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Euler buckling instability and enhanced current blockade in suspended single-electron transistors
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Single-electron transistors embedded in a suspended nanobeam or carbon nanotube may exhibit effects
originating from the coupling of the electronic degrees of freedom to the mechanical oscillations of the suspended
structure. Here, we investigate theoretically the consequences of a capacitive electromechanical interaction when
the supporting beam is brought close to the Euler buckling instability by a lateral compressive strain. Our central
result is that the low-bias current blockade, originating from the electromechanical coupling for the classical
resonator, is strongly enhanced near the Euler instability. We predict that the bias voltage below which transport
is blocked increases by orders of magnitude for typical parameters. This mechanism may make the otherwise
elusive classical current blockade experimentally observable.
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I. INTRODUCTION

Single-electron transistors (SETs) are extremely sensitive
devices and are investigated as position detectors for nano-
electromechanical systems (NEMS).1–3 But the reduced size
of the mechanical resonator implies that the backaction of the
SET can have significant effects on the mechanical degree
of freedom, such as the generation of self-oscillations.4–6 In
practice, the detector and the resonator have to be investigated
collectively as a single system. A prominent example of the
new effects displayed by this device is the current blockade
that appears at low-bias voltage V when the SET is coupled
capacitively to a classical oscillator.7 The physical idea behind
this phenomenon is simple: The presence of an extra electron
on the central island of the SET induces an additional
electrostatic force Fe on the oscillator (see Fig. 1). Thus, the
equilibrium position of the oscillator is shifted by a distance
Fe/k, where k is the oscillator spring constant. After such a
displacement, the gate voltage Vg seen by the SET changes
by a quantity of the order of Fe × Fe/ek ≡ EE/e, where
e is the electron charge. The dimension of the conducting
window in Vg is controlled by V , since at low temperatures,
current can flow through the device only if |Vg| � V (when
measuring Vg from the degeneracy point). Thus, for eV < EE,
the fluctuation of the electronic occupation of the central island
suffices to bring the device out of the conducting window. The
current is blocked for eV < EE, and a mechanical bistability
appears.7 This phenomenon is the classical counterpart of
the Franck-Condon blockade in molecular devices8,9 that has
recently been observed in suspended carbon nanotubes for
high-energy vibrational modes.10 The classical case has been
theoretically studied in the case of a single-level quantum
dot,11,12 as well as in the metallic case.7,13–15

Recent experiments16,17 on suspended carbon nanotubes
have observed a reduction of the mechanical resonance
frequency of the fundamental bending mode at low-bias
voltages and for Vg near the degenerate region. This effect

is a precursor of the mechanical instability and, thus, of the
current blockade. But the complete observation of the latter
phenomenon is difficult since the typical value of EE is only
of a few μeV, thus, smaller than cryogenic temperatures.
In order to increase EE, one can increase the electrostatic
coupling between the oscillator and the SET since EE depends
quadratically on Fe. But another way of strengthening the
effect would be to reduce the spring constant k of the oscillator.
The reason is that softer oscillators will displace more under
the influence of the electrostatic force Fe, and, thus, will see a
larger change in the gate voltage when electrons tunnel in. A
way of reducing k in a controlled manner is to operate a doubly
clamped beam subject to a lateral compression force F . The
latter can bring the beam to the well-known Euler buckling
instability18,19 (see Fig. 1). Under the action of the force F ,
the system exhibits a continuous transition from a flat to a
buckled state, while the fundamental bending mode becomes
softer as one approaches the mechanical instability (k → 0).
It is clear that this does not imply a divergence of EE, since,
at the transition, anharmonic terms will modify the simple

F

Fe

source drain
μL μR

gate
Vg

FIG. 1. Sketch of the considered system: a suspended doubly
clamped beam forming a quantum dot electrically connected to source
and drain electrodes held at chemical potentials μL and μR by the
bias voltage V , respectively. The beam is capacitively coupled to
a metallic gate kept at a voltage Vg, which induces a force Fe that
attracts the beam toward the gate electrode. An additional externally
controlled compressional force F acts on the beam and induces a
buckling instability.
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arguments given previously. However, a strong enhancement
of EE is expected. The Euler instability has been studied
both experimentally20–23 and theoretically24–27 in micro- and
nanomechanical systems. We have recently considered the
Euler instability in NEMS for the case where Fe is negligible
with respect to the intrinsic electron-phonon coupling.28

In this paper, we investigate, in detail, the idea of increasing
the current blockade by exploiting the Euler instability,
considering how the anharmonic terms, the temperature, and
the nonequilibrium fluctuations modify the simplified picture
given earlier. We find that, near the buckling instability,
the current blockade induced by the mechanical resonator
is strongly enhanced, rendering this effect experimentally
observable.

The paper is structured as follows: In Sec. II, the model used
to describe the system is introduced. In Sec. III, a statistical
description in terms of a Fokker-Planck equation is given.
Then, it is used in the remainder of the paper to determine
the current and the mechanical behavior of the system. In
Sec. IV, the enhancement of EE is obtained at mean-field
level. We discuss the effects of thermal and charge fluctuations
on the results in Sec. V. In Sec. VI, we investigate the
consequences of a finite average excess charge on the quantum
dot for our results. Section VII presents some estimates of the
effect we are predicting for recently realized experiments. We
conclude in Sec. VIII. We relegate several technical issues to
the appendices.

II. MODEL

As a representative model for the problem outlined in Sec. I,
we consider a quantum dot embedded in a doubly clamped
beam as shown in Fig. 1. The presence of the metallic gate near
the dot is responsible for the coupling of the bending modes
of the beam to the charge state of the dot. The Hamiltonian of
the system can then be written as

H = Hvib + HSET + Hc, (1)

where Hvib describes the oscillating modes of the nanobeam,
HSET takes into account the electronic degrees of freedom of
the single-electron transistor, and Hc represents the coupling
between the SET and the resonator. The model describes,
for instance, transport through suspended carbon nanotubes
as considered in the experiments of Refs. 10,16,17, and 29.
Notice that the model also describes an alternative setup that
may be realized experimentally, namely, a nonsuspended
quantum dot coupled to a beamlike gate electrode to which a
compressive strain is applied.

Using standard methods of elasticity theory, one can show
that, close to the buckling instability, the frequency ω of the
fundamental bending mode of the nanobeam vanishes, while
those of the higher modes remain finite.19 This allows one to
retain only the fundamental mode parametrized by the dis-
placement X of the center of the beam. As detailed in
Appendix A, the Hamiltonian representing the oscillations of
the nanobeam thus takes the Landau-Ginzburg form21,24–26,28

Hvib = P 2

2m
+ mω2

2
X2 + α

4
X4, (2)

where P is the momentum conjugate to X. For a doubly
clamped uniform nanobeam of length L, linear mass density
σ , and bending rigidity κ , one can show 25,26 that, close to the
instability, the effective mass of the beam is m = 3σL/8. The
fundamental bending mode frequency reads

ω = ω0

√
1 − F

Fc
, (3)

where F is the compression force, Fc = κ(2π/L)2 is the criti-
cal force at which buckling occurs, and ω0 = √

κ/σ (2π/L)2.
The positive parameter α = FcL(π/2L)4 ensures the stability
of the system for F > Fc.30 For F < Fc (ω2 > 0), X = 0 is
the only stable solution, and the beam remains straight. For
F > Fc, it buckles into one of the two metastable states at
X = ±

√
−mω2/α. Notice that, in writing Eq. (2), we assumed

that the nanobeam cannot rotate around its axis due to clamping
at its two ends.

Electronic transport is accounted for by the SET Hamilto-
nian consisting of three parts,

HSET = Hdot + Hleads + Htun, (4)

where Hdot describes the quantum dot, Hleads describes the
left (L) and right (R) leads, and Htun represents the tunneling
between leads and dot. Explicitly,

Hdot = (εd − eV̄g)nd + U

2
nd(nd − 1), (5)

with nd = d†d, and d† (d) creates (annihilates) an electron
on the dot, V̄g = CgVg/C� , with Cg and C� as the gate
and total capacitances of the SET, respectively. The intradot
Coulomb repulsion is denoted by U . In the following, we set
εd = 0, measuring Vg from the degeneracy point. The left and
right leads are assumed to be Fermi liquids at temperature T

with chemical potentials μL and μR (measured from εd),
respectively. A (symmetric) bias voltage V is applied to the
junction such that μL = −μR = eV/2. The lead Hamiltonian
reads

Hleads =
∑
ka

(εk − μa) c
†
kacka, (6)

with cka as the annihilation operator for a spinless electron
of momentum k in lead a = L,R.31 Finally, tunneling is
accounted for by the Hamiltonian

Htun =
∑
ka

(tac
†
kad + H.c.), (7)

with ta as the tunneling amplitude between the quantum dot
and the lead a.

Two different kinds of couplings exist between the elec-
tronic occupation of the dot nd and the vibrational degrees
of freedom: (i) An intrinsic one that originates from the
variation of the electronic energy due to the elastic deformation
of the beam,32 and (ii) an electrostatic one, induced by the
capacitive coupling to the gate electrode of the SET.33–36 By
symmetry, the former is quadratic in the amplitude X, and its
effect on the Euler instability has been considered in Ref. 28.
The latter is linear in X, and here we are interested in the
case where the second coupling dominates over the first one.
Their relative intensity is controlled by the distance h between
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the gate electrode and the beam, since the intrinsic coupling
does not depend on h, while the electrostatic force depends
logarithmically on h.33 Assuming that the beam is sufficiently
close to the gate electrode such that the capacitive coupling
dominates,37 we can write

Hc = FeXnd, (8)

where −Fe is the force exerted on the tube when one excess
electron occupies the quantum dot (see Fig. 1). The model
assumes that the gate voltage is such that only charge states
with nd = 0 and 1 are accessible. For larger gate voltages
overcoming the charging energy of the quantum dot, the charge
on the dot will instead fluctuate between N and N + 1. This
induces an additional constant force bending the tube further.
The effect of such a force on the classical current blockade
will be discussed in Sec. VI. Notice that, in the case in which
the suspended structure is the gate capacitance coupled to a
static quantum dot, the intrinsic coupling is not present, and
only the capacitive electromechanical coupling has to be taken
into account.

III. FOKKER-PLANCK DESCRIPTION

We are interested in describing the vicinity of the instability
where the relevant resonator frequency vanishes [see Eq. (3)].
The mechanical degree of freedom can then be treated
classically since, for any reasonable temperature, h̄ω � kBT .
The softening of the mechanical mode also implies a natural
separation of time scales between the slow mechanical mode
and the fast electronic degrees of freedom, controlled by the
typical tunneling rate 	. Thus, as detailed in Appendix B, it is
convenient to eliminate the fast modes and to obtain a Fokker-
Planck equation for the probability distribution P(X,P,t) of
the slow mode:7,11,14,28,38

∂tP = −P

m
∂XP − Feff(X) ∂PP + η(X) + ηe

m
∂P (PP)

+
(

D(X)

2
+ ηekBT

)
∂2
PP. (9)

The effective force Feff (X) = −∂XHvib + Fc-i(X) acting on the
mechanical degree of freedom consists of two parts: a force
arising from the Hamiltonian (2) of the nanobeam, −∂XHvib =
−mω2X − αX3 and a current-induced conservative force
Fc-i(X) = −Fen0(X), proportional to the occupation of the
dot averaged over a time long with respect to 	−1, but short
with respect to the period of the mechanical motion, n0(X) =
〈nd〉X. In Eq. (9), the diffusion constant D(X) accounts for
the fluctuations of the force associated with the coupling
Hamiltonian (8) originating from the stochastic nature of the
charge-transfer processes. Finally, retardation effects cause
dissipation of the mechanical energy with damping coefficient
η(X).

To account for the quality factor Q = mω0/ηe of the
nanobeam mode, the mechanical degree of freedom is coupled
to an additional environment at equilibrium (such as, e.g., a
generic phonon bath within the Caldeira-Leggett model39),
implying dissipation and fluctuations controlled by an extrinsic
damping constant ηe entering Eq. (9). This extrinsic damping
comes from several mechanisms coupling the mechanical
mode to other degrees of freedom: localized defects at the

surface of the sample (thought to be the main source of
dissipation in semiconductor resonators40 and which can be
modeled as two-level systems41,42), clamping losses, thermoe-
lastic losses, Ohmic losses due to the gate electrode (which
have been predicted to be the dominant source of extrinsic
dissipation for graphene-based resonators in Ref. 43), etc.
Due to the wide variety of these possible sources of extrinsic
dissipation, we here assume, for simplicity, that they can all
be lumped into the generic (Ohmic, memory-free39) damping
constant ηe. Notice also that the phonon temperature of the
bath is typically lower but of the same order as the electronic
temperature T .16 For simplicity, we assumed, in writing
Eq. (9), that both temperatures coincide, as we do not expect
a qualitative change of our results due to this assumption.

The explicit form of the coefficients entering into the
Fokker-Planck equation (9) depends on the transport regime
one considers (sequential or resonant transport), as well as on
the nature of the quantum dot (metallic or single-level quantum
dot). In this paper, we consider the case of a single level in the
sequential tunneling regime, but a similar analysis can be car-
ried out for the metallic (e.g., along the lines of Refs. 7,14,28)
and the resonant transport regimes (cf. Refs. 11,12,38). To
be specific, we assume that h̄	 = ∑

a=L,R h̄	a � kBT with
	a = 2π |ta|2ν/h̄ and ν as the density of states at the Fermi
level of the leads. We also assume the intradot Coulomb
repulsion U → ∞ such that double occupancy of the dot
is forbidden. In this transport regime, the position-dependent
rates for tunneling into and out of the dot read44

	01(X) =
∑

a=L,R

	afF

(
FeX − eV̄g − μa

kBT

)
, (10)

	10(X) =
∑

a=L,R

	a

[
1 − fF

(
FeX − eV̄g − μa

kBT

)]
, (11)

respectively, where fF(z) = (ez + 1)−1 is the Fermi function.
Thus, the average occupation of the dot for a given mode
amplitude X is

n0(X) = 	01(X)

	
, (12)

and, as shown in Appendix B, we have D(X) = 2F 2
e n0(X)[1 −

n0(X)]/	 and η(X) = −Fe ∂Xn0 (X)/	 for the current-
induced diffusion and damping terms in Eq. (9).14,45 The
average current I through the device can be obtained from
the stationary solution of the Fokker-Planck equation (9),
∂tPst = 0, by averaging the position-dependent current

I(X) = e	L	R

	

[
fF

(
FeX − eV̄g − eV/2

kBT

)

−fF

(
FeX − eV̄g + eV/2

kBT

)]
(13)

with the phase-space distribution,

I =
∫ ∫

dX dP Pst(X,P )I(X). (14)

Before we proceed, it is convenient to introduce reduced
variables in terms of the relevant energy scale of the
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problem E0
E = F 2

e /mω2
0, the polaronic shift  = Fe/mω2

0, and
the vibrational frequency for vanishing compression force ω0

[see Eq. (3)]. By denoting x = X/, p = P/mω0, τ = ω0t ,
the Fokker-Planck equation (9) becomes

∂τP = −p ∂xP − feff(x) ∂pP + [γ (x) + γe]∂p(pP)

+
(

d(x)

2
+ γeT̃

)
∂2
pP, (15)

with the scaled effective force given by

feff(x) = δx − α̃x3 − n0(x), (16)

the reduced force δ = F/Fc − 1, and the anharmonicity pa-
rameter α̃ = α4/E0

E. We further introduced a scaled current-
induced diffusion constant

d(x) = 2ω0

	
n0(x)[1 − n0(x)], (17)

and damping coefficient

γ (x) = −ω0

	
∂xn0 (x). (18)

In Eq. (15), γe = ηe/mω0 = Q−1, where Q is the quality
factor of the mechanical resonator and T̃ = kBT/E0

E. In these
scaled units, the electromechanical coupling appears only in
the coefficient of the quartic term, α̃ = αF 2

e /(mω2
0)3. It is

important to notice that, for actual experiments on suspended
carbon nanotubes,16,17,29 α̃ � 1 as we will discuss more
extensively in Sec. VII.

IV. MEAN-FIELD APPROACH: ENHANCEMENT
OF THE CURRENT BLOCKADE

We begin our analysis by assuming ω0/	 → 0.46 Note
that the diffusion and dissipation coefficients d(x) and γ (x)
in Eq. (15) are proportional to ω0/	 [cf. Eqs. (17) and (18)]
so that this implies neglecting current-induced fluctuations. In
this limit, the stationary solution forP is given by a Boltzmann
distribution at temperature T̃ ,

Pst(x,p) = N exp

(
−p2/2 + veff(x)

T̃

)
, (19)

with N as a normalization constant. In order to obtain
transparent analytical results, we also assume zero temperature
(in fact, h̄ω � kBT � E0

E) such that the stationary probability
distribution (19) becomesPst(x,p) = δ(p)δ(x − xm). Here, xm

is the global minimum of the effective potential

veff(x) = −
∫ x

dx ′ feff(x
′) (20)

corresponding to the effective force (16) and can be determined
from the dynamical equilibrium equation

feff(x) = 0,
dfeff(x)

dx
< 0. (21)

Notice that the latter equation can have more than one solution
such that the system is multistable. In this zero-temperature
limit, the current can then easily be obtained from Eq. (14).
Doing so, as a function of the gate and bias voltages, we
can determine the Coulomb diamond for a given compression
force δ. At zero temperature, one finds that there always exists
a region at low-bias voltage where the current is suppressed.

0

−20

20

x

−1 −0.5 0.5 1 δ

−
1
3√α̃

FIG. 2. Example of a solution x(δ) of the equation for dynamic
equilibrium (21) for n0 = 0 (dashed line), n0 = 1 (solid line), and for
n0 = 1 and α̃ = 0 (dotted line). In the figure, α̃ = 10−3.

To characterize this classical current blockade, we define
�v , the minimal value of bias voltage, for which a finite current
flows through the device at zero temperature. It is useful to
first derive a simple estimate of the maximally obtainable �v .
To do so, we solve the dynamic equilibrium equation (21)
for n0 = 0 and n0 = 1, corresponding to empty and occupied
central islands, respectively. For n0 = 0, one has the solutions
x = 0 for any δ and x = ±√

δ/α for δ > 0 of the pristine Euler
instability (see Fig. 2, dashed line). For n0 = 1, the solutions
can easily be sketched for α̃ � 1 as an interpolation of the
α̃ = 0 solutions (dotted line in Fig. 2) and the solutions for
n0 = 0. The exact result is shown as a solid line in Fig. 2.
We are interested in the maximum shift in x that the system
undergoes in response to a fluctuation of n0 by one unit, �x.
It is apparent from the figure that this happens for δ = 0
where �x = 1/

3
√

α̃. The corresponding change in the effective
potential (20) is �veff ∼ 1/

3
√

α̃. This provides an estimate of
the maximal energy gap generated by the electromechanical
coupling and, thus, a good estimate of �v . Notice that the
previous simple argument is not specific to the transport model
we are considering here, as the specific form of n0 in the
conducting region does not enter our argument. Thus, we
expect that our estimate of a maximal gap �v ∼ 1/

3
√

α̃ remains
valid for metallic quantum dots as well as in the resonant
transport regime.

We now turn to the complete solution of Eq. (21). For
simplicity, we assume symmetric coupling to the leads (	L =
	R = 	/2) such that the average occupation of the dot at
fixed x [entering into the effective force (16)] is obtained
from the zero-temperature limit of Eqs. (10) and (12) and is
given by

n0(x) = 1

2

[
�
(
−x + vg + v

2

)
+ �

(
−x + vg − v

2

)]
,

(22)

where v = eV/E0
E (assumed positive for definiteness),

vg = eV̄g/E
0
E, and �(z) is the Heaviside step function. In the

most general case, we solve Eq. (21) numerically. However,
transparent analytical expressions can be obtained in the limits
|δ| � 3

√
α̃ and |δ| � 3

√
α̃. In particular, we can obtain explicit

expressions for the value of v beyond which the current begins
to flow, i.e., the gap �v . To first order in the small parameter
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3
√

α̃/|δ| (far from the instability) and |δ|/ 3
√

α̃ (in the vicinity of
the instability), we find that

�v =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2δ
, −1 � δ � − 3

√
α̃,

1

4δ
, δ � 3

√
α̃,

3
√

2 − 1
3
√

α̃

(
3

24/3
− δ

3
√

α̃

)
, |δ| � 3

√
α̃.

(23)

Far from the mechanical instability, the gap is simply given by
the result of a harmonic theory (see Appendix C) where �v =
1/2v′′(x̄) with v′′(x̄) as the curvature of the bare potential
v(x) [i.e., the effective potential without the contribution from
n0(x)] at its global minimum x̄. Far below the buckling
instability (−1 � δ � − 3

√
α̃), x̄ = 0 and v′′(x̄) = −δ such

that �v = −1/2δ. Far above the mechanical instability (δ �
3
√

α̃), x̄ = −√
δ/α̃ and v′′(x̄) = 2δ such that �v = 1/4δ. As

one approaches the buckling instability from below or above,
the apparent divergences in the first two lines of Eq. (23) are
cut off by the cubic term in x in the effective force (16), and
for |δ| � 3

√
α̃, the maximal gap �v ∼ 1/

3
√

α̃ is reached.
The analytical results of Eq. (23) are compared to a

numerical calculation of the gap in Fig. 3(a) for α̃ = 10−3

0.1

1

10

100

1000

−υ
g

−1 −0.5 0 0.5 1

δ

(b)

0

10

20

30

Δ υ

α̃ = 10−6

α̃ = 10−3

δ >− 3√α̃

δ

<

> <

><

3√α̃

|δ| 3√α̃

(a)

1

10

100

1000

10−9 10−6 10−3

α̃

FIG. 3. (Color online) (a) Gap �v and (b) gate voltage vg

(defined as the bias and gate voltages in reduced units at the apex
of the Coulomb diamond, respectively) as a function of the scaled
compression force δ = F/Fc − 1. The red circles and blue squares
are numerical results for α̃ = 10−3 and 10−6, respectively, which are
compared to the asymptotic behaviors (23) and (24) for forces below
(solid line), above (dashed line), and in the vicinity (dotted line) of the
critical force Fc. (Inset) Gap �v ∼ 1/

3
√

α̃ from Eq. (23) as a function
of α̃ at the mechanical instability (δ = 0).

and α̃ = 10−6 (red dots and blue squares in the figure, respec-
tively). It is evident from the figure that there is a dramatic
increase of the gap close to the instability. Furthermore, the
smaller α̃, i.e., the smaller the electromechanical coupling,
the larger is the increase of the gap at the instability relative
to its value for vanishing compression force [see the inset
in Fig. 3(a)]. However, of course, the maximal value of
the gap in absolute terms increases with the strength of the
electromechanical coupling as F

4/3
e . Thus, it would be of great

experimental interest to exploit the Euler instability to obtain
a clear signature of the classical current blockade in transport
experiments on suspended quantum dots.

The gaps of Eq. (23) are obtained for values of the gate
voltage approximately given by

vg =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2δ
, −1 � δ � − 3

√
α̃,

− 1

4δ
−
√

δ

α̃
, δ � 3

√
α̃,

− 1

4 3
√

α̃

(
3 + 2δ

3
√

α̃

)
, |δ| � 3

√
α̃,

(24)

which are shown in Fig. 3(b) and are compared to a numerical
calculation. Equations (23) and (24) define the apexes of the
Coulomb diamonds, which are shown in Fig. 4.

Thus, the effect of the compression force is to continuously
displace the Coulomb diamond in the v-vg plane toward
negative gate voltages [see also Fig. 3(b)] and to open a
gap, which is maximal close to the Euler instability at δ = 0
[see Fig. 4(d)]. Note that the shift in gate voltage is strongly
asymmetric about the Euler instability. While the shifts are
only small below the Euler instability [see Figs. 4(a)–4(c)
and Fig. 3(b)], the shifts in gate voltage are orders of
magnitudes larger on the buckled side of the Euler instability
[see Figs. 4(e)–4(g) and Fig. 3(b)]. In fact, it may be that these
shifts would be the most easily detected consequence of the
Euler buckling instability in NEMS. In Fig. 4, the bias and
gate voltages are measured in units of the elastic energy E0

E,
which is of the order of a few μeV for typical experiments
on suspended carbon nanotubes (see Sec. VII). The smallness
of this energy scale explains why the scaled numerical values
of the shifts become so large on the buckled side of the Euler
instability.

It is also interesting to comment on the shape of the
Coulomb blockade diamond. In Ref. 28, we showed, for the
case of intrinsic electron-phonon coupling (quadratic in x)
and for a metallic quantum dot, that the Euler buckling
instability leads to nonlinear deformations of the Coulomb
diamonds, a phenomenon that we have named tricritical
current blockade. In contrast, our present results show that,
for a capacitive electromechanical coupling (linear in x) and
for a single-level quantum dot, the shape of the Coulomb
diamond remains unchanged. The conventional triangular
shape in the v-vg plane is delineated by straight lines with
v ∼ ±2vg for any value of the compressive strain. As we
have checked,47 the difference between the present results
and those of Ref. 28 is due to the difference in the transport
models considered (metallic vs single-level quantum dot) and
not to the type of electromechanical coupling (intrinsic vs
extrinsic). Specifically, we find that the difference is due to
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FIG. 4. (Color online) Mean-field current I at zero temperature and for symmetric coupling to the leads (	L = 	R = 	/2) as a function of
bias v and gate voltage vg (measured in units of the elastic energy E0

E). The (scaled) compression force δ increases from (a) to (g). Notice that
the scale of the vg axis is different in (e), (f), and (g) and in (a)–(d). The red dashed lines indicate the position of the Coulomb diamond in the
absence of electromechanical coupling (Fe = 0). In the figure, α̃ = 10−6, and dark blue and white regions correspond to I = 0 and I = e	/4,
respectively.

the fact that, in the single-level case, the average occupation
of the dot abruptly jumps as a function of gate voltage, while
in the metallic case, this occupation gradually changes due
to the continuous density of states of the dot. Notice also
that, for intrinsic electromechanical coupling, the Coulomb
diamond is not influenced by the latter for compression
forces below the critical force (δ < 0), in contrast to the
present case. This is due to the fact that, in the flat state,
the quadratic electromechanical coupling merely represents a
renormalization of the fundamental bending mode frequency
and does not lead to current blockade.

It is instructive to make the analogies with standard results
of Landau mean-field theory for continuous phase transitions48

explicit. According to Eq. (21) governing the dynamical
equilibrium, we can make the following identifications:
x corresponds to the order parameter in Landau theory,
δ corresponds to the reduced temperature, and α̃ corresponds
to the coefficient of the quartic term in the Landau free
energy. Finally, n0 plays a role similar to a symmetry-breaking
(magnetic) field. In the present case, this field is, in general,
dependent on x, which has no correspondence in Landau
theory. Nevertheless, the analogy between n0 and a magnetic
field is helpful since some of our results can be understood by
comparing the situations with zero (n0 = 0) and one (n0 = 1)
electrons on the dot, as illustrated by the foregoing estimate
for the maximal �v (see Fig. 2).

With these correspondences, we can now establish analo-
gies between some of our results and standard results of
Landau theory. To start with, the dependence of the displace-
ment x ∼ ±δ1/2 in the buckled state is analogous to the result
of Landau theory that the order parameter exponent is β = 1/2.
Given that �v depends linearly on x, we can also interpret
the relations in Eq. (23) in terms of Landau theory. Let us

start with the case of small δ in the immediate vicinity of the
instability. In this case, we find that �v ∼ α̃−1/3. The exponent
of α̃ corresponds to the critical exponent δ = 3 of Landau
theory governing the dependence of the order parameter on the
symmetry-breaking field at the critical temperature. Further
from the instability, we have �v ∼ 1/|δ|. This relation is
related to the familiar Curie law for the order parameter (or
the susceptibility) as a function of temperature in an external
field with mean-field critical exponent γ = 1.

Let us finally emphasize that the analogy with Landau
theory is restricted to the mean-field level, since contrary
to critical phenomena where an infinite number of modes
is present, the system we describe is constituted by a single
mode. Moreover, beyond mean-field theory, fluctuations in
Landau theory are purely thermal, while in the present context,
nonequilibrium fluctuations play an essential role. It is the
effects of these fluctuations, which we turn to in Sec. V.

V. THERMAL AND CURRENT-INDUCED FLUCTUATIONS

We now go beyond the mean-field results of Sec. IV by
taking into account the effects of the thermal as well as the
current-induced fluctuations. It is physically clear that these
fluctuations will lead to a smoothening of the current blockade
at low-bias voltages as the system can explore more conducting
states in phase space.

A. Temperature effects

We first neglect the current-induced fluctuations and focus
on thermal fluctuations only. As discussed in Sec. IV, this
becomes asymptotically exact in the extreme adiabatic limit
of ω0/	 → 0, where the terms γ (x) and d(x) can be dropped
from Eq. (15). The stationary solution for P is then given by
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FIG. 5. (Color online) Current I at the apex of the Coulomb
diamond as a function of bias v scaled by the energy gap
�v for various values of T̃ /�v and for compression forces in
the vicinity of the buckling instability (|δ| � 3

√
α̃). In the figure, only

the temperature-induced fluctuations are considered. (Inset) Same
as the main figure for compression forces far from the buckling
instability (|δ| � 3

√
α̃).

the Boltzmann distribution (19) with the effective potential

veff(x) = −δx2

2
+ α̃x4

4
+ x + T̃

2
ln

[
fF

(
x − vg + v/2

T̃

)]

+ T̃

2
ln

[
fF

(
x − vg − v/2

T̃

)]
. (25)

The current can now be calculated easily by numeri-
cal integration of Eq. (14) with Eq. (19). The result is
shown in Fig. 5 as a function of the bias voltage for
gate voltages corresponding to the apex of the modified
zero-temperature Coulomb diamond [cf. Eq. (24)]. Once
plotted as a function of v/�v , one finds that the current
behavior is similar at the transition (Fig. 5) and far from
the transition (inset of Fig. 5). In both cases, the low-bias
blockade of the current becomes less pronounced as temper-
ature increases and vanishes completely for temperatures of
the order of the gap �v . As shown in Appendix D [cf. Eq. (D1)],
the current has a Fermi-function-like behavior as a function of
the bias voltage for temperatures much smaller than the energy
gap �v (see dashed and dashed-dotted lines in Fig. 5). Thus, it
is exponentially suppressed for bias voltage below the gap. At
larger temperatures, Eq. (D4) shows that the current is linear
in the bias voltage (see dotted line in Fig. 5).

Our numerical and analytical results (cf. Appendix D) thus
confirm that tuning the system near the buckling instability
where �v dramatically increases allows one to enlarge
the temperature region over which the current blockade is
observable.

B. Nonequilibrium dynamics close to the mechanical instability

We now consider the nonequilibrium Langevin dynamics of
the nanobeam by solving the full Fokker-Planck equation (15).
This is done by discretization of the Fokker-Planck equation
and solution of the resulting linear system. We focus on the
transition region (δ = 0) and calculate the current for vg at the
apex of the Coulomb diamond [see Eq. (24) and Fig. 3(b)]
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FIG. 6. (Color online) Current I at the apex of the Coulomb dia-
mond for δ = 0 as a function of v/�v for α̃ = 10−6 and T̃ /�v = 0.1.
(Solid lines) Nonequilibrium Langevin dynamics for γe

ω0/	
= 1, 10−1,

10−2, 10−3, and 0, from the highest to the lowest curve at large bias.
(Dashed-dotted line) Fully adiabatic limit ( γe

ω0/	
= ∞), i.e., current

only including thermal fluctuations (cf. dashed-dotted curve in Fig. 5).
In our numerical calculations, we used ω0/	 = 10−2.

and temperature lower than the gap T̃ /�v = 0.1. Before we
present our results, we notice that, for (ω0/	,γe) � 1, we
can show that the stationary distribution of the Fokker-Planck
equation approximately only depends on the ratio γe

ω0/	
, a result

we have also checked numerically (see Appendix E for details).
The reason for this behavior is that, for (ω0/	,γe) � 1, the
stationary distribution is almost a function of the (reduced)
energy E = p2/2 + veff(x) only.

Numerical results for the current are shown in Fig. 6
for various ratios of the inverse quality factor Q−1 = γe as
quantified by the damping coefficient γe and the adiabaticity
parameter ω0/	. Our principal observation is that the current
blockade becomes sharper for low-Q resonators.

One can qualitatively understand the behavior of the current
in Fig. 6 by defining an effective temperature of the system,

T̃eff = 〈d〉/2 + γeT̃

〈γ 〉 + γe
, (26)

in close analogy with the fluctuation-dissipation theorem.49 In
Eq. (26), 〈d〉 and 〈γ 〉 are the averages over the phase-space
probability distribution of the current-induced fluctuations and
dissipation [cf. Eqs. (17) and (18)], respectively. Notice that the
strength of these two quantities is controlled by the adiabaticity
parameter ω0/	.

As one can see from Fig. 6, for v < �v , the current is
almost insensitive to the quality factor and is the same as
without current-induced fluctuations (see dashed-dotted line
in Figs. 5 and 6). Using Eqs. (17) and (18), we have

d(x) = 2γ (x)T̃ + ω0

2	

[
fF

(
x − vg − v/2

T̃

)

− fF

(
x − vg + v/2

T̃

)]2

(27)

for symmetric coupling to the leads. However, for v < �v ,
positions x for which the current I(x) of Eq. (13) is
suppressed are most stable (see dashed line in Fig. 7) such
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FIG. 7. (a) Current I as a function of x [Eq. (13)] and (b) effective
potential veff (x) [Eq. (25)] for bias voltages below (dashed line), above
(dotted line), and at (solid line) the energy gap �v . The parameters
are the same as in Fig. 6, i.e., δ = 0, α̃ = 10−6, T̃ /�v = 0.1, and
vg = −3/4 3

√
α̃.

that the current-induced diffusion and damping constants
approximately satisfy a local fluctuation-dissipation theorem
for all relevant positions x that are significantly populated,
d(x) � 2T̃ γ (x). We thus have 〈d〉 � 2T̃ 〈γ 〉, and according to
the definition (26), we have T̃eff � T̃ . Hence, for bias voltages
lower than the energy gap �v , the current-induced fluctuations
behave as the thermal ones, essentially keeping the mechanical
system at equilibrium.

On the contrary, for v > �v , positions x, for which the
system is conducting, are the most stable ones (see dotted
line in Fig. 7), and one has 〈d〉 � ω0/2	, while 〈γ 〉 is
exponentially small. The mechanical system is then subject
to strong nonequilibrium fluctuations. For 〈γ 〉 � γe, we thus
have, from Eq. (26), T̃eff � T̃ + ω0/	

4γe
. This estimate of the

effective temperature shows that the system becomes hotter
as the ratio γe

ω0/	
decreases.50 Hence, the system can explore

more states in phase space for which I(x) is suppressed, and,
in turn, the current decreases for decreasing γe

ω0/	
for v > �v

(see Fig. 6). The latter argument breaks down when γe � 〈γ 〉.
In that case, we can estimate the effective temperature self-
consistently, by assuming that the phase-space distribution is a
Boltzmann distribution at the temperature T̃eff . Approximating
the effective potential by its zero-temperature expression
and averaging d(x) and γ (x) over the effective Boltzmann
distribution, we find for v � �v

T̃eff = π�v

128A
exp

(
Av2

�vT̃eff

)
, (28)

with A = 9(1 − 2−1/3)/211/3. We thus have T̃eff/�v ∼
(v/�v)2/ ln (v/�v) � T̃ /�v , which explains why, for
γe = 0, the current is more suppressed than for finite γe. It
is also interesting to note that this estimate of the effective
temperature is much larger than for a metallic quantum dot,
where T̃eff ∼ v (Ref. 13). The reason for this difference is

that, in the metallic case, the fluctuation and the dissipation
are of the same order inside the bias window, while in the
single-level case, the average dissipation is exponentially
suppressed as γ (x) only has a significant contribution for
positions x corresponding to the borders of the Coulomb
diamond [see Eq. (18)].

Our results show that a low-quality factor is more suitable
for the observation of the current blockade in classical
resonators. It is interesting to note that this conclusion is
also valid in the quantum case,8,9 where the Franck-Condon
blockade is more pronounced for fast equilibration of the
vibron mode. Due to the scaling of our results for the classical
current blockade with the parameter γe

ω0/	
(see Fig. 6), we also

conclude that it is advantageous for the observation of this
phenomenon to have a resonator, which is slow compared to
the tunneling dynamics, i.e., ω0 � 	.

VI. EFFECT OF A FINITE EXCESS CHARGE
ON THE QUANTUM DOT

Within the transport model of a single resonant electronic
level with infinite charging energy that we have used so far, the
number of electrons on the dot can only vary between 0 and 1
(see Sec. II). More generally, the range of gate voltages can
exceed the charging energy, and the average number of excess
electrons N on the dot can be much larger than 1. Due to these
excess electrons, an additional force −FN further bends the
nanotube and hence, increases its vibrational frequency.16,17

Thus, we can expect that the bias voltage below which the
current is blocked will decrease when N increases.

In order to investigate the effect of a nonvanishing average
excess charge on the quantum dot, we assume that the gate
voltage is such that there is either N or N + 1 electrons on the
dot. We measure the fluctuation of the dot occupation nd with
respect to N and incorporate the resulting additional force
in Eq. (16) by writing feff(x) = δx − α̃x3 − n0(x) − fN ,
where fN = FN/Fe. We neglect thermal and current-induced
fluctuations and work within a mean-field approximation at
zero temperature such that n0(x) is given by Eq. (22). For finite
fN , the bare potential v(x) (i.e., without the current-induced
contribution) can be approximated by a harmonic potential
close to its global minimum x̄ such that the bias voltage below
which the current is blocked is given by �v = 1/2v′′(x̄) (see
Appendix C). The energy gap (resulting from the most stable
solution of δx̄ − α̃x̄3 = fN ) is plotted in Fig. 8(a), and the
gate voltage at the apex of the Coulomb diamond is plotted
in Fig. 8(b). As anticipated, the increase of the energy gap
close to the mechanical instability is reduced as fN increases.
Moreover, the displacement of the Coulomb diamond in vg is
less pronounced for large fN .

Far from (|δ| � 3
√

α̃f 2
N ) and in the vicinity of (|δ| �

3
√

α̃f 2
N ) the Euler instability, we analytically find for the gap

�v =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2δ
, −1 � δ � − 3

√
α̃f 2

N,

1

4δ
, δ � 3

√
α̃f 2

N,

1

6 3

√
α̃f 2

N

⎛
⎝1 − δ

3 3

√
α̃f 2

N

⎞
⎠ , |δ| � 3

√
α̃f 2

N,

(29)
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FIG. 8. (Color online) (a) Gap �v and (b) gate voltage vg at the
apex of the Coulomb diamond for α̃ = 10−6 as a function of the
scaled compression force δ for increasing values of fN [from top to
bottom and bottom to top at δ = 0 in (a) and (b), respectively]. The
blue squares (fN = 0) correspond to the numerical results of Fig. 3,
while the solid lines result from the harmonic approximation (see
text). (Inset) Gap �v ∼ 1/f

2/3
N from Eq. (29) as a function of fN at

the mechanical instability (δ = 0).

to first order in the small parameter 3
√

α̃f 2
N/|δ| (far from the

instability) and |δ|/ 3
√

α̃f 2
N (in the vicinity of the instability).

Far below and above the instability, the gap follows the same
behavior as for fN = 0 [see Eq. (23)]. This is due to the fact
that, for large |δ| � fN , the stable position of the beam is
similar to the one for fN = 0. In the vicinity of the instability,
the gap is reduced as fN increases as 1/f

2/3
N (see the inset

in Fig. 8). The reduction of the maximal gap close to the
instability is a direct consequence of the smoothening of the
mechanical transition between flat and buckled states due to
the presence of the symmetry-breaking force fN , similar to
the behavior of the order parameter at a second-order phase
transition in a symmetry-breaking field.48

We can estimate the force above which the increase of
the gap at the instability completely vanishes by equating,
in Eq. (29), the gap at, say, δ = −1 and δ = 0. We obtain
that the increase of the gap should vanish once fN � 1/

√
33α̃.

Since for large N , FN � FeN/2, this means that, if the average
charge on the dot N � 2/

√
33α̃, the increase of the gap at the

instability completely disappears. Since α̃ is typically small
(see Sec. VII), we expect that a significant increase of the
current blockade at the mechanical instability persists for a
wide range of gate voltages.

VII. EXPERIMENTAL REALIZATION

The electromechanical coupling (8) is typically weak in
experiment. For this reason, only a precursor of the classical
current blockade has been seen in two recent experiments
on suspended carbon nanotube quantum dots,16,17 but the full
current blockade has not yet been observed. Indeed, we can
obtain an estimate for the frequency shift of the fundamental
bending mode, induced by the electromechanical coupling,
from the effective potential associated with Feff(X). The shift
arises from the position dependence of n0(X). Expanding the
current-induced force for weak electromechanical coupling,
we find

Fc-i(X) � −Fen0(0) − F 2
e

∂n0

∂eV̄g

∣∣∣∣
Fe=0

X, (30)

i.e., the current-induced force generates a term in the effective
potential, which is quadratic in X. Far from the current-
induced instability, this term gives a small renormalization of
the resonance frequency, �ω0/ω0 = (E0

E/2) ∂n0/∂eV̄g

∣∣
Fe=0,

from which we can extract a reliable estimate of the energy
scale of the current blockade,

E0
E = 2Cg

C�

�ω0

ω0

(
∂n0

∂eVg

∣∣∣∣
Fe=0

)−1

. (31)

From the experiments of Refs. 16 and 17, we extract a value of
�ω0/ω0 of a few percents for Vg at the degeneracy point. The
derivative of n0 with respect to eV̄g can be estimated as the
inverse of the width of the conductance peak in the V -Vg plane,
divided by Cg/C� . This last quantity can, in turn, be estimated
from the slope of the Coulomb diamonds. Collecting these
ingredients, we find that, for the suspended carbon nanotubes
of Ref. 16, E0

E � 3–5 μeV, which corresponds to α̃ � 10−10,
while for those of Ref. 17, we get E0

E � 20 μeV and α̃ � 10−8

(see Ref. 30).
We now use these numbers to estimate the possible

enhancement of the current blockade near the Euler buckling
instability. Based on Eq. (23), these parameters yield a
possible increase of the mechanically induced gap by 3 orders
of magnitude, leading to a maximal �v (converted into a
dimensionful quantity using the energy scale E0

E) of the order
of 3–5 meV. Such large gaps would be much more easily
observable in experiment. The implementation of such a device
could be performed by the method routinely employed to
control break junctions through a force pushing the substrate
of the device.

We also emphasize here again that it is preferable to operate
the system near zero excess charge on the quantum dot where
there are only a few electrons on the nanotube such that the
increase of the energy gap close to the Euler instability is not
smeared out by the additional force exerted on the nanotube
(see Sec. VI). However, for the parameters of Refs. 16 and
17, we estimate that the enhancement of the current blockade
remains very substantial for any realistic value of the excess
charge.

When the tunneling-induced width 	 becomes larger than
or of the order of temperature, cotunneling effects tend to
smear the current blockade,9,12 as direct electronic transitions
between left and right leads take place. However, close to
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the buckling instability, the gap may remain larger than
the temperature so that cotunneling corrections should be
suppressed in the immediate vicinity of the instability.

A last comment is in order on the required precision in
the control of the lateral compression force F . As mentioned
before, the increase of �v is larger for smaller α̃. But
at the same time, the increase is limited to a small force
range. The increase of the gap near the transition goes
as 1/|F − Fc|. Thus, when α̃ is very small, a stringent
requirement will be the precision in F that we denote by δF .
In this case, the maximal gap will be of the order of

3
4π

Fc
δF

ln ( δF/Fc
3√
α̃

), assuming that δF/Fc � 3
√

α̃. This result can
easily be checked by convolution of the gap (23) with a
Lorentzian of width δF . This implies that, if one is able to
control the force with a precision sufficient to see the buckling
instability (δF/Fc � 1), there remains a large enhancement
of the gap.

VIII. CONCLUSIONS

In this paper, we have investigated the consequences of a
capacitive electromechanical coupling in a suspended single-
electron transistor when the supporting beam is brought close
to the Euler buckling instability by a lateral compression
force. Our main result is that the low-bias current blockade
originating from the coupling between the electronic degrees
of freedom and the classical resonator can be enhanced by
several orders of magnitude in the vicinity of the instability.
We show that both the mechanical as well as the electronic
properties of this regime can be described in an asymptotically
exact manner based on a Langevin equation. These results are
a direct consequence of the continuous nature of the Euler
buckling instability and the associated critical slowing down
of the fundamental bending mode of the beam at the instability.
In fact, more generally, our results frequently have close and in-
structive analogies with the mean-field theory of second-order
phase transitions. We focused on the sequential-tunneling
transport regime of single-level quantum dots, but many of
our qualitative results should remain valid also in the metallic
case as well as for the resonant transport regime.47 In fact, our
basic approach should apply quite generally for any continuous
mechanical instability of a nanoelectromechanical system.

Our results apply most directly to quantum dots situated
on nanobeams or carbon nanotubes. Applying strain to the
nanobeam in a controlled manner could, in principle, be
experimentally performed with the help of a break junction. In
fact, it is quite conceivable that, e.g., some carbon nanotube
structures happen to be close to the Euler instability due to
specifics in the fabrication of individual nanostructures. Our
predictions may be helpful to identify such anomalous (and
potentially interesting) samples.
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APPENDIX A: ELASTICITY THEORY OF THE EULER
INSTABILITY

The elastic Lagrangian of a homogeneous rod of constant
length L fixed at its two ends consists of three parts,

L = T − Vb − VF . (A1)

The kinetic term reads

T = σ

2

∫ L

0
ds ḣ2, (A2)

where σ is the linear mass density, s is the arc length along the
rod, and h(s,t) is the displacement of the rod with respect to
the u axis (see Fig. 9). The bending energy, controlled by the
bending rigidity κ , is given by

Vb = κ

2

∫ L

0
ds

∣∣∣∣ dt̂

ds

∣∣∣∣
2

= κ

2

∫ L

0
ds

h′′2

1 − h′2 , (A3)

where t̂ = (u′,h′) is the tangent vector of the rod and primes
denote derivatives with respect to s. The last term in Eq. (A1)
corresponds to the work done by the compression force F on
the rod and reads

VF = −F (L − umax) = −F

∫ L

0
ds
(
1 −

√
1 − h′2), (A4)

where umax is the total extent of the rod along the u axis (see
Fig. 9).

For small deflections (|h′| � 1), the Lagrangian (A1)
becomes, in harmonic approximation,

L �
∫ L

0
ds

(
σ

2
ḣ2 − κ

2
h′′2 + F

2
h′2
)

, (A5)

with the corresponding Euler-Lagrange equation

σ ḧ + κh′′′′ + Fh′′ = 0. (A6)

Equation (A6) can be solved by the eigenfunctions h(s,t) =∑
n hn(s,t) = ∑

n Xn(t)gn(s), where gn(s) are the normal
modes, which follow from the solution of the characteristic
equation. The frequency of the mode n reads

ω2
n = κ

σ
q2

n

(
q2

n − F

κ

)
, (A7)

with qn as the associated wave number, which depends on the
considered boundary conditions. The vibrational frequency
of the fundamental bending mode (n = 1) thus vanishes at
the critical force Fc = κq2

1 , while all higher modes have a
finite frequency and, hence, are neglected in what follows. For
F > Fc, the fundamental mode is unstable, and quartic correc-
tions to the Lagrangian are necessary to ensure global stability.

F

uumax0

h

ds
dh

du

FIG. 9. Coordinate system used to describe the elastic properties
of the rod.
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TABLE I. Parameters entering the effective Lagrangian (A8) and the vibrational Hamiltonian (2).

Boundary conditions g1(s) Fc ω2 m α

h|0,L = h′′|0,L = 0 sin
(πs

L

)
κ
(π

L

)2 κ

σ

(π

L

)4
(

1 − F

Fc

)
σL

2
FcL

( π

2L

)4

h|0,L = h′|0,L = 0 ≈sin2
(πs

L

)
κ

(
2π

L

)2
κ

σ

(
2π

L

)4 (
1 − F

Fc

)
3σL

8
FcL

( π

2L

)4

Denoting ω1 = ω and X1 = X, expanding the Lagrangian
(A1) to quartic order in the displacement and inserting the
solution h1 of the harmonic problem, we thus obtain the
effective Lagrangian close to the Euler instability,

L = m

2
Ẋ2 − mω2

2
X2 − α

4
X4, (A8)

with the effective mass

m = σ

∫ L

0
ds g2

1, (A9)

and

α =
∫ L

0
ds

(
2κg′′

1
2
g′

1
2 − Fc

2
g′

1
4
)

, (A10)

with g1(L/2) = 1 such that X corresponds in Eq. (A8) to
the actual displacement of the center of the rod. Notice that
a priori, α depends on the force F . However, close to the
buckling instability, we can approximate F � Fc in Eq. (A10).

The parameters entering the effective Lagrangian (A8) and
the corresponding vibrational Hamiltonian (2) are given in
Table I for two types of boundary conditions: hinged end points
(h|0,L = h′′|0,L = 0) and clamped end points (h|0,L = h′|0,L =
0). Notice that, in the latter case, only an approximate solution
of the Euler-Lagrange equation (A6) can be found, which is
valid in the vicinity of the Euler instability, i.e., for F � Fc.

APPENDIX B: LANGEVIN DYNAMICS OF THE
MECHANICAL DEGREE OF FREEDOM

For the convenience of the reader, we present a derivation of
the Fokker-Planck equation (9). Our derivation is quite general
as long as electronic transport is described by rate equations
(sequential tunneling). We note that Fokker-Planck equations
for nanoelectromechanical systems appeared previously, e.g.,
in Ref. 14.

We assume that the electromechanical coupling takes the
general form Hc = h(X)nd, where h is an arbitrary function of
the mode amplitude X. In the classical limit (h̄|ω| � kBT ), and
in the sequential tunneling regime (h̄	 � kBT ), one can write
a Boltzmann equation for the joint probability distribution
Pn(X,P,t) that the resonator is in charge state n (= 0,1) and
phase-space point (X,P ) at time t (Refs. 13,44),

∂tPn = {Hn,Pn} − (−1)n	01(X)P0 + (−1)n	10(X)P1. (B1)

The Poisson bracket {f,g} = ∂Xf ∂P g − ∂P f ∂Xg describes
the classical dynamics of the mechanical degree of freedom on
the adiabatic potentials corresponding to the neutral and singly
charged states of the quantum dot with Hamiltonian Hn =
Hvib + h(X)n, where Hvib is the vibrational Hamiltonian

of Eq. (2). In Eq. (B1), the position-dependent rates for
tunneling of electrons in and out of the dot, 	01(X) and
	10(X), respectively, account for the electronic dynamics.
Notice that the following derivation does not depend on the
specific form of these rates and, hence, on the particular model
for the quantum dot which one considers (e.g., metallic or
molecular).

Close to the Euler instability, the vibrational mode becomes
slow (critical slowing down), and the Poisson bracket in
Eq. (B1) can be considered as a small perturbation. If we
neglect the Poisson bracket entirely in a first step, the stationary
solution of Eq. (B1) readsP0 = 	10P/	,P1 = 	01P/	, with
P = P0 + P1 and 	 = 	01 + 	10. Next, we account for the
Poisson bracket perturbatively to leading order by making the
ansatz

P0(X,P,t) = 	10(X)

	(X)
P(X,P,t) − δP (X,P,t), (B2a)

P1(X,P,t) = 	01(X)

	(X)
P(X,P,t) + δP (X,P,t). (B2b)

In the adiabatic limit in which electronic tunneling is much
faster than the vibrational dynamics (|ω| � 	), one would
then expect that δP is small compared to P itself. Inserting
Eq. (B2) into Eq. (B1), we obtain

∂tP = −P

m
∂XP − Feff(X) ∂PP + (∂Xh) ∂P δP (B3)

with the effective force Feff(X) = −∂XHvib − (∂Xh) n0(X) and
n0(X) = 	01(X)/	(X) the average occupation of the dot for
fixed position X, and

∂tδP = {H0,δP} − 	δP

+ (∂Xh)

(
	01	10

	2
∂PP + 	10

	
∂P δP

)

− P

m

	10∂X	01 − 	01∂X	10

	2
P. (B4)

So far, Eqs. (B3) and (B4) are exact, and we now make use
of the adiabatic limit δP � P to solve them. In this limit, all
terms in Eq. (B4) containing δP are negligible compared to
those involvingP , except for the second term on the right-hand
side, which is multiplied by the total tunneling rate 	 � |ω|.
We thus obtain, from Eq. (B4),

δP � (∂Xh)
	01	10

	3
∂PP − P

m

	10 ∂X	01 − 	01 ∂X	10

	3
P.

(B5)

Inserting this expression into Eq. (B3), we obtain the Fokker-
Planck equation (9) (except for the purely extrinsic dissipative
and diffusive parts proportional to the damping constant ηe,
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which can readily be obtained by coupling the mechanical
degree of freedom to a phonon bath) with damping coefficient
η(X) = − (∂Xh) (∂Xn0) /	 and diffusion constant D(X) =
2 (∂Xh)2 n0(1 − n0)/	.

APPENDIX C: CURRENT BLOCKADE FOR A HARMONIC
OSCILLATOR LINEARLY COUPLED TO A SET

In this Appendix, we detail the derivation of the Coulomb
diamond and the resulting current blockade at low-bias voltage
within the zero-temperature mean-field approximation of
Sec. IV in the specific case where the resonator coupled to
the SET is purely harmonic. We follow and adapt Ref. 7 to
the case of a single-level quantum dot, where the average
occupation of the island is given by Eq. (22). Specifically, we
write the effective potential as

veff(x) = v(x) +
∫ x

dx ′ n0(x ′), (C1)

with

v(x) = v′′(x̄)

2
(x − x̄)2 . (C2)

Introducing x̃ = x − x̄ and ṽg = vg − x̄, and using Eq. (22),
the condition (21) for dynamical equilibrium at zero tempera-
ture reads

−v′′(x̄)x̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x̃ < ṽg − v

2
,

1

2
, ṽg − v

2
� x̃ � ṽg + v

2
,

0, x̃ > vg + v

2
.

(C3)

In order to solve Eq. (C3), one has to distinguish three cases
(see Fig. 10):

(i) ṽg > v/2: In that case, there only exists one solution
to Eq. (C3), which corresponds to n0 = 1 and thus is not
conducting, x̃1 = −1/v′′(x̄). Therefore, for ṽg > v/2, the
system is always nonconducting.

(ii) |ṽg| < v/2: Here, two solutions can coexist: x̃1 (noncon-
ducting) and x̃1/2 = −1/2v′′(x̄), which corresponds to n0 =
1/2 and, hence, represents the conducting state of the effective
potential. In order for the system to be conducting within our

(i)

(ii)

1
2υ (x̄)

υ̃g

υ

0

υ+

υ−

(iii) Δυ

−1/ 2υ (x̄)

FIG. 10. Sketch of the Coulomb diamond for a SET linearly
coupled to a harmonic oscillator, delimited by the solid lines at
v+ = 2ṽg + 3/2v′′(x̄) and v− = −2ṽg − 1/2v′′(x̄). The gray area
indicates the region where current can flow. The dashed lines indicate
the location of the Coulomb diamond without electromechanical
coupling (Fe = 0), delimited by v = ±2ṽg, which defines the three
regions of the v-ṽg plane discussed in the text.

mean-field approximation, this latter solution must be the most
stable. This happens whenever v > v+ ≡ 2ṽg + 3/2v′′(x̄).

(iii) ṽg < −v/2: In this last case, an additional solution to
Eq. (C3) exists on top of x̃1 and x̃1/2, namely, x̃0 = 0, which
is not conducting and corresponds to n0 = 0. The conducting
solution x̃1/2 is the most stable one if v > v+ and v > v− ≡
−2ṽg − 1/2v′′(x̄).

The apex (defined by v+ = v−) of the resulting Coulomb
diamond sketched in Fig. 10 is thus located at a bias voltage

�v = 1

2v′′(x̄)
, (C4)

which defines the energy gap below which current cannot flow
through the system. The gate voltage corresponding to such a
gap is given by vg = −1/2v′′(x̄) + x̄.

APPENDIX D: ANALYTICAL TREATMENT OF THERMAL
FLUCTUATIONS

We present here a detailed analytical treatment of the
behavior of the current when one only considers thermal
fluctuations in the Fokker-Planck equation (15) and compare
it to the numerical results presented in Fig. 5 of Sec. V A.

For temperatures much smaller than the gap, the onset
of the current with bias voltage has a Fermi-function-like
behavior (see dashed and dashed-dotted lines in Fig. 5). This
behavior can readily be checked by approximating the effective
potential (25) for gate voltages at the apex of the Coulomb
diamond [see Eq. (24)] by its zero-temperature expression
and by expanding the Boltzmann distribution (19) close to
the corresponding minima of that potential. In this limit,
the Boltzmann distribution is a superposition of weighted
Gaussian peaks centered at these minima (except for |δ| � 3

√
α

and x � 0, where the effective potential is purely quartic in x).
For T̃ � �v , we find for the current [cf. Eq. (14)]

I � e	

4

[
g

(
v

�v

)
exp

(
�v − v

4T̃

)
+ 1

]−1

, (D1)

in good agreement with our numerical results presented in
Sec. V A. Far from the Euler instability (|δ| � 3

√
α), the

function g(z) is given by

g(z) =
{

2, 0 < z < 2,

0, z � 2.
(D2)

In the vicinity of the instability (|δ| � 3
√

α), we have

g(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, 0 < z < z1,

2−1/3 + 22/3	(5/2)√
π

(
6�v

T̃

)1/4

, z1 � z < z2,

22/3	(5/2)√
π

(
6�v

T̃

)1/4

, z2 � z < z3,

0, z � z3,

(D3)

where 	(ν) denotes the Gamma function, and z1 = (25/3/3 −
1)/(1 − 2−1/3), z2 = 1/3(1 − 2−1/3), and z3 = 1/(1 − 2−1/3).
Notice that the discontinuities in Eqs. (D2) and (D3) are due
to the fact that (meta)stable conducting or blocked minima
of the effective potential are appearing or disappearing as
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one increases the bias voltage. Our approximate result (D1)
shows that, at low temperature, the current below the gap is
exponentially suppressed as a function of bias voltage.

At higher temperatures, the current starts to be linear in the
bias voltage as can be seen from the dotted line in Fig. 5 for
T̃ /�v = 1. Indeed, expanding for T̃ � |vg ± v/2| the current
for fixed x, Eq. (13), as well as the Boltzmann distribution
(19), we find using Eq. (14)

I � C
e	

4

v

T̃
, (D4)

with

C =
∫

dy fF(y) exp
(

δT̃
2 y2 − α̃T̃ 3

4 y4
)

∫
dy f −1

F (−y) exp
(

δT̃
2 y2 − α̃T̃ 3

4 y4
) , (D5)

to first nonvanishing order in (v,|vg|)/T̃ . For T̃ � �v , we find
C � 1/4 such that

I � e	
eV

16kBT
, (D6)

which corresponds to the usual high-temperature current in
the absence of electromechanical coupling. We have checked
that this result is in very good agreement with our numerical
calculation of Sec. V A. Of course, when the bias voltage
becomes significantly larger than the temperature, the current
saturates to its maximal value I = e	/4.

APPENDIX E: STATIONARY SOLUTION OF THE
FOKKER-PLANCK EQUATION

We show here that, in the adiabatic limit (ω0/	 � 1) and
for weak extrinsic dissipation (γe � 1), the stationary solution
of the Fokker-Planck equation (15) only depends on the ratio

γe

ω0/	
. This behavior is exemplified in Fig. 6 where the averaged

current flowing through the nanobeam only depends on the
latter ratio.

Introducing the new variables

E(x,p) = p2

2
+ veff(x), (E1)

θ (x,p) =
∫ x

x0

dx ′

ẋ ′ =
∫ x

x0

dx ′
√

2[E(x,p) − veff(x ′)]
, (E2)

with E as the energy of the mechanical degree of freedom
and θ as the time along a trajectory in phase space at a given
E (x0 is the initial position of the system for that particular
trajectory), the Fokker-Planck equation (15) reads

∂P
∂τ

= −∂P
∂θ

+ [γ (x) + γe]

(
P + p2 ∂P

∂E
+ p

∂θ

∂p

∂P
∂θ

)

+
(

d(x)

2
+ γeT̃

)[
∂P
∂E

+ p2 ∂2P
∂E2

+ ∂2θ

∂p2

∂P
∂θ

+
(

∂θ

∂p

)2
∂2P
∂θ2

+ 2p
∂θ

∂p

∂2P
∂E ∂θ

]
. (E3)

Noticing that the current-induced fluctuation and dissipation
are both proportional to ω0/	 [cf. Eqs. (17) and (18)],
we obtain that, for ω0/	 = γe = 0, the stationary solution
of Eq. (E3), ∂τPst = 0, is independent of θ . This suggests
inserting the ansatz

Pst(E,θ ) = P̄st(E) + δPst (E,θ ), (E4)

with δPst � P̄st in Eq. (E3). To first order in (ω0/	,γe) � 1,
we obtain

0 = −∂δPst

∂θ
+ [γ (x) + γe]

(
P̄st + p2 ∂P̄st

∂E

)

+
(

d(x)

2
+ γeT̃

)(
∂P̄st

∂E
+ p2 ∂2P̄st

∂E2

)
. (E5)

Averaging this equation over one period T of the motion in
phase space and using the periodicity of δPst in θ , we have

0 =
〈(

γ (x)

γe
+ 1

)(
1 + p2 d

dE

)〉
E

P̄st

+
〈(

d(x)

2γe
+ T̃

)(
1 + p2 d

dE

)〉
E

dP̄st

dE
, (E6)

where

〈f (x,p)〉E = 1

T

∫ T

0
dθ f (x,p). (E7)

Since γ (x) and d(x) only depend on ω0/	 via their prefactors,
it is clear, from Eq. (E6), that the stationary solution of the
Fokker-Planck equation only depends on ω0, 	, and γe through
the ratio γe

ω0/	
.
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