit becomes more negative, the manifold’s area increases.
For a given value of fcrit, the system is topological at all points contained in the volume surrounded by the surface. For
fcrit = −1 the manifold shrinks into a circle, as seen from Eq. (S7). Alternatively, fixing a point in the parameter space, we
can contain it within the volume surrounded by the surface by changing f , leading to a topological state.
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FIG. S2. Topological phase diagram of the quantum-well model, same as in Fig. 3b, with ∆ = 0.5 meV and WSC = 100 nm,
WN = 100 nm, µ = 109.5 meV, t⊥ = 0.28 meV.
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FIG. S3. (a) Maximal topological gap for the nanowire model Eq. (S9) (see also Refs. [3, 4]), as a function of ∆/∆SO. The
topological gap is normalized by ∆ (blue) and by ∆SO (orange), and plotted in a log-log scale. The dashed lines are the
asymptotic forms at ∆� ∆SO, which is

√
2∆SO∆, i.e., the topological gap may be parametrically larger than ∆SO. (b) Same

for the quantum-well model Eq. (4), using the same parameters of Fig. 3b. The maximal topological gap is of order ∆SO, and
since ∆� ∆SO for the parameters we used, it is much smaller than ∆.
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gap, without even changing the SC phases at all (which
is probably the simplest experimental knob).

In Fig. S4(a), the perturbation is a variation in the
inter-layer hopping amplitude t⊥. In Fig. S4(b), the
chemical potential in the two layers is different: µtop =
µ+δµ, µbottom = µ−δµ. In Fig. S4(c), the pair potential
in the two layers is different: in the main text we took
∆top = ∆, ∆bottom = 0, and now we take ∆top = ∆+δ∆,
∆bottom = −δ∆. Finally, in Fig. S4(d) we add an inter-
layer pair potential ∆interτxρx.

Under all these perturbations, the topological phase is
robust in an appreciable range of parameters. The im-
portant implication of this finding is that no fine-tuning
is required to drive the system into the topological phase.

We stress again that these reassuring results are obtained
without further tuning of the SC phases, which will likely
increase the stability even more.
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FIG. S4. Stability of the topological phase in the quantum-well model to perturbations in (a) the inter-layer hopping t⊥, (b) a
difference δµ in the chemical potential between the two layers, (c) a difference δ∆ in the pair potential between the two layers,
and (d) inter-layer pair potential ∆inter. Plotted is the topological invariant Q multiplied by the energy gap in units of the
SOC energy. The dashed red line marks the topological phase boundaries.


