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Anderson localization and quantum Hall effect: Numerical observation of two-parameter scaling
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A two-dimensional disordered system of noninteracting fermions in a homogeneous magnetic field is
investigated numerically. By using a modified Landau gauge, we explore the renormalization group flow of
the longitudinal and Hall conductances and find that the flow is consistent with the predictions of Pruisken and
Khmelnitskii. The extracted critical exponents agree with the results obtained by using transfer matrix methods.
The necessity of a second scaling parameter is also demonstrated in the level curvature distribution. Near the
critical point the distribution slightly differs from the prediction of random matrix theory, in agreement with
previous works. Close to the quantum Hall fixed points the distribution is lognormal since here states are strongly
localized.
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I. INTRODUCTION AND BASIC CONCEPTS

Topological phases of quantum systems have been at the
focus of intense studies in recent years [1]. Many topological
insulators are exotic band insulators where the energy bands
are characterized by nontrivial topological quantum numbers.
These topological quantum numbers reflect the nontrivial
topological ground state structure, arising from the symmetries
and the dimensionality of the system [2]. In a finite sample, the
nontrivial topological structure of the ground state gives rise
to topologically protected gapless edge states in the otherwise
gapped system. These edge states are protected by topology
and are robust against perturbations and disorder which do not
break the underlying symmetries of the system.

One of the simplest examples of an insulating state with
a nontrivial topological structure is provided by the integer
quantum Hall (QH) effect [3]. In a two-dimensional electron
gas, a homogeneous magnetic field splits the energy spectrum
into Landau levels. For weak to intermediate disorder, Landau
levels are broadened into Landau bands by disorder, and states
within a Landau band are localized, except for a critical
energy at the center of each band, where extended states
persist [4,5]. Each Landau band is characterized by a nontrivial
topological invariant, the Chern number [12]. It can be shown
that the Chern number of a band—apart from a universal
prefactor e2/h—equals the contribution of the band to the Hall
conductance. As a result, if the Fermi energy lies between two
Landau bands, then the Hall conductance is the sum of the
Chern numbers associated with the filled Landau bands. The
topological character of this insulating phase is also manifested
through the emergence of chiral edge states [13–16]: In fact,
the total Chern number equals the number of chiral states.

As mentioned above, in each Landau band there is a critical
energy (Ec,i in the ith band) where extended states persist in
the thermodynamic limit. Topologically distinct QH phases
are separated by these critical states [17,18], and near them a
critical behavior is observed, with the localization length (the
size of the localized wave functions) diverging as

ξ ∼ |E − Ec,i |−ν . (1)

Experimentally, a quantized Hall conductance is observed if
the system size (or the inelastic scattering length, Lin) is much
larger than the localization length at the Fermi energy, ξ (EF )
[19].

The characterization of the topological quantum phase tran-
sition at these critical energies was a challenging task. Based
on nonlinear σ -model calculations, Pruisken and Khmelnitskii
proposed a two-parameter scaling theory, formulated in terms
of the diagonal and off-diagonal elements of the dimension-
less conductance tensor g ≡ gxx and gH ≡ gxy , respectively
[20,21]. According to this theory, by increasing the system size
L (or lowering the temperature), the conductances follow the
trajectories of a two-dimensional flow diagram (see Fig. 1):

d ln g

d ln L
= β(g,gH );

d ln gH

d ln L
= βH (g,gH ), (2)

determined by the universal beta functions β(g,gH ) and
βH (g,gH ). In this flow, attractive QH fixed points appear
at integer dimensionless Hall conductances and vanishing
diagonal conductance. Each of these fixed points corresponds
to a QH phase and is associated with a plateau in the Hall
conductance. Between these attractive fixed points, other,
hyperbolic fixed points emerge: these correspond to the critical
state and describe transition between the QH plateaus.

There are experimental confirmations of some predictions
of the universal scaling theory. However, there is only a
very recent attempt of a direct numerical verification of the
two-parameter renormalization group flow for ordinary QH
systems. Reference [22] has investigated the temperature-
driven renormalization group (RG) flow using the noncom-
mutative Kubo formula [23]. We follow a different route and
demonstrate the two-parameter scaling theory by performing
finite size scaling at T = 0 on a lattice. These calculations
are made possible by a novel lattice gauge introduced here.
From the flow, we estimate the relevant and irrelevant critical
exponents at the critical point, and also show the necessity of
two scaling variables by investigating the distribution of level
curvatures.

To perform finite size scaling, we investigate a system of
noninteracting, spinless, charged fermions on a square lattice,

1098-0121/2015/91(12)/125418(7) 125418-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.125418
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FIG. 1. (Color online) Sketch of the proposed two-parameter
renormalization flow, in terms of the diagonal and Hall conductances
g and gH , respectively. The attractive QH fixed points at integer di-
mensionless Hall conductances and vanishing diagonal conductance
are denoted by cyan circles (QHn and QHn+1). The transition fixed
point (T ) at a finite Hall and diagonal conductance is denoted by the
red circle.

as described by the Hamiltonian

H =
∑

i

εic
†
i ci −

∑
〈i,j〉

tij c
†
i cj + H.c. (3)

Here c
†
i and ci denote fermionic operators that create or

annihilate a fermion on the lattice site i, respectively. The site
energies εi ∈ [−W/2,W/2] are uniformly and independently
distributed and the external magnetic field is introduced by
using the usual Peierls substitution [29]

tij = ei2πAij , (4)

with the lattice vector potential defined as

Aij = e

h

∫ j

i

A · dl. (5)

In this work, we construct a lattice gauge, which—in contrast
to the Landau gauge—allows us to perform computations for
small magnetic fields corresponding to a single flux quantum
through the system. We then perform exact diagonalization
at various system sizes, L, while applying twisted boundary
conditions with phases φx and φy in the x and y directions,
respectively. By studying the sensitivity of the energy levels
Eα = Eα(φ) and eigenstates |α〉 = |α(φ)〉 to the phase φ =
(φx,φy), we are able to determine g(L) and gH (L), and
reconstruct the renormalization group flow, Eq. (2). We indeed
find that, as predicted by Pruisken and Khmelnitskii, the flow
exhibits stable QH fixed points with quantized values of gH

and g = 0. Neighboring QH fixed points are separated by a
critical point of a finite Hall and diagonal conductance. The
critical exponents extracted from the flow are in agreement
with previous transfer matrix results [30].

A. Thouless formula and Hall conductance

The Kubo-Greenwood conductance formula [31] cannot be
straightforwardly applied to a finite size system to extract its

T = 0 temperature conductance in the thermodynamic limit.
Fortunately, however, the Hall and the diagonal conductances
can both be related to the sensitivity of the states to the
boundary conditions. The single-particle eigenstates of Eq. (3)
can be expanded as

|α〉 =
∑

i

α(i)c†i |0〉 . (6)

Labeling for the moment each site i by its coordinates i →
x,y, a twisted boundary condition is defined by wrapping the
system on a torus with the periodicity condition

α(x + nL,y + mL) = ei(nφx+mφy )α(x,y). (7)

The phases (φx,φy) = φ can be interpreted as magnetic fluxes
pierced through the torus (and in its interior), while the external
magnetic field pierces through the surface of the torus (see
Fig. 2). Solving the eigenvalue equation H |α〉 = Eα|α〉, one
obtains the phase dependent eigenstates and eigenvalues |α(φ)〉
and Eα(φ).

In a seminal work, Thouless and Edwards conjectured a
relation between the diagonal conductance and the mean ab-
solute curvature of eigenenergies at the Fermi energy [24,32],

g ≈ gT = |cT (α)|Eα=EF
, cT (α) = π


(Eα)

∂2Eα

∂φ2
x

, (8)

with 
(EF ) denoting the mean level spacing at the Fermi en-
ergy, and the overline indicating disorder averaging. Although
this formula cannot be derived rigorously, it has been verified
numerically for a wide range of disorder [33].

The Hall conductance can be directly related to the phase
dependence of the eigenstates [34]. In a finite system, the

x

x

y

B

(a)

(b)

FIG. 2. (Color online) (a) The phase φx can be interpreted as a
magnetic flux pierced through the torus. (b) The external magnetic
field pierces through the surface of the torus.
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average Hall conductance at T = 0 is

gH =
∑

Eα<EF

cH (α). (9)

Here cH (α) denotes the Hall conductance of level |α〉, and is
given by

cH (α) = 2πi

(〈
∂α

∂φy

∣∣∣∣ ∂α

∂φx

〉
−

〈
∂α

∂φx

∣∣∣∣ ∂α

∂φy

〉)
, (10)

the Berry curvature associated with |α(φx,φy)〉. In the
following, we shall use Eqs. (8) and (9) to deter-
mine the dimensionless conductances and establish the
flow.

B. Lattice gauge for small magnetic fields

In a finite size system with periodic or twisted boundary
condition, a homogeneous magnetic field cannot be arbitrary;
the hopping matrix elements must respect the periodicity of
the system, i.e., the hoppings at sites (x + L,y) and (x,y + L)
must be equal with the one at (x,y). The complex phases of
the hopping matrix elements are related to the magnetic vector
potential through the Peierls substitution, Eq. (4).

The periodicity of the system requires the complex phase
of the hopping to be changed by 2πn as the x or y coordinates
are shifted by L, and imposes restrictions on the total field
pierced through the system.

The magnetic flux through a unit cell can be determined
by summing the hopping phases around the cell, while the
magnetic field in a cell can be defined as the flux divided
by the area of the cell. Setting the lattice size to a = 1, the
magnetic field reads

B(x+1/2 , y+1/2) = h

e
[A(x,y)(x+1,y) + A(x+1,y)(x+1,y+1)

+A(x+1,y+1)(x,y+1) + A(x,y+1)(x,y)]. (11)

Periodic boundary conditions imply that the total magnetic flux
through the whole system is a multiple of the flux quantum
�0 = h/e. Therefore, the minimal nonzero magnetic flux
through the system [the surface of the torus in Fig. 2(b)] is
�0. Most numerical calculations use the Landau gauge with
ALandau

(x,y),(x,y+1) = x
L

m with m an integer and ALandau
(x,y),(x+1,y) = 0,

which results in a total flux

�Landau = mL�0 (12)

through the system. The minimal nonzero flux in the Landau
gauge is thus L times larger than the flux quantum �0, and
consequently, the possible values of magnetic field, BLandau =
�Landau

L2 = m
L

�0, are restricted and rather large.
Clearly, to perform efficient finite size scaling at a fixed

magnetic field, one needs to construct a lattice gauge, which
is able to produce magnetic fields below the Landau gauge
limit, Bmin

Landau = 1
L
�0. Here we propose to use a lattice gauge,

as illustrated in Fig. 3, that realizes the minimal flux and the
corresponding minimal magnetic field. Along the y bonds, we
use a Landau gauge

A(x,y)(x,y+1) = m
x

L2
, x ∈ 1 . . . L. (13)

FIG. 3. (Color online) Sketch of bond vector potentials on a
4 × 4 lattice with periodic boundary condition: The circles denote
equivalent sites.

This is by a factor 1/L smaller than the usual Landau gauge
and, consequently, amounts in an additional jump in the phase
of the hopping between lattice sites x = L and x = 1, 
ϕ =
−2π m 1

L
. Such a jump would introduce a strong magnetic

field at the boundaries, if it is not compensated. Therefore at
the boundary between x = L and x = 1, we apply a lattice
vector potential in the x direction [35]

A(x=L,y)(x=1,y) = −m
y

L
. (14)

One can verify that the magnetic field in each cell is �0/L
2,

therefore the total magnetic flux is just the minimal nonzero
flux �0. Using this gauge, we can thus reach magnetic field
values of B = m

L2 �0, allowing us to change the system
size in relatively small steps when the magnetic field is
fixed.

II. RESULTS

A. RG flow and critical behavior

Let us start by analyzing the critical behavior of the
dimensionless conductances. The Thouless and Hall conduc-
tances were calculated for system sizes between L = 9 and
L = 33, magnetic fields B = 1/9, 1/4, and 1/16 (in units of
�0/a

2), and disorder strengths 1 � W � 3.5. A total number
of ∼5 × 108 eigenstates were computed for each system size,
magnetic field, and disorder. The behavior of the ensemble
averaged conductances as a function of the Fermi energy is
shown in Fig. 4. The Hall step becomes sharper with increasing
system size and the peak in the Thouless conductance gets
sharper as well.

Based upon the two-parameter scaling theory, near the
transition, the dimensionless Hall conductance is expected to
scale with the system size as

gH (L′) − g∗
H

∼=
(

L′

L

)y

(gH (L) − g∗
H ), (15)
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FIG. 4. (Color online) Thouless conductance (upper panel) and
Hall conductance (lower panel) as a function of Fermi energy around
the first Landau band for B = �0/9 and W = 1. System sizes are
L = 9, 12, 18, and 27. Inset: Hall conductance gH as a function of
the Fermi energy EF in the whole band. The shaded region highlights
the first QH step, shown in the main panel. In the lower half of
the band electronlike behavior is observed, while in the upper half
holelike behavior is observed.

where y is the scaling dimension of the Hall conductance,
and g∗

H denotes the critical Hall conductance. In contrast, the
Thouless conductance is predicted to be an irrelevant scaling
variable on the critical surface, where

gT (L′) − g∗
T

∼=
(

L′

L

)−|y2|
[gT (L) − g∗

T ], (16)

with y2 the scaling dimension of the leading irrelevant operator.
We estimated the critical values of the Hall and Thouless
conductances and the exponents y and y2 by performing a
finite size scaling analysis, yielding

g∗
H = 0.612 ± 0.023, y = 0.351 ± 0.082, (17)

and

g∗
T = 0.386 ± 0.011, |y2| = 0.43 ± 0.14. (18)

The critical exponents y and y2 agree within our numerical
accuracy with the values y = 1/ν ≈ 0.385 and |y2| ≈ 0.4,
extracted through transfer matrix methods [30,36–38].

The system size driven (gT ,gH ) flow is displayed in
Fig. 5. Of course, due to numerical errors, the flow is not
perfect and certain lines (arrows) seem to cross, but the
qualitative agreement with the Pruisken-Khmelnitskii scaling
is apparent. As mentioned before, the modified Landau gauge
enables us to increase the system size in smaller steps, and
to get a better resolution of the β functions. Nevertheless,

0 0.2 0.4 0.6 0.8 1g
H

0

0.1

0.2

0.3

0.4

g
T

QH
0

QH
1

T

FIG. 5. (Color online) Two-parameter renormalization flow ex-
tracted from finite size scaling for B = �0/4, W ∈ 2 . . . 3.3 and
L ∈ 12 . . . 24. The arrows show the direction of increasing system
size. The extrapolated position of the critical point is denoted by a
red circle (T ); the zeroth and first QH fixed points are denoted by a
cyan circle (QH0 and QH1).

it remains challenging to collect data from the exterior or
deep interior of the critical dome (flipped “U” shape), because
the trajectories remain always close to it. Interestingly, the
flow is slightly asymmetrical, and the critical point is closer
to the n = 1 QH state than the trivial n = 0 state. We do
not have a firm explanation for this asymmetry. The lack of
electron-hole symmetry could provide a natural explanation of
such asymmetry. However, the fact that the flows extracted for
various fillings overlap within our numerical accuracy, may
rule out this possibility. The observed asymmetry may also be
a peculiarity of lattice calculations or nonuniversal finite size
corrections, associated with the presence of other irrelevant
operators, resulting in deviations from the universal scaling
curves for smaller system sizes.

The system sizes we used here are somewhat smaller than
those in Ref. [22]. This is because for the Hall conductance
we need to compute the full spectrum of the system, and the
long tailed distributions of the Thouless and Hall conduc-
tances require averaging over a large ensemble of disorder
realizations (n ∼ 106 samples), limiting the accessible system
sizes. In contrast, in the approach of Ref. [22] a relaxation
time is implicitly included. This probably implies an auto-
matic internal averaging/smoothening, and therefore a smaller
number of disorder realizations (n ∼ 100) and, consequently,
larger system sizes can be employed. Despite this difference,
however, the relaxation time driven flow of Ref. [22] and the
system size driven flow presented here appear to be of similar
numerical quality.

B. Curvature distributions

The presence of two characteristic scaling variables is
also clear from a careful analysis of the distribution of level
resolved Hall conductances and Thouless curvatures. Single-
parameter scaling [39] would imply that these distributions
should be characterized by a single dimensionless parameter,
which we can choose to be the Thouless conductance,
gT = gT (W,E,L,B, . . . ). To test the single-parameter scal-
ing hypothesis, we selected regions in the energy spectra
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FIG. 6. (Color online) Distribution of the Thouless curvature
(upper panel) and the level resolved Hall conductance (lower panel).
We used B = 1/9 and W = 1, and varied the system size (see legend).
For each system size we selected energy regions corresponding to a
fixed gT = 0.2, and determined the distributions for a large number
of disorder realizations. Distributions for a fixed gT depend explicitly
on the system size, L, but converge to a limiting distribution for large
L (see data for L = 21 and 27).

with a fixed Thouless conductance, gT (i.e., fixed average
absolute curvature |cT |), and determined the distributions
p(cT |gT ,L,W,B) and p(cH |gT ,L,W,B) [40]. We found that
the single-parameter scaling hypothesis is clearly violated for
small system sizes; both p(cT ) and p(cH ) depend explicitly
on the system size, L. The explicit L dependence is more
pronounced in the distribution of the level resolved Hall
conductance, but can also be seen in the distribution of the level
curvatures. Increasing L, however, the distributions converge
to a limiting distribution (see data for L = 21 and 27 in Fig. 6).
This behavior can be understood in terms of the two-parameter
scaling theory. According to the latter, the distributions p(cT )
and p(cH ) depend on two dimensionless parameters, gT and
gH : p(cT ) = p(cT |gT ,gH ) and p(cH ) = p(cH |gT ,gH ). For a
given value of gT , increasing L moves the corresponding
(gT ,gH ) point towards the flipped “U” envelope in the (gT ,gH )
plane. That means that for systems with large L, gH becomes
effectively a function of gT , gH → gH (gT ), and therefore
p(cT ) depends solely on gT .

The distributions p(cT ) and p(cH ) vary considerably within
the (gT ,gH ) plane (see Fig. 7). Near the transition point, the
distribution of the dimensionless Thouless curvatures can be
well fitted by a modified Cauchy distribution,

p(cT ) ∝ 1(
cκ
T + a

)(2+β)/κ , (19)

with the constant β = 2 characterizing the unitary ensemble,
and κ a symmetry class dependent anomalous dimension. Such
a distribution has been conjectured for the critical curvature
distribution in orthogonal and unitary ensembles, and verified
numerically for the orthogonal case [41,42]. By fitting the
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FIG. 7. (Color online) Curvature distributions in the vicinity of
the transition fixed point (upper panel, gT ≈ 0.35, gH ≈ 0.55), and
close to the quantum Hall fixed points (lower panel, gT ≈ 0.003,
gH ≈ 0.001). Continuous lines denote modified Cauchy (top) and
lognormal (bottom) fits.

numerically obtained distributions, we extract an exponent

κ = 1.603 ± 0.026. (20)

This value is close to the exponent κ = 2, predicted for
disordered metallic systems in the unitary ensemble by random
matrix theory [43,44]. In fact, although a modified Cauchy
distribution is needed to reach a high quality fit of the small
curvature part of the distribution, the random matrix expression
(κ = 2) also provides an acceptable fit of the data.

Close to the attractive quantum Hall fixed points, on
the other hand, the dimensionless curvature is lognormally
distributed with a good accuracy, a behavior characteristic of
strongly localized states [45].

III. CONCLUSION

In this work, we investigated disordered Quantum Hall
systems by performing numerical computations within a torus
geometry. We constructed a magnetic gauge, which enabled
us to reach the smallest magnetic field allowed by the periodic
boundary condition, B = 1

L2
h
e
. With this gauge, we were able

to increase the system size in smaller steps, and could perform
efficient finite size scaling.

We determined the boundary condition (phase) dependence
of the eigenstates and eigenenergies, and computed from these
the diagonal and Hall conductances. We established the system
size driven renormalization group flow of the dimensionless
Hall conductance and the Thouless conductance, and found it
to be consistent with the theoretical predictions of Pruisken
and Khmelnitskii. We identified the quantum Hall fixed
points, responsible for the quantized values of the Hall
conductance, and the critical fixed point characterizing the
transition between neighboring quantum Hall phases. In the
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vicinity of this critical point, the Hall conductance is found to
be a relevant scaling variable, while the diagonal conductance
becomes irrelevant. We estimated the critical exponents of the
transition fixed point, and found them to agree with the values
calculated using transfer matrix methods.

Our results agree with those obtained via another path
of Ref. [22], where the temperature dependence of the
conductances, computed by means of the noncommutative
Kubo formula, has been used to generate the RG flow. While
the overall quality of the RG flow we obtain is similar to that of
Ref. [22], in our case, the RG flow exhibits a slight asymmetry,
which seems to be almost absent in Ref. [22]. The observed
electron-hole asymmetry of the flow is probably due to the
relatively small system sizes we used, and to the presence of
irrelevant operators.

We also investigated the distributions of level curvatures,
and observed a clear violation of the one-parameter scaling,

demonstrating the necessity of a second parameter. For large
system sizes, however, the system flows towards a critical
line, and the single-parameter scaling is found to be restored,
in agreement with the Pruisken-Khmelnitskii scaling theory.
Near the critical point, the distribution of the Thouless
curvature is found to agree with the predictions of random
matrix theory (Gaussian unitary ensemble). Close to the
quantum Hall points the curvature distribution is lognormal.
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