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When a compressive force applied to a rod exceeds a critical value, the rod buckles into a new,
symmetry-breaking equilibrium state. Here, we study this Euler buckling instability in nanoelec-
tromechanical systems. We find that the current flow renormalizes the critical force and induces a
discontinuous buckling instability in close analogy with tricritical points in the Landau theory of
phase transitions. Conversely, the instability also leads to a current blockade at low biases which
can be mechanically tuned, providing a controllable switching device at the nanoscale.

Introduction.—The buckling of an elastic rod by a lon-
gitudinal compression force F applied to its two ends con-
stitutes the paradigm of a mechanical instability, called
buckling instability [1]. It was first studied by Euler in
1744 while investigating the maximal load that a column
can sustain [2]. As long as F stays below a critical force
Fc, the rod remains straight, while for F > Fc it buck-
les, as sketched in Fig. 1. The transition between the two
states is continuous and the frequency of the fundamental
bending mode vanishes at the instability.

There has been much recent interest in exploring buck-
ling instabilities in nanomechanical systems. In the quest
to understand the remarkable mechanical properties of
nanotubes [3, 4, 5], there have been observations of com-
pressive buckling instabilities in this system [6]. The
Euler buckling instability has been observed in SiO2

nanobeams and shown to obey continuum elasticity the-
ory [7]. There are also close relations with the recently
observed wrinkling [8] and possibly with the rippling [9]
of suspended graphene samples. Theoretical works have
studied the quantum properties of nanobeams near the
Euler instability [10, 11, 12, 13], proposing this system
to explore zero-point fluctuations of a mechanical mode
[11] or to serve as a mechanical qubit [13]. In this work,
we consider the Euler buckling instability in a nano-
electromechanical system [14]. We find that the inter-
play of electronic transport and the mechanical insta-
bility causes significant qualitative changes both in the
nature of the buckling and in the transport properties.

The continuity of the instability and the consequent
vanishing of the vibronic frequency at the transition
(“critical slowing down”) are the key ingredients which
allow for an essentially exact solution of the problem. In
fact, the vanishing of the frequency implies that the me-
chanical motion becomes slow compared to the electronic
dynamics and an appropriate non-equilibrium Born-
Oppenheimer (NEBO) approximation becomes asymp-
totically exact near the transition. In leading order, the
NEBO approximation yields a current-induced conserva-
tive force acting on the vibronic mode. At this order, our
principal conclusion is that the coupling to the electronic

FIG. 1: (color online) Sketch of a nanobeam (a) in the flat
state and (b) the buckled state with two equivalent metastable
positions of the rod (solid and dashed lines).

dynamics can change the nature of the buckling instabil-
ity from a continuous to a discontinuous transition which
is closely analogous to tricritical behavior in the Landau
theory of phase transitions. Including in addition the
fluctuations of the current-induced force as well as the
corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the
vicinity of the discontinuous transition. Employing the
same NEBO limit to deduce the electronic current, we
find that the buckling instability induces a current block-
ade over a wide range of parameters. This is a manifesta-
tion of the Franck-Condon blockade [15, 16, 17] whenever
the buckling instability remains continuous but is caused
by a novel tricritical blockade when the instability is dis-
continuous. The emergence of a current blockade in the
buckled state suggests that our setup could serve as a
mechanically-controlled switching device.

Model.—We consider a vibrating metallic nanobeam
connected to source and drain electrodes. The Hamilto-
nian H = Hvib + He + Hc modelling our device is com-
posed of three parts: Hvib describes the vibrations of the
mechanical beam, He the electronic degrees of freedom,
and Hc the electron-vibron coupling.

Close to the Euler instability, the frequency of the fun-
damental bending mode of the beam approaches zero,
while all higher modes have a finite frequency [1]. This
allows us to retain only the fundamental mode of ampli-
tude X and following previous studies [10, 11, 12], we
reduce the vibrational Hamiltonian to the form [18]

Hvib =
P 2

2m
+
mω2

2
X2 +

α

4
X4, (1)

which is closely analogous to the Landau theory of contin-
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uous phase transitions. In Eq. (1), P is the momentum
conjugate to X and the effective mass associated with
the fundamental bending mode (for clamped boundary
conditions) is m ' 3σL/8 where σ and L are the lin-
ear mass density and the length of the nanobeam, re-
spectively. The vibrational frequency in Eq. (1) reads
ω2 = (κeff/σ)(2π/L)4(1 − F/Fc). It vanishes when F
reaches the critical force Fc = κeff(2π/L)2, with κeff the
effective bending rigidity. The strength of the quartic
term reads α = (π/2L)4FcL. For F < Fc (ω2 > 0), the
beam remains straight as X = 0 is the only stable mini-
mum. For F > Fc (ω2 < 0), the beam buckles into one
of the two minima at ±X+ = ±

√
−mω2/α.

The electronic Hamiltonian He = Hd +Hl +Ht +Hch

describes the Coulomb-blockade physics of the single-
electron transistor setup [19], where Hd accounts for
the single-particle levels of the metallic dot, Hl for the
non-interacting electrons in the leads, Ht for the elec-
tronic tunneling between lead and dot, and Hch = (n̂ −
CgVg)2/2CΣ for the intradot Coulomb repulsion. Here,
CΣ = 2C + Cg denotes the total capacitance and n̂ the
number operator of excess electrons on the dot. (We
adopt units in which the electron charge is set equal to
unity.) We assume the left and right junctions to have
equal capacitances C and tunneling resistances R. The
bias voltage V is applied symmetrically between source
and drain, and a gate electrode (with capacitance Cg)
can tune the dot energy levels via the gate voltage Vg.
Coulomb-blockade physics requires that R � h/e2. In
the absence of the electron-vibron coupling, the elec-
tronic dynamics can then be described by rate equations
[19]. Focusing on a Coulomb diamond between dot states
with N and N + 1 electrons and assuming a positive
bias voltage much larger than temperature, the two rel-
evant tunneling rates Γ+ and Γ− for charging and dis-
charging the dot with an additional electron are given
by Γ± = R−1(V/2 ± V̄g)Θ(V/2 ± V̄g), respectively, with
V̄g = (CgVg −N − 1/2)/CΣ.

We assume that the electron-vibron coupling does not
break the underlying parity symmetry of the vibronic
dynamics under X → −X. This follows naturally when
the coupling emerges from the electron-phonon coupling
intrinsic to the nanobeam [20] and implies that the cou-
pling depends only on even powers of the vibronic mode
coordinate X. Here, we assume that the dominant cou-
pling is quadratic in X,

Hc =
g

2
X2n̂, (2)

with a coupling constant g > 0 [20]. Note that for a
buckled nanobeam, this interaction generates an effec-
tively linear coupling upon linearization about the buck-
led state, whose strength depends on the applied force.
When there is a significant contribution to the electron-
vibron coupling originating from the electrostatic dot-
gate interaction, we envision a symmetric gate setup con-

sistent with Eq. (2).
We infer characteristic scales E0 = g2/α of energy,

l0 =
√
g/α of length, and ω0 =

√
g/m of frequency (or

time t) by comparison of the quartic vibron potential in
Hvib and the electron-vibron coupling Hc. Introducing
the associated reduced variables x = X/l0, p = P/mω0l0,
τ = ω0t, v = V/E0, vg = V̄g/E0, and r = Rω0/E0, we
can write Hvib + Hc = E0[p2/2 + (−ε + n̂)x2/2 + x4/4]
in terms of a reduced compressional force ε = −mω2/g.

Stability analysis.—Near the instability, the vibra-
tional dynamics becomes slow compared to the electronic
tunneling dynamics. It has recently been shown [21, 22]
and it is physically plausible that under these circum-
stances the effect of the current on the vibrational motion
can be described within a NEBO approximation. The
resulting Langevin description of the vibronic dynamics
involves both a time-averaged and conservative current-
induced force as well as fluctuating and frictional forces.
We start with a stability analysis of the vibrational mo-
tion in the presence of the conservative force before we
address the complete Langevin dynamics below.

Heuristically, the conservative force can be deduced
by averaging the Heisenberg equation of motion ẍ =
εx − x3 − xn̂ for the vibrational coordinate over a time
interval which is short compared to the time scales of
the vibrational motion but long compared to the inverse
of the current flowing through the nanobeam. In this
way, we obtain a current-induced force −x〈n̂〉x where
the subscript indicates that the time-averaged occupa-
tion should be computed at fixed vibron coordinate x.
Assuming for definiteness that the relevant charge states
involve zero and one excess electron, the dot occupation
n0(x) = 〈n̂〉x follows from the stationary rate equation
0 = Γ+(1−n0)−Γ−n0. Noting that in the NEBO limit,
the electron-vibron coupling enters the electronic dynam-
ics (i.e., Γ+ and Γ−) via an effective x-dependent gate
voltage vg(x) = vg − x2/2, we find

n0(x) =


1, x2 < −v + 2vg,
1
2

+
vg(x)
v

, −v + 2vg 6 x2 6 v + 2vg,

0, x2 > v + 2vg,

(3)

with v > 0. Solving for the (meta)stable positions of the
nanobeam by setting the effective force feff(x) = εx−x3−
xn0(x) to zero, we obtain the stability diagrams shown in
Fig. 2. The most striking results of this analysis are: (i)
The current flow renormalizes the critical force required
for buckling towards larger values. (ii) At low biases, the
buckled state can appear by a discontinuous transition.

These results can be understood most directly in terms
of the potential veff(x) associated with feff(x). Focusing
on the current-carrying region max{0, ε−} < x2 < ε+
(where ε± = 2vg ± v), we find

veff(x) =
1
2

(
−ε+

v + 2vg
2v

)
x2 +

1
4

(
1− 1

2v

)
x4. (4)
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FIG. 2: (color online) (Meta)stable (solid blue lines) and unstable (dotted red lines) positions of the nanobeam as function
of the scaled force ε applied to the beam for (a) |vg| < v/2, v < 1/2, (b) |vg| < v/2, v > 1/2, (c) vg > v/2, v < 1/2 (for
ε+ > 1; a similar plot holds for ε+ < 1), (d) vg > v/2, v > 1/2. These regions of the vg–v plane are indicated in (e). Notation:
ε± = 2vg ± v, ε̃ = 1/2 + vg/v, x2

+ = ε, x̃2
+ = ε− 1, and x2

− = (ε− ε̃)/(1− 1/2v). The gray regions indicate conducting states.

This shows that the current-induced contribution to the
harmonic part of the potential is indeed stabilizing the
unbuckled state, renormalizing the critical force to ε̃ =
1/2 + vg/v when ε− < 0 < ε+ (Fig. 2a-b). Remarkably,
however, the current-induced contribution to the quartic
term is negative at small x2 and thus destabilizes the un-
buckled state. According to Eq. (4), the quartic term in
the current-induced potential becomes increasingly sig-
nificant as the bias voltage v decreases and we find that
the overall prefactor of the quartic term becomes neg-
ative when v < 1/2. It is important to note that this
does not imply a globally unstable potential since the
current-induced force contributes only for small x2. A
sign reversal of the quartic term is also a familiar oc-
currence in the Landau theory of tricritical points which
connect between second- and first-order transition lines
[23]. In close analogy, the sign reversal of the quartic
term in the effective potential (4) signals a discontinuous
Euler instability which reverts to a continuous transition
at biases v > 1/2 where the prefactor of the quartic term
remains positive.

Specifically, when v > 1/2 (Fig. 2b,d), the current-
induced potential renormalizes the parameters of the vi-
bronic Hamiltonian but leaves the quartic term posi-
tive. This modifies how the position of the minimum
depends on the applied force in the conducting region
max{0, ε−} < x2 < ε+, but the Euler instability remains
continuous. When v < 1/2, the equilibrium position
at finite x becomes unstable within the entire current-
carrying region. This leads to a discontinuous Euler tran-
sition when ε− < 0 < ε+ (Fig. 2a) and to multistability
in the region ε− < x2 < ε+ when ε− > 0 (Fig. 2c).

The gray regions with max{0, ε−} < x2 < ε+ in
Fig. 2 indicate where the system, for a fixed x, is cur-
rent carrying, with the current I(x) given by RI(x)/V =
1/4− (vg − x2/2)2/v2. At the level of the stability anal-
ysis, we can obtain the current by evaluating I(x) at the
position of the most stable minimum. Corresponding re-
sults in the vg–v plane are shown in Fig. 3a-f for various
values of the applied force ε.

The current blockade onset along the curved line for
v < 1/2 is a direct consequence of the discontinuous Eu-
ler instability. In the multistable region, the current-

carrying unbuckled state (the current-blocking buckled
state) is the global minimum for ε <

√
2v(1/2 + vg/v)

[for ε >
√

2v(1/2 + vg/v)]. This is the novel tricriti-
cal blockade mechanism mentioned above. For v > 1/2
the emerging blockade is a manifestation of the Franck-
Condon blockade [15, 17], caused by the induced linear
electron-vibron coupling in the buckled state. Here, the
current-carrying region in the vg–v plane is given by the
intersection of the Coulomb diamonds for n̂ = 0 and
n̂ = 1 [17].

Langevin dynamics.—Fluctuations of the electronic oc-
cupation of the island generate a fluctuating force ξ(τ)
and the delayed response of the electrons to changes in
the vibronic coordinate a dissipative force −γ(x)ẋ, lead-
ing to Langevin dynamics of the vibronic mode described
by ẍ+γ(x)ẋ = feff(x) + ξ(τ). To compute the quantities
γ(x) and ξ(τ), we extend the evaluation of the occupa-
tion n(x, τ) of the island beyond rate equations. Both
fluctuations and vibronic dynamics are included in the
Boltzmann-Langevin equation

dn

dt
= {n,Hvib}+ Γ+(1− n)− Γ−n+ δJ+ − δJ−. (5)

Here, {., .} denotes the Poisson bracket and the Langevin
sources δJ+ and δJ− reflect the Poisson nature of
the electronic tunneling processes through the cor-
relators 〈δJ+(t)δJ+(t′)〉 = Γ+(1 − n0)δ(t − t′) and
〈δJ−(t)δJ−(t′)〉 = Γ−n0δ(t − t′). Separation into equa-
tions for average and fluctuations by setting n = n̄ +
δn shows that the leading correction to n̄ arises from
the Poisson bracket, yielding n̄ = n0 − 1

Γ++Γ−
Ẋ∂Xn0,

and that the fluctuations δn obey the correlator
〈δn(t)δn(t′)〉 = 2

Γ++Γ−
n0(1 − n0)δ(t − t′). Insert-

ing these results into the expression for the current-
induced force −gXn and employing reduced units, we
find 〈ξ(τ)ξ(τ ′)〉 = D(x)δ(τ−τ ′) with diffusion and damp-
ing coefficients D(x) = 2rx2n0(1 − n0)/v and γ(x) =
−rx∂xn0/v, respectively. Finally, we can pass from
the Langevin equation to the equivalent Fokker-Planck
equation [21, 22] for the probability P(x, p, τ) that the
nanobeam is at position x and momentum p at time τ ,

∂τP = −p∂xP − feff∂pP + γ∂p(pP) +
D

2
∂2
pP. (6)
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FIG. 3: (color online) Conductance G = RI/V in the vg–v
plane for applied force (a) ε 6 0, (b) ε = 0.25, (c,g) ε = 0.5,
(d) ε = 0.75, (e) ε = 1, (f,h) ε = 1.25, within (a-f) stability
analysis and (g-h) full Langevin dynamics (r = γe = T =
0.01). Color scale: G = 0 → 1/4 from dark blue to white.
Dotted lines delineate the Coulomb diamond for g = 0.

Note that the diffusion and damping coefficients are non-
vanishing only in the conducting region [24].

To investigate the robustness of the stability analy-
sis against fluctuations, we compute the current I =∫
dxdpPst(x, p)I(x) from the stationary solution ∂τPst =

0 of the Fokker-Planck equation (6). Numerical results
for the scaled linear conductance G = RI/V are shown
in Fig. 3g-h which were computed for the same param-
eters as the results of the stability analysis in Fig. 3c,f.
We observe that the fluctuations reduce the size of the
blockaded region and blur the edges of the conducting re-
gions as the system can explore more conducting states
in phase space. Nevertheless, the conclusions of the sta-
bility analysis clearly remain valid qualitatively even for
the full Langevin dynamics.

Conclusion.—We have studied the Euler buckling
instability in a nanoelectromechanical system as a
paradigm of the interplay between a mechanical insta-
bility and current flow at the nanoscale. We have shown
that the current flow modifies the nature of the buckling
instability from a continuous to a tricritical transition.
Likewise, the instability induces a novel tricritical cur-
rent blockade at low bias. Our nonequilibrium Born-
Oppenheimer approach generalizes naturally to other
nanostructures such as semiconductor quantum dots or
single-molecule junctions with a discrete electronic spec-
trum, to other types of electron-vibron coupling [25], and
to additional transport characteristics such as current
noise. In fact, the approach applies near any contin-
uous mechanical instability of a nanoelectromechanical
system.

Our proposed setup can be realized experimentally by
clamping, e.g., a suspended carbon nanotube and apply-
ing a force to atomic precision either using a break junc-
tion or an atomic force microscope. Indeed, several recent
experiments show that the electron-vibron coupling is
surprisingly strong in suspended carbon nanotube quan-
tum dots [4, 5, 16].
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