
PHYSICAL REVIEW B 90, 205413 (2014)

Measuring cotunneling in its wake
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We introduce a rate formalism to treat classically forbidden electron transport through a quantum dot (cotun-
neling) in the presence of a coupled measurement device. We demonstrate this formalism for a toy model case of
cotunneling through a single-level dot while being coupled to a strongly pinched-off quantum point contact (QPC).
We find that the detector generates three types of back-action: the measurement collapses the coherent transport
through the virtual state, but at the same time allows for QPC-assisted incoherent transport, and widens the dot
level. Last, we obtain the measured cotunneling time from the cross correlation between dot and QPC currents.
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I. INTRODUCTION

Quantum measurement is a probabilistic process where the
detector’s outcome is correlated with the system being in
a certain state. In turn, the detector’s back-action onto the
system affects it according to the specific outcome of the
measurement [1]. In a projective measurement this is described
by the wave-function collapse, in which the outcome of the
measurement is an eigenvalue of the measured observable,
and the system after the measurement is projected onto the
eigenstate corresponding to the obtained eigenvalue [2].

The implications of quantum measurement become par-
ticularly interesting when applied to yet another key feature
of quantum mechanics—to classically forbidden processes.
A striking example of such a forbidden process is that of
tunneling under a potential barrier, where a particle appears
on the other side of a barrier that it classically could not
surmount. Whereas this appearance indicates that a tunneling
event occurred, a direct observation of the particle during
its virtual passage under the barrier is required as additional
verification of this mechanism.

Indeed, such a proposition stands in direct conflict with
quantum measurement: if the particle is measured to be under
the barrier, it would collapse midway and not tunnel to the
other side. Additionally, in order for the particle to collapse in
the position of the barrier, it must obtain energy and appear
above the barrier. As a result, one may conclude that such a
measurement would correspond to effectively increasing the
potential barrier, and blocking tunneling altogether. Still there
is a constant interest in accessing the properties of a particle
tunneling under a barrier (e.g., its traversal time), with a variety
of approaches [3–7].

Beyond the scheme of projective measurement, a better
suited and more realistic approach in detecting the virtual state
under the barrier is that of a modification of the systems’s
state in a continuous process accompanied by a gradual
acquisition of information by the detector [8]. In particular,
in a weak measurement regime, as opposed to a strong
projective measurement, the detector’s outcome corresponds
to the measured state of the system, but the back-action does
not disturb it much. This allows for nontrivial effects in
conditional (postselected) measurements, e.g., the appearance
of weak values [9], and utilization of the measurement outcome

in quantum feedback circuits [10,11]. Such effects have
been successfully employed in practical problems including
precision measurements [12–17], quantum state discrimi-
nation [18], or quantum state stabilization [11]. Moreover,
weak measurements have also been successfully employed
in the study of coherent quantum transport under a potential
barrier [7,19], as well as transport through many-body virtual
states [20].

The detection of a tunneling process via weak measure-
ments can be directly explored in electronic solid-state devices.
The typical system under consideration is that of transport
between two leads across a quantum dot. By tuning the
capacitance of the dot, one can position its eigenenergies
relative to the chemical potential of the leads, such that an
addition of charge onto the dot is unfavored by Coulomb
interactions. As a result, transport through the dot is classically
blocked [21]. In this regime, the transport through the dot
happens via cotunneling processes with a virtual (classically
forbidden) occupation of the dot [22].

Charge detection in quantum dots using a quantum point
contact (QPC) that is capacitively coupled to the dot is
experimentally well established [23–31]. The QPCs can
be tuned to be close to the quantum limit, making them
sensitive to the dot’s charge fluctuations. Theoretically QPC
detectors are well understood, and a proper formalism has
been developed to describe the many-electron macroscopic
classical signal therein in response to local charges [11,32].
Yet these descriptions are developed for classical transport
through the dot [32], or for coherent charge oscillations in
isolated systems, e.g., double quantum dots [11,32,33]. In a
recent work, measurement of cotunneling was addressed in the
regime of weak coupling between a dot and a QPC [20]. Using
a weak value approach extended to deal with the interacting dot
and a large bandwidth of the QPC, the short cotunneling time
was resolved. This led to a vanishingly small cotunneling time
in the regime of a diffusive 2D dot with sufficiently closed
contacts.

In this work, we extend the standard model of QPC
transport [11,32] to treat the partial measurement of virtual
occupation of the dot in the cotunneling regime. In our
scheme, we treat the interaction between quantum dot (QD)
and QPC exactly by utilizing a rate equation formalism,
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which is perturbative in the tunneling and exact in the regime
of an almost pinched-off QPC. We illuminate and study
three mechanisms of back-action that a detector induces
onto coherent transport, namely (i) increased phase space for
QPC-assisted transport, e.g., inelastic processes in which an
electron enters the dot with energy ε and leaves the dot with
energy ε′ �= ε while another electron crosses the QPC such
that the total energy is conserved, (ii) reduced elastic transport
(decoherence), and (iii) widening of the dot energy levels.
Thus, we can address some of the questions introduced above:
we find that due to (i) and contrary to the prediction above,
the measurement amplifies the current through the dot and
does not block it. Nonetheless, mechanism (ii) implies that
transport would be blocked if the dot is incorporated inside an
interferometer.

Alongside these main results, we find that the detector
signal shows nonmonotonous behavior as a function of the dot
variables, which we attribute to sensitivity to the directionality
of transport through the dot. Additionally, we determine the
correlation between the QPC transport and the successful
cotunneling passage through the quantum dot. Interestingly,
despite the fact that the regime considered here is different
from that of previous approaches which established such a
relationship [7,20], we can use the correlated-currents signal
to extract the time of the cotunneling process. The obtained
time is compared with the simple Heisenberg’s uncertainty
expectation of τcot ∼ �/�E , which is set by the inverse of the
“energy-debt” during the virtual transport.

Our results are relevant for contemporary transport exper-
iments [26,29], where different mechanisms of QPC back-
action are discussed and an estimation of the cotunneling time
is obtained from the linewidth of the differential conductance
through the dot. Note that, differently from other approaches
dealing with the many-body physics in the cotunneling system
and detector [20], our formalism addresses the regime where
single cotunneling events are correlated with single electron
signals through the QPC.

The paper is structured as follows: in Sec. II, we write
down the model of a dot measured by a QPC. In Sec. III,
we derive the essential tools and methods for describing
the measurement of cotunneling in its wake. Section IV
details the resultant interplay between dot and QPC, and its
implications on measurable currents on correlations, as well
as the ability of measuring the cotunneling time. In Sec. V, we
conclude and discuss possible future directions. We provide
a comprehensive Appendix A, which details the microscopic
calculation required to establish the formalism used in Sec. III.

II. MODEL

Our setup is divided into two components: the system, and
the detector that measures it,

H = Hsys + Hdet + Hint, (1)

where Hsys describes the system, Hdet describes the detector,
and Hint describes the interaction between them. For simplicity,
we consider a spinless problem. The results can be directly
extended in some regimes to the spinful case. The system
consists of a single level quantum dot, that is tunnel-coupled

FIG. 1. (Color online) A sketch of the setup: a single-level dot
is tunnel-coupled to two leads, S and D with amplitudes tS and
tD , respectively. The respective dot-leads chemical potentials are
μS and μD , corresponding to a voltage bias eVSD = μS − μD . A
quantum point contact (QPC) is capacitively coupled to the dot, i.e.,
transport between the leads L and R is governed by a tunneling
amplitude � when the dot is empty, and � − δ� when the dot is
occupied. The respective QPC-leads chemical potentials are μL and
μR , corresponding to a voltage bias eVLR = μL − μR .

to two electronic leads, the source S, and the drain D (see
Fig. 1). By applying a voltage bias, eVSD = μS − μD , between
the source and the drain chemical potentials (μS , μD), we
can measure the transport properties of the dot. We assume,
henceforth, that eVSD � 0. The quantum dot is capacitively
coupled to another lead, the gate lead. Varying the gate voltage
Vg on the gate lead controls the number of electrons in the dot.
The Hamiltonian that describes the system is

Hsys = HSD + Hdot + HT , (2)

where

HSD =
∑

k,α=S,D

εk,αc
†
k,αck,α, (3)

Hdot = εdd
†d, (4)

HT =
∑

k,α=S,D

tαc
†
k,αd + H.c. (5)

The operator ck,α annihilates an electron with momentum k and
energy εk,α in the lead α ∈ {S,D}, d annihilates an electron on
the dot with energy εd , which is modulated by Vg . We have
assumed that the tunneling coefficients tα between the lead α

and the dot are independent of the energy.
As long as μS > εd > μD , transport occurs via sequential

tunneling processes through the dot. When the dot level is
outside the energy window provided by the leads, μD <

μS < εd or μS > μD > εd , and at low temperature, T �
min{|μD − εd |,|εd − μS |}, sequential tunneling is exponen-
tially suppressed. Nonetheless, a small current is still detected
in the drain. This small current is carried by the so-called
cotunneling processes, in which electrons from the source
virtually tunnel through the dot into the drain [22,34]. By
virtually we mean that the tunneling into the dot is classically
forbidden by energy conservation, but the overall cotunneling

205413-2



MEASURING COTUNNELING IN ITS WAKE PHYSICAL REVIEW B 90, 205413 (2014)

process is energy conserving. In the present work we focus on
this cotunneling regime.

We now turn to describe the detector. The detector is chosen
to be a QPC because of its noninvasive nature [10]. The QPC
consists of two leads, left and right, that are tunnel-coupled
to each other; see Fig. 1. It is described by the following
Hamiltonian:

Hdet =
∑

l

Ela
†
l al +

∑
r

Era
†
r ar +

∑
l,r

�(a†
l ar + H.c.), (6)

where al (ar ) annihilates an electron on the left (right) lead
with momentum l (r) and energy El (Er ). The tunneling
amplitude between the left and right leads, �, is assumed to be
energy independent. The QPC is out-of-equilibrium, namely,
the chemical potentials of the left and right leads are different,
μL = eVLR/2, μR = −eVLR/2.

The QPC is capacitively coupled to the quantum dot, i.e.,
the tunneling amplitude � is modulated by the charge on the
dot,

Hint = −
∑
l,r

δ� d†d(a†
l ar + H.c.). (7)

The typical time scales for a tunneling event in the QPC
to occur are D−1 and D̃−1 for an empty and an occupied dot,
respectively [32]. They are given by D = 2π�2ρLρReVLR/�

and D̃ = 2π�̃2ρLρReVLR/� where �̃ ≡ � − δ�. For sim-
plicity, henceforth, we assume the same density of states in the
left and right leads, ρL = ρR ≡ ρ.

Note that a single-level quantum dot model corresponds
to a quantum dot with appreciable level spacing, larger than
the other energy scales in the problem. Such a system can
be experimentally realized in semiconductors. Similarly, the
QPC detector can be easily tuned to detect single electron
tunneling in the sequential limit [35], and to weak coupling
in the cotunneling regime [29,30]. Furthermore, this model
provides a valid effective description of multilevel quantum
dots in the limit where the Thouless energy is the largest energy
scale [21].

III. METHODS

The currents through the dot and the QPC are carried by
tunneling processes between the source and the drain via the
dot, and from the left lead to the right lead in the QPC. In
order to obtain these currents and their cross correlations, we
use a rate equation formalism [36–38] and calculate the rates
for these tunneling processes (see Appendix A). We assume
that all the tunnel couplings are weak, namely, ρα|tα|2 � eVSD

and ρ|�|2 � eVLR , and treat them perturbatively. Within this
approach the interaction term, that makes the QPC transport
dependent on the dot occupancy, is treated exactly.

We focus on cotunneling rates, in which the occupation of
the dot changes only virtually. Cotunneling can occur either
between two different leads (e.g., source to drain) or back
and forth between a lead and the dot (e.g., source to source).
During these processes electrons can tunnel through the QPC.
Therefore, the QPC current is sensitive to the virtual changes
in the dot occupancy. We denote by Wn

αα′ the cotunneling rate
from lead α to lead α′ (where α,α′ ∈ {S,D}), during which n

electrons pass through the QPC.

FIG. 2. (Color online) Sketch of the rate W 0
SD of cotunneling

through the dot accompanied by no tunneling through the QPC [cf.
Eq. (8)]. Similar to Fig. 1, the upper part (brown) depicts the dot
system and the lower (blue) the QPC.

Toy model

To study the interplay between the QPC and the dot we
introduce a simplified version of our model. In this simplified
toy model, we wish to have, at most, one electron that tunnels
through the QPC during a cotunneling process through the
dot, namely, Wn

αα′ is negligible for n > 1. Thus, only five
rates remain relevant in the analysis of the currents and cross
correlations: W 0

SD , W 1
SD , W 1

DS , W 1
SS , and W 1

DD [see Figs. 2
and 3(a)–3(d), respectively].

The rate W 0
SD describes processes in which an electron

cotunnels through the dot while no tunneling events through
the QPC take place. Therefore, this rate contributes only to
the current through the dot. The rates W 1

SD and W 1
DS describe

processes in which, in addition to cotunneling through the dot,
an electron tunnels across the QPC. They contribute both to the
current through the dot, and to the current through the QPC.
Hence, they generate cross correlations between these currents.
The rates W 1

SS and W 1
DD are of processes that contribute to the

current through the QPC, but not to the current through the
dot. Here, the electron tunnels back and forth between the dot
and the same lead.

FIG. 3. (Color online) Sketches of the relevant cotunneling rates
in our toy model that involve an electron tunneling through the QPC
[cf. Eq. (9)]. Similar to Fig. 1, the upper part (brown) depicts the dot
system and the lower (blue) the QPC. (a) The rate W 1

SD . (b) The rate
W 1

DS . (c) The rate W 1
SS . (d) The rate W 1

DD .
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In order to work in the regime of our toy model, we take the
following assumptions: First, we work in the zero-temperature
limit and assume that no tunneling events occur in the QPC
when the dot is occupied, i.e., we set �̃ = 0. As a result,
transport through the QPC occurs only alongside cotunneling
events, i.e., only during the time interval in which the dot is
virtually empty, τcot. We further take the limit where τcot is
much shorter than the typical tunneling time in the QPC, i.e.,
Dτcot � 1.

The cotunneling time, τcot, is related by Heisenberg’s
uncertainty principle to the difference between the energy of
the initial (or final) state, and the energy of the virtual interim
state, e.g., ε − εd and ε′ − εd in Fig. 3. Of all cotunneling
processes, the process with the longest cotunneling time is the
one with the lowest energy difference, namely, for ε′ = μD

(assuming μS > μD). Hence, the assumption above implies
that �D � μS − εd, μD − εd .

Note that this chosen working point of the QPC puts
the detector in a regime different from the one typically
considered in the context of weak measurements. In a typical
weak measurement one assumes to work at finite D and
D̃ = D − δD. The measurement process is then characterized
by a measurement time, τM ∼ D/δD2, needed to resolve the
occupancy of the dot. One can then work in a regime with
τcotD � 1 and τcotδD � 1, such that the detector’s bandwidth
is larger than the cotunneling time we are interested in
(D � 1/τcot), but the measurement during such a time remains
weak (τcot � τM ).

In our case δD = D, and as τcotD � 1 we do not have a
large bandwidth in the detector. Nonetheless, due to the very
same choice, D̃ = 0, corresponding to a blocked transport
through the QPC, the current in the QPC is strongly correlated
with a cotunneling through the dot, and one can expect that
virtual transport through the dot could be resolved. In other
words, the point D̃ = 0 is peculiar since, as soon as an electron
tunnels through the QPC, one can infer with certainty the
happening of a cotunneling event through the quantum dot.
This is not a weak measurement in the standard sense, but
resembles more a partial-collapse measurement [18,39–42].
Nonetheless, the rarity of such joint tunneling events generates
limited back-action, and the detector can be used as a nonde-
structive detector of the virtual occupation of the dot. In any
case, this parameters’ regime has the advantage of simplifying
the formalism, and rendering the processes involved in the
detection clearer [43].

Experimentally, the small bandwidth of the QPC should not
serve as a hurdle, as there are sufficiently many cotunneling
events in the dot to obtain a measurable signal. We envision that
tuning in to this measurement regime corresponds to starting
from a conductance plateau in the QPC in the presence of
a full dot that is decoupled from leads, i.e., no virtual charge
fluctuation on the dot occurs. Increasing the coupling of the dot
to its leads allows for cotunneling. If at the same time a QPC
current is generated, it should correspond to the mechanism
reported here.

1. Derivation of the rates

In Appendix A 2, we rigorously derive the rates W 0
SD , W 1

SD ,
W 1

DS , W 1
SS , and W 1

DD . Here, we present a simpler, and intuitive
way, to calculate these rates.

We start by incorporating one of the effects of the coupling
with the QPC by bestowing a finite width to the energy level
of the dot, i.e., the single level gains an effective width �(D −
D̃)/2, which is proportional to the measurement strength. Note
that in our toy model the measurement strength is, therefore,
equivalent to �D/2. Hence, the cotunneling rate is simply
the standard cotunneling rate through a single-level dot with
energy εd and width �D/2. This is indeed the effect obtained
by the microscopic calculation, which includes the dynamics
of the QPC in Appendix A 2.

The total cotunneling rate W 0
SD , is the sum over the rates

of all possible cotunneling processes (namely, integration over
all incoming energies):

W 0
SD

= 2π

�

∫ μS

μD

dε ρSρD

∣∣∣∣ tS tD

ε − εd − i�D/2

∣∣∣∣
2

= 
S
D

πD

[
tan−1

(
2(μS − εd )

�D

)
− tan−1

(
2(μD − εd )

�D

)]
,

(8)

where 
α ≡ 2πρα|tα|2/�. For later use, we also denote the
total coupling 
 = 
S + 
D .

The cotunneling events through the dot, which are accom-
panied by a tunneling event through the QPC, consist of three
stages (see Fig. 3): First, the electron in the dot tunnels out
into the source or the drain. Second, a tunneling event occurs
in the QPC. Last, a new electron tunnels into the empty dot.
Here too, we include an effective width, �D/2 to the energy
of the dot. The total tunneling rate is given by

W 1
αα′ = 2π

�

∫ μα

−∞
dε

∫ ∞

μα′
dε′

∫ μL

−∞
dεl

∫ ∞

μR

dεr ρSρDρLρR

∣∣∣∣ tαtα′�

(ε′ − εd − i�D/2)(εr + ε′ − εl − εd − i�D/2)

∣∣∣∣
2

δ(ε + εl − ε′ − εr )

= �
2
α
α′D

4π2eVLR

∫ μα

μα′−eVLR

dε

∫ ε+eVLR

μα′
dε′ (eVLR + ε − ε′)[

(ε − εd )2 + �2D2

4

][
(ε′ − εd )2 + �2D2

4

] . (9)

The integrals in Eq. (9) are solvable. Out of space consid-
eration, we choose to present these rates in integral form.
Here we notice the full extent of the interaction of the QPC
with the dot; the QPC affects the cotunneling through the dot
in two fashions: First, as previously noted, it gives a finite

width to the energy level of the dot. Second, it allows new
QPC-assisted cotunneling processes through the dot, where
electrons are emitted from lead α inelastically into lead α′,
provided that the energy difference is compensated by the
QPC.
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When the dot and the QPC are decoupled (� = 0) all
the cotunneling processes are elastic, namely, an electron at
energy ε in the lead α, can be emitted into lead α′ only at
the same energy, ε. In our case, the dot and the QPC are
coupled (� �= 0), and the two systems can exchange energy.
Therefore, an electron with energy ε in lead α can end up in
lead α′ having a different energy ε′ �= ε. This is enabled by an
electron with energy εl which is transmitted from the left lead
of the QPC into the right lead with energy εr �= εl keeping the
total energy conserved ε + εl = ε′ + εr . Examples of inelastic
cotunneling processes are schematically depicted in Fig. 3.
The total cotunneling rate W 1

αα′ , is the sum over the rates of all
possible cotunneling processes (namely, integration over all
energies in the relevant leads of the dot and QPC systems).

At zero temperature, the maximal energy that a QPC
electron can lose by tunneling is μL − μR = eVLR (assuming
that μL > μR). Hence, the maximal energy that a dot electron
can gain is eVLR , namely, ε − ε′ � eVLR [see Figs. 3(b)–3(d)].
Similarly, the maximal energy that the dot electron can lose is
eVSD [see Fig. 3(a)]. Increasing the applied bias voltages (both
on the dot and on the QPC) therefore increases the phase space
for QPC-assisted cotunneling processes. Hence, the total rate
W 1

αα′ increases with the applied bias voltages.
In Fig. 4, we plot the rates W 0

SD and W 1
SD as a function

of �D/(μD − εd ) for different values of μD − εd and at
fixed VSD , VLR . In this configuration, μD − εd affects all
possible cotunneling rates. Lowering εd suppresses the rate
of cotunneling processes, leading also to shorter cotunneling
times τcot. This is seen in Fig. 4 by the overall decrease in
magnitude of both W 0

SD and W 1
SD as εd is lowered. As D

increases the probability for an electron to tunnel through
the QPC during the time window τcot grows. Hence, W 0

SD

constantly decreases with D while W 1
SD increases.

At a certain point, W 1
SD peaks and decreases as well. At

this point the probability for two electrons to tunnel through
the QPC during a cotunneling event becomes relevant. We
highlight the regime in which our toy model is valid, i.e., the
regime in which W 0

SD slightly decreases while W 1
SD increases

but is still far from peaking. Note, however, that even beyond
the highlighted regime, in the weak QPC-tunnel-coupling
regime the rates Wn

SD with n > 1 appear as contributions of
O(�2n).

We have assumed throughout this section an additional
finite width �D/2 of the dot energy level. We stress that this is
a result of the formal derivation of Eqs. (8) and (9) that appears
in Appendix A 2.

2. Currents and correlations

Using the rates, Eqs. (8) and (9), we are able to express
the currents and cross correlations of our setup [37,38]. The
average currents of the dot and the QPC are given by

〈Idot〉 = e
(
W 0

SD + W 1
SD − W 0

DS − W 1
DS

)
, (10)

〈IQPC〉 = e
(
W 1

SD + W 1
DS + W 1

SS + W 1
DD

)
. (11)

The zero-frequency cross correlation between these currents,

S = 2
∫ ∞

−∞
dτ [〈Idot(t + τ )IQPC(t)〉 − 〈Idot〉〈IQPC〉], (12)

FIG. 4. (Color online) Plots of (a) W 0
SD and (b) W 1

SD as a function
of �D/(μD − εd ) with bias voltages eVSD = 4�
, eVLR = 3.9�
,
and 
S = 
D . The different curves are for different dot gating εd

such that μD − εd = 4�
 (dark blue); μD − εd = 5�
 (medium-dark
blue); μD − εd = 6�
 (bright blue). We highlight the area in which
our toy model is relevant, namely, where W 0

SD slightly decreases,
W 1

SD is far from peaking, and Wn
SD for n > 1 are negligible. Two

effects are seen here: (i) The higher the dot energy is, the higher
the cotunneling rates are; (ii) as �D/(μD − εd ) increases it is more
probable for electrons to pass through the QPC during the time
window in which the dot is empty. This is seen in the decrease in
W 0

SD vs the increase in W 1
SD . At the point in which W 1

SD peaks, the
probability for two electrons to tunnel through the QPC during a
cotunneling event becomes relevant.

is given by

S = 2e2
(
W 1

SD − W 1
DS

)
. (13)

IV. RESULTS

In this section, we analyze the resulting currents through
the dot and the QPC, and their cross correlations. Also, we
relate these quantities to a conditional partial measurement of
the occupation of the dot, akin to null weak values [18]. This
quantity enables the determination of τcot.

A. Current through the dot; measurement back-action

The current through the dot is carried by cotunneling
processes, in which the occupation of the dot is virtually
changed for a short time. The intermediate evolution state,
where the occupation of the dot is changed, does not preserve
energy. Thus, ideally a strong measurement of the charge on
the dot would destroy cotunneling processes. Given that the
current through the QPC is affected by the charge on the dot, it
can be used to measure this charge. Naively, one would expect
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FIG. 5. (Color online) Plots of Idot [cf. Eq. (10)] as a function
of eVLR/(μD − εd ) and ρ� with eVSD = 4�
, μD − εd = 5�
, and

S = 
D . (a) A density plot of Idot. The Idot along the vertical (green)
and horizontal (blue) mesh lines is plotted in (b) and (c), respectively.
The dashed lines represent equal-d ≡ �D/(μD − εd ) lines. We can
see that the current increases with the coupling D of the QPC.
However, the effect does not depend exclusively on D, but it also
directly depends on the QPC parameters: the tunnel-coupling � and
the voltage-bias VLR .

that turning on a weak coupling between the QPC and the dot
will slightly reduce the current through the dot. It turns out
that the opposite is true. As seen in Fig. 5, by increasing the
coupling between the dot and the QPC (increasing � in our toy
model), the current through the dot is even slightly enhanced.

Figure 5 depicts the current through the dot as a function
of the coupling to the QPC, �, and as a function of the QPC
voltage bias VLR . The current is enhanced both by increasing
� and by increasing VLR , or alternatively, by increasingD, and
VLR . Note that the regime in which our model is valid is d ≡
�D/(μD − εd ) � 0.3, where up to one electron is transferred
in the QPC during the virtual cotunneling time of the dot.
Therefore, the area in which Idot peaks and decreases is outside
the scope of our model’s validity.

The current through the dot has two parts, a “coherent” part
and “incoherent” part. The coherent part is carried by coherent
cutunneling processes, where electrons tunnel through the dot
without changing the state of the QPC, the total rate of these
processes is W 0

SD . The incoherent part is carried by cotunneling
processes through the dot that are accompanied by changes in
the state of the QPC, namely, tunneling through the QPC.
The rates for these processes are W 1

SD and W 1
DS . As discussed

in Sec. III 1, increasing � or VLR , and correspondingly D,
increases the probability for tunneling through the QPC, and
hence decreases W 0

SD and increases W 1
SD . Additionally, VLR

increases also the phase space for inelastic QPC-assisted
cotunneling processes through the dot. Hence VLR increases
W 1

SD (and W 1
DS) even for a fixedD. Hence, the growth of Idot in

Fig. 5 is a result of the availability of phase space for inelastic
QPC-assisted cotunneling processes in W 1

SD being higher than
the decrease in W 0

SD as a function of these parameters.
The strong measurement nature of the incoherent channel

is highlighted by the fact that, in our simplified toy model,
having current through the QPC destroys the coherence of a
cotunneling process. If the dot would have been embedded into
the arm of a Mach-Zehnder interferometer a current in the QPC
could serve as a strong which-path measurement and would

FIG. 6. (Color online) Plots of IQPC [cf. Eq. (11)] as a function of
eVLR/(μD − εd ) and eVSD/(�
) with ρ� = 0.15, μD − εd = 5�
,
and 
S = 
D . (a) A density plot of IQPC. The IQPC along the
vertical (green) and horizontal (blue) mesh lines is plotted in (b)
and (c), respectively. Naturally, the current increases with the the
QPC voltage bias VLR . As the voltage on the dot VSD is increased
the following occurs: (i) The cotunneling to the drain and back W 1

DD

remains constant; (ii) the cotunneling to the source and back W 1
SS

becomes less probable; (iii) the cotunneling from drain to source
W 1

DS decreases, and disappears once VSD > VLR; (iv) additional
cotunneling processes from source to drain in W 1

SD are allowed. The
latter features dominate the behavior of IQPC. We see initially a slight
decrease as W 1

DS vanishes with an overall increase due to W 1
SD .

reduce the interference signal. In this case, the interference
signal would be proportional to the decreasing W 0

SD .

B. Current through the QPC; measurement signal

The current through the QPC is sensitive to the virtual
changes in the charge on the dot during cotunneling processes.
In the discussed toy model, QPC-current pulses (electron
tunneling) occur only alongside cotunneling processes in the
dot. The cotunneling processes can be either between two
leads (from the source to the drain and vice versa), or back and
forth between the dot and one of the leads (source-to-source
or drain-to-drain). We find, here, a nonmonotonous signal that
is dependent on the directionality of the dot transport.

In Fig. 6, we plot IQPC as a function of the two bias
voltages: VSD on the dot, and VLR on the QPC. Increasing
VLR has two effects: First, it increases the phase space for
elastic QPC-tunneling processes, where εl = εr (see Fig. 3
for clarification of the notations). Second, it increases the
phase space for inelastic processes with εl > εr . While the first
effect is relevant only for source-to-drain tunneling through
the dot, the second effect is relevant for all four possibilities
of cotunneling through the dot (from any lead α to any lead
α′). The amount of energy that can be lost in the QPC as
a compensation for inelastic cotunneling through the dot is
bound from above by eVLR . Hence, in cotunneling processes
that involve a single lead, raising VLR allows for more energetic
particles-hole excitations to appear in the lead [see Figs. 3(c)
and 3(d)]. Similarly, drain-to-source cotunneling consumes
energy and therefore increasing VLR enlarges the availability
of drain-to-source cotunneling [see Fig. 3(b)]. To conclude,
the rates W 1

αα′ (all four combinations) increase with VLR and
hence IQPC increases with VLR .
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Raising the bias voltage on the dot, VSD , increases the phase
space for both elastic and inelastic source-to-drain tunneling,
and hence, it increases the rate W 1

SD . The rate W 1
DS however, is

suppressed by a raised VSD as the drain-to-source cotunneling
processes require higher amount of energy for larger VSD . For
a fixed VLR , the available energies for inelastic drain-to-source
cotunneling through the dot are bounded from above. Hence,
increasing VSD reduces the phase space for such processes,
where for VSD > VLR such cotunneling becomes impossible.

The increase of VSD has an additional effect: for a fixed
μD it reduces the rate W 1

SS . The probability for a cotunneling
process to occur depends on the energy difference between
the dot and the available energies in the lead. Increasing
μS − εd increases the difference between the energy of the
electron in the dot and the available energies in the source [see
Fig. 3(c)], making the source-to-source cotunneling processes
less probable. Since μD is fixed, the drain-to-drain tunneling
processes are not affected by VSD and hence, for a fixed μD ,
W 1

DD is independent of VSD .
To conclude, W 1

SD grows with VSD , while W 1
DS and W 1

SS

are reduced by its increase, and W 1
DD is not affected by

it. As a result, IQPC generally grows with VSD since the
dominant processes are QPC-tunneling processes accompa-
nied by source-to-drain cotunneling through the dot. Yet, for
a small bias voltage on the dot, VSD � μD − εd , the four
rates W 1

SD , W 1
DS , W 1

SS , and W 1
DD are roughly of the same

magnitude and are determined mostly by VLR . Raising VSD

in this configuration causes an increase in W 1
SD alongside a

decrease in W 1
DS and W 1

SS , causing the current through the
QPC to slightly decrease. IQPC starts to increase when VSD is
further increased. This can be shown in Fig. 6(b), where for a
relatively large VLR , a small decrease in IQPC appears as VSD

grows, before the overall current starts to increase.

C. Cross-current correlation; focusing
on source-drain processes

We finally arrive to describe the sensing of virtual change
in the charge on the dot during cotunneling processes from
source to drain. Here, we are interested in the cross-current
correlation between the dot and the QPC. This correlation
eliminates processes that contribute to the QPC-current from
cotunneling processes to a specific lead and back, as they do
not generate a current through the dot.

The correlation function S in Eq. (12) is plotted in Fig. 7,
as a function of the system’s parameters, VSD and μD − εd . Its
behavior stems from the same effects considered above for the
currents, Idot and IQPC . The correlation is suppressed at VSD �
VLR because of counterpropagating QPC-assisted processes.
Once the drain-to-source processes (W 1

DS) are suppressed for
VSD � VLR , the correlation increases monotonically with VSD

because of the increased phase space for cotunneling events.
Also, quite intuitively, the deeper the dot’s energy level is, the
smaller is the probability for a cotunneling event to occur, and
thus the smaller S becomes. As to the effects of the detector
on the correlation, that we do not plot, a larger coupling to
the QPC or a larger VLR leads to a stronger current across
the detector, which directly reflects in a larger signal in the
correlation.

FIG. 7. (Color online) Plots of S [cf. Eqs. (12) and (13)] as a
function of eVSD/(�
) and (μD − εd )/(�
) with ρ� = 0.15, eVLR =
1.5�
, and 
S = 
D . (a) A density plot of S. The S along the vertical
(green) and horizontal (blue) mesh lines is plotted in (b) and (c),
respectively. As the voltage on the dot VSD is increased the following
occurs: (i) The cotunneling from drain to source W 1

DS decreases, and
disappears once VSD > VLR; and (ii) additional cotunneling processes
from source to drain in W 1

SD are allowed. Hence S initially increases
with VSD slowly, and only afterward increases as W 1

SD . The deeper
the dot level is, the shorter the virtual time in which the dot is empty.
As a result, (i) cotunneling processes through the dot become less
probable, and (ii) it becomes less probable for a QPC electron to
manage to tunnel during this time window, leading to the descent
of S.

D. Weak values; cotunneling time

The current through the QPC is generated while the dot is
virtually empty, i.e., IQPC = ∑

i I
{i}
QPC is generated by processes

i for which the dot is virtually empty for time τ
{i}
cot with I

{i}
QPC ∼

eDτ
{i}
cot .

Since the correlation function S isolates the contributions
to the QPC current arising from cotunneling between the two
distinct leads, it encodes information on the physical properties
of these cotunneling processes, i.e., one can extract the time the
dot is virtually empty, when restricting to current-generating
cotunneling events. This can be defined via a weak value
procedure [9], where the detector’s signal is postselected by
retaining only processes of successful cotunneling current
from source to drain. In this framework the cotunneling
current through the dot plays the role of a postselection
operator [20]. This leads to the average over cotunneling times
of current-generating events [20] [cf. Eq. (12)],

τ̄SD =
∫ ∞
−∞ ds[〈IQD(t)IQPC(t − s)〉 − 〈IQD〉〈IQPC〉]

eD〈IQD〉

= S

2eD〈IQD〉 . (14)

The obtained τSD is plotted in Fig. 8 as a function of eVSD and
(μ − εd )/(�
).

We note that such a quantity generally depends on the
detector’s parameters as well. However, the effects of the
detector are minimal in the weak measurement regime, which,
as discussed in Sec. III, corresponds to �D � eVLR � μD −
εd . This allows us to define an intrinsic (dot-dependent only)
cotunneling time when VLR → 0. The evaluation of τ̄SD that
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FIG. 8. (Color online) Plots of τ̄SD [cf. Eq. (14)] as a function
of eVSD/(�
) and (μD − εd )/(�
) with ρ� = 0.15, eVLR = 1.5�
,
and 
S = 
D . (a) A density plot of τ̄SD. The τ̄SD along the vertical
(green) and horizontal (blue) mesh lines is plotted in (b) and (c),
respectively. Interestingly, as VSD increases, τ̄SD increases as well,
i.e., it appears that the increased phase space adds processes with a
slower time into the average. As expected, the deeper the dot level is,
the shorter τ̄SD becomes.

is reported in Fig. 8 is obtained within such a regime, and its
values do not depend on the detector parameters much.

In Fig. 8, we see that τ̄SD increases with VSD , and becomes
shorter the lower the dot-level is. The decay of the cotunneling
time as a function of μD − εd can be intuitively understood in
terms of the energy-time uncertainty principle: at equilibrium,
the virtual hole that is excited in the dot sets �/(μD − εd )
as the typical time scale for the occupation of the virtual
state.

Discussion

We wish to make a more quantitative evaluation of our
obtained cotunneling time [cf. τ̄SD in Eq. (14) and Fig. 8].
Due to the finite bias voltage on the dot, in Eq. (14) we have
a weighted average over the cotunneling times of different
cotunneling processes. Within a simple comparative model,
this can be taken into account by averaging the cotunneling
times predicted by Heisenberg’s uncertainty principle, τh =
�/(εh − εd ), over all cotunneling processes, each characterized
by a different virtual energy, εh − εd , where μD < εh < μS .
Each cotunneling process occurs with probability P (ε′) =
2πρSρD|tS tD/(ε′ − εd − i�D/2)|2 [cf. Eq. (8)]. The averaged
cotunneling time is then

τ̄h =
∫ μS

μD
P (ε′)τh(ε′)∫ μS

μD
P (ε′)

= 1

�D
ln[(�D)2 + 4(μS − εd )2] − ln[(�D)2 + 4(μD − εd )2] + 2ln[μD − εd ] − 2ln[μS − εd ]

arctan[2(μS − εd )/(�D)] + arctan[2(μD − εd )/(�D)]
. (15)

The resulting τ̄h is plotted in Fig. 9, where it is compared
to τ̄SD. We see the following main differences: (i) there is,
approximately, an overall order of magnitude between the two
times, which can be attributed to an unknown prefactor in
the used τh(ε′) from the energy-time uncertainty principle;
(ii) whereas τ̄h decreases almost as 1/(μD − εd ) (it exhibits
almost a linear decrease in a LogLog plot) with a slight
dependence on VSD , the τ̄SD deviates from such a 1/(μD − εd )
descent and shows a stronger dependence on VSD; (iii) the
dependence on VSD is opposite in the two cases. With
increasing VSD , in τ̄h additional faster cotunneling processes
are added into the average and it becomes shorter, whereas in
τ̄SD the average time becomes longer. The latter two differences
demonstrate the inherent discrepancy between our simplistic
model for τ̄h, that takes into account only the finite width of the
dot level, versus the physical model of τ̄SD that incorporates
also an increased back-action from the detector by adding
phase space for slower QPC-assisted processes.

V. CONCLUSIONS AND OUTLOOK

We have presented a model for a direct detection of electron
cotunneling through a single-level quantum dot. The detector
has been modeled by a charge sensing QPC that is capacitively
coupled to the dot. In the regime where the transport through
the QPC is fully blocked when the dot is occupied, we obtain
a simplified model that allows us to incorporate a microscopic
description of the QPC into the rate equation formalism
of cotunneling through the quantum dot. We have, thus,
determined the current through the QPC (detector’s signal),

the cotunneling current in the dot (including the detector’s
back-action), as well as their correlations (related to weak
values and the cotunneling time).

We found that the detector’s back-action consists of three
different mechanisms: (i) a broadening of the dot energy levels,
(ii) a suppression of elastic (coherent) charge-transfer pro-
cesses, and (iii) an increase of phase space due to QPC-assisted
transport. In particular, the latter mechanism is responsible for
an increase of the cotunneling current upon increasing the
QPC voltage bias. The QPC current generally increases also
as a function of the dot voltage bias corresponding to the
increased probability of cotunneling processes. However, a
counterintuitive decrease of IQPC with the voltage bias across
the dot is predicted at small voltage biases. In this regime, the
dominant effect of the increase of voltage bias is a suppression
of the source-to-source, drain-to-drain, and drain-to-source
cotunneling processes, which in turn result in a suppressed
current through the QPC. Importantly, the current-current
correlations allow us, via a weak value based approach, to
access the cotunneling time. We find that the cotunneling time
obtained from such a direct measurement can be compared to
the time estimated from the energy-time uncertainty principle,
after taking into account proper averaging of all possible
cotunneling events.

Let us, finally, comment on the validity and applicability
of our simplified model. Our model essentially relies on the
assumptions that (i) transport through the QPC is fully blocked
for an occupied dot, and that (ii) only processes of single
electron transfer through the QPC during a cotunneling event
are considered. The former assumption is used in order to
obtain time-independent cotunneling rates in the presence
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FIG. 9. (Color online) LogLog plots of τ̄SD and τ̄h [cf. Eqs. (14)
and (15)] as a function of (μD − εd )/(�
) with ρ� = 0.15, eVLR =
1.5�
, and 
S = 
D . The plots of τ̄SD have an overall shorter
time (blue) than those of τ̄h (red). For both plotted times the
curves are for VSD = 2.5�
 (light), VSD = 5.5�
 (medium-light),
and VSD = 8.5�
 (dark). In the inset, we plot the approximate
slopes of the LogLog curves, defined as (∂lnτ̄ )/[∂ln(μD − εd )].
The overall magnitude difference between the two time models
can be attributed to an unknown prefactor in the time taken from
the energy-time uncertainty principle. The other differences can be
attributed to an inherent discrepancy between the two models, as
the former incorporates phase-space contributions of slower QPC-
assisted processes.

of the QPC. Introducing a Markovian thermalization time
in the QPC leads or cutting the infinite time integration in
the cotunneling rates by sequential tunneling rates should
cure this constraint. The latter condition appears to be quite
strong: in order to detect a cotunneling event of duration
τcot ∼ �/(μD − εd ), the detector is expected to have a large
bandwidth ��/τcot, corresponding to a large number of
charge-transfer events in the QPC per single cotunneling
event [20]. In our model we consider the opposite regime.
Nonetheless, the detector is equally sensitive to the short-lived
virtual cotunneling states, at the working point defined by (i),
since cotunneling processes are the only possible mechanism
of activating a current signal in the QPC. This implies that
any weak signal in the detector corresponds to obtaining full
information on the happening of cotunneling, which makes
our measurement of a partial-collapse type (i.e., a strong
measurement that happens with a small probability). Hence,
unlike in a weak measurement case, the measured cotunneling
time is affected by back-action.

Even in its simplified form, it is important to stress that
our simplified theoretical model provides a valid description
for experiments at the pinched-off working point of the
QPC. In this working point, the only approximation is the
assumption that the relevant rates are those corresponding to
single electron transfer across the QPC. Though this is the key
simplification, it is also a realistic physical approximation.
What our approximation neglects are the coherences between
subsequent electrons tunneling across the QPC, which decay
very fast due to the relaxation processes of electrons in the
bulk leads. Hence, contributions from a higher number of
transported QPC electrons per cotunneling process are small

(cf. Fig. 4). In other words, the virtual cotunneling time is so
short that the assumption Dτcot � 1 is physically sensible.

Spinful electrons. In order to highlight the interplay between
measurement and coherent transport, we have assumed that
the electrons are spinless. Whereas spin physics do not play an
important role in QPC transport, in the dot system the Kondo
effect [44] could qualitatively change our predictions. Our
treatment is immediately applicable for polarized electrons,
e.g., in the presence of a strong magnetic field, which could be
realized in experiments. Moreover, also in the case of complete
spin degeneracy, where Kondo physics takes place, our
approach remains valid as long as the Kondo temperature Tk ∼√

ρα|tα|2Ue−U/(2ρα |tα |2), with U the charging energy on the dot,
is smaller than the different energy scales of the system, e.g.,
TK � T � eVSD . In this regime, the system is not sensitive
to the Kondo physics and our treatment is essentially correct.
Note that this specific limit can be achieved by making the tun-
neling between leads and dot arbitrarily weak. Importantly, ex-
tending our analysis to the Kondo regime is extremely interest-
ing, as it features an interplay between transport through a truly
many-body correlated virtual state and weak measurement.

Since our model can describe realistic configurations
[23–31], it becomes interesting to generalize it to include
experimentally relevant effects, e.g., finite temperature, many-
level dots, spin physics, and to extend the present results to the
more general regime of weak measurement.
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APPENDIX: DERIVATION OF THE COTUNNELING
RATES IN THE PRESENCE OF COUPLED QPC

We present here a rigorous model for the calculation of the
cotunneling rates appearing in Eqs. (8) and (9). We start by
presenting a general model for the analysis of a QPC current
in Appendix A 1. Using this formalism we derive the rates in
Appendix A 2.

1. QPC analysis

We present here the microscopic derivation of the tunneling
probability amplitudes describing electron transport in the
QPC. This derivation is closely related to the one presented in
Ref. [32].

The QPC is out-of-equilibrium, namely, the chemical
potentials of the left and right leads are different, μL =
eVLR/2, μR = −eVLR/2. Hence, the electron creation and
annihilation operators are defined with respect to a vacuum
state |0 ; e〉 in which all the levels in the left (right) lead are
initially filled up to the Fermi energy μL (μR). We assumed
here that the dot is initially empty, denoted by e. Therefore,
the vacuum state |0 ; e〉 decays exponentially to states with
transmitted electrons from the left to the right leads (e.g.,
a
†
r al|0 ; e〉, with an electron in the right lead and a hole in the

205413-9



ODED ZILBERBERG, ASSAF CARMI, AND ALESSANDRO ROMITO PHYSICAL REVIEW B 90, 205413 (2014)

left lead, a
†
r a

†
r ′alal′ |0 ; e〉 with two electrons in the right lead

and two holes in the left lead, etc.).
In the absence of interaction with the dot, the many-body

wave function that describes the electron dynamics in the QPC
can be written in the following form:

|�(t); e〉 =
[
b0(t) +

∑
l1,r1

bl1r1 (t)a†
r1
al1

+
∑

l1<l2,r1<r2

bl1l2r1r2 (t)a†
r1
a†

r2
al1al2 + · · ·

]
|0 ; e〉,

(A1)

where bli ,ri
(t) with li ,ri = l1, . . . ,li ,r1, . . . ,ri , are the time-

dependent probability amplitudes to find the system in a state
with i electrons transmitted from left to right. The indices
li ,ri label the momenta of the transmitted electrons. The
initial condition is usually chosen to be bli ,ri

(0) = δi0, and
the probabilities are summed to 1,∑

i

∑
li ,ri

∣∣bli ,ri
(t)

∣∣2 = 1. (A2)

The QPC is capacitively coupled to the quantum dot, i.e.,
the tunneling amplitude � is modulated by the charge on the
dot. Hence, the wave function of the electrons in the QPC is
also modulated by the charge on the dot.

We denote the vacuum state (of the QPC) in the presence
of an occupied dot with |0 ; f 〉. Hence, the many-body wave

function of Eq. (A1) becomes

|�̃(t); f 〉 =
[
b̃0(t) +

∑
l1,r1

b̃l1r1 (t)a†
r1
al1

+
∑

l1<l2,r1<r2

b̃l1l2r1r2 (t)a†
r1
a†

r2
al1al2 + · · ·

]
|0 ; f 〉,

(A3)

where b̃li ,ri
(t) are the time-dependent probability amplitudes

in the presence of an occupied dot. These amplitudes satisfy
the same normalization condition as the amplitudes bli ,ri

(t).
The explicit expressions for bli ,ri

(t) [b̃li ,ri
(t)] are obtained

by substituting Eq. (A1) [Eq. (A3)] into the Schrödinger
equation i�|�̇(t)〉 = HQPC|�(t)〉 and choosing appropriate
boundary conditions. Note that the time evolution of Eq. (A1)
is performed by HQPC = Hdet, and the evolution in time of
Eq. (A3) is performed by HQPC = Hdet + Hint. Therefore, the
form of the coefficients b̃(t) is the same as that of b(t) with
� replaced by �̃ ≡ � + δ�. Thus, the QPC current can be
used to measure the charge of the dot. The strength of the
measurement is encoded in the tunneling amplitudes, � and
�̃. In the following it suffices to present the formalism for the
case of an empty dot.

We substitute Eq. (A1) into the Schrödinger equation.
Performing the Laplace transform

B(E) = 1

�

∫ ∞

0
ei(E t/�)b(t)dt, (A4)

yields coupled equations for B(E):

EB0(E) −
∑
l1r1

�Bl1r1 (E) = ib0(0), (A5)

(
E + El1 − Er1

)
Bl1r1 (E) − �B0(E) −

∑
l2r2

�Bl1l2r1r2 (E) = ibl1r1 (0), (A6)

(
E + El1 + El2 − Er1 − Er2

)
Bl1l2r1r2 (E) − �Bl1r2 (E) + �Bl2r2 (E) −

∑
l3r3

�Bl1l2l3r1r2r3 (E) = ibl1l2r1r2 (0), . . . , (A7)

where bliri
(0) are the initial conditions.

Now, a recursive replacement of each of the amplitudes
B in the sum,

∑
�B, by its expression from the subsequent

equation, e.g., plugging Bl1r1 (E) from Eq. (A6) into Eq. (A5),
yields[
E −

∑
l1r1

�2

E+ El1− Er1

]
B0(E) −

∑
l1l2r1r2

�2

E+ El1− Er1

Bl1l2r1r2 (E)

= ib0(0) + i�
∑
l1r1

bl1r1 (0)

E + El1 − Er1

. (A8)

We replace sums by integrals,
∑

l,r → ∫
ρL(El)ρR(Er ) dEldEr ,

where ρL and ρR are the density of states in the left and right
leads, respectively. Consequently, the first sum in Eq. (A8) has
two contributions: (i) a sum over the singular part that yields
iπ�2ρLρRVLR , and (ii) as sum over the principal value that
usually cancels out (unless the pole is close to the Fermi energy
which causes a rescaling of the energy levels). Usually, the

second sum in Eq. (A8) can be neglected. Indeed, the prob-
ability amplitudes B(E) take the form of Green’s functions.
Hence, replacing Bl1l2r1r2 (E) ≡ B(E,El1 ,El2 ,Er1 ,Er2 ) ∼ 1/(E +
El1 + El2 − Er1 − Er2 ), the corresponding integral vanishes,
provided that VLR � �2ρ. This is true up to corrections due
to the initial conditions. In fact, B(E,El1 ,El2 ,Er1 ,Er2 ) ∼ 1/(E +
El1 + El2 − Er1 − Er2 ) + bl1l2r1r2 (0). If there is a nonvanishing
initial condition on bl1l2r1r2 (0) �= 0, we replace the amplitude
Bl1l2r1r2 (E) by its expression obtained from the subsequent
equation. The integral remains vanishing but we take into
account the possible initial conditions that may appear in the
other coupled equations.

Repeating this procedure for the other equations gives

(E + i�D/2)B0(E)

= i
∑
j=0

⎡
⎣�j

∑
lj rj

blj rj
(0)∏j

k=1

[
E + ∑k

m=1(Elm − Erm
)
]
⎤
⎦ , (A9)
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(
E + El1 − Er1 + i�D/2

)
Bl1r1 (E) − �B0(E) = i

∑
j=1

⎡
⎣�j−1

∑
lj rj

blj rj
(0)δl1l1j

δr1r1
j∏j

k=2

[
E + ∑k

m=1(Elm − Erm
)
]
⎤
⎦ , (A10)

(
E + El1 + El2 − Er1 − Er2 + i�D/2

)
Bl1l2r1r2 (E) − �Bl1r1 (E) + �Bl2r2 (E) = i

∑
j=2

⎡
⎣�j−2

∑
lj rj

blj rj
(0)δl1l1j

δr1r1
j
δl2l2j

δr2r2
j∏j

k=3

[
E + ∑k

m=1(Elm − Erm
)
]
⎤
⎦ ,

. . . , (A11)

where D = 2π�2ρLρReVLR/�.
Performing the inverse Laplace transform

b(t) = 1

2π

∫ ∞

−∞
e−i

E t/

� B(E)dE , (A12)

we can incrementally obtain the time-dependent probability
amplitudes. The solutions depend on the initial conditions. Let
us first show the solution taking the standard initial condition
bliri

(0) = δi0

b0(t) = e−(D/2)t , (A13)

bl1r1 (t) = �
El1 −Er1

e−(D/2)t [1 − ei[(El1 −Er1 )t/�]], . . . . (A14)

Taking, for example, the initial conditions bliri
(0) =

δi1δli l0i
δrir0

i
, we obtain

b0|l0
1 r0

1
(t) = �

El0
1
− Er0

1
− i D2

e−(D/2)t [1 − e
i[(E

l01
−E

r0
1
−i(D/∈))t/�]

],

(A15)

bl1r1|l0
1 r0

1
(t) = e−(D/2)t ei[(El1 −Er1 )t/�]δl1l

0
1
δr1r

0
1
+ O(�2), . . . .

(A16)

We shall see below that these solutions are relevant for the
calculation of the rates in the toy model regime.

2. Derivation of the tunneling rates

We use a rate equation formalism in order to describe the
transport through the setup of a quantum dot that is coupled
to a QPC. The input for the rate equation is tunneling rates. In
this Appendix, we provide a full derivation of these rates up to
fourth order in the tunneling elements of the dot. We work in
the interaction picture with respect to HT [see Eq. (5)]. As we
have seen in the main text, since the QPC dynamics interplays
with the charge on the dot [cf. Eqs. (A1) and (A3)], its time
evolution is also affected by HT .

To zeroth order in HT , there are no tunneling events in
the dot and the only dynamics are of the QPC. For example,
starting from the initial state with 0 electrons that have tunneled
through the QPC and empty dot, |0 ; e ; t = 0〉, the probability
amplitude to end up at time t with i electrons that have tunneled
through the QPC with momenta li ,ri is

〈li ,ri ; α ; t |0 ; e ; t = 0〉(0) = bli ,ri
(t)δeα, (A17)

where α is the charge on dot. Similarly,

〈li ,ri ; α ; t |0 ; f ; t = 0〉 = b̃li ,ri
(t)δf α. (A18)

First order. To the lowest order in HT , the transition rates
of the dot can be calculated using Fermi’s “golden rule.” The
probability amplitude for a sequential tunneling of an electron
with energy ε from the source to the dot accompanied by
tunneling through the QPC is

〈li ,ri ; f ; t |0 ; e ; t = 0〉(1) = − i

�

∫ t

0
dt ′〈li ,ri ; f |e−i(H0/�)t ei(H0/�)t ′HT e−i(H0/�)t ′ |0 ; e〉

= − i

�
t∗S

∫ t

0
dt ′

∑
j

∫ μL

−∞
dlj ρ

j

L

∫ ∞

μR

drj ρ
j

Rei[(εd−ε)/�]t ′ b̃li ,ri |lj ,rj
(t − t ′)blj ,rj

(t ′), (A19)

where tS,tD are the tunneling coefficients, blj ,rj
(t ′) is the probability amplitude that, up to time t ′, j electrons with momenta lj

were transmitted to momenta rj , and bli ,ri |lj ,rj
(t − t ′) is the time-dependent conditional probability amplitude to find the system

at time t in a state with i electrons transmitted from left momenta li to right momenta ri , given that the aforementioned j electrons
were transmitted up to time t ′. Similarly, tunneling from the dot to the lead reads

〈li ,ri ; e ; t |0 ; f ; t = 0〉(1) = − i

�

∫ t

0
dt ′〈li ,ri ; e|e−i(H0/�)t ei(H0/�)t ′HT e−i(H0/�)t ′ |0 ; f 〉

= − i

�
tD

∫ t

0
dt ′

∑
j

∫ μL

−∞
dlj ρ

j

L

∫ ∞

μR

drj ρ
j

Re−i[(εd−ε)t ′/�]bli ,ri |lj ,rj
(t − t ′)b̃lj ,rj

(t ′). (A20)

Second order. To next order in HT , the electron can virtually tunnel through the dot. We write the probability amplitude for a
cotunneling event where an electron with energy ε tunnels from the source to the dot and an electron tunnels from the dot to the
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drain with energy ε′. During this process i electrons tunnel through the QPC,

〈li ,ri ; e ; t |0 ; e ; t = 0〉(2) =
(

− i

�

)2 ∫ t

0
dt ′

∫ t ′

0
dt ′′〈li ,ri ; e|e−i(H0/�)(t−t ′)HT e−i(H0/�)(t ′−t ′′)HT e−i(H0/�)t ′′ |0 ; e〉

= − t∗S tD

�2

∫ t

0
dt ′

∫ t ′

0
dt ′′

∑
j,k

∫ μL

−∞
dlkρk

L

∫ ∞

μR

drkρ
k
R

∫ μL

−∞
dlj ρ

j

L

∫ ∞

μR

drj ρ
j

R

× e−i[(εd−ε′)t ′/�]e−i[(ε−εd )t ′′/�]bli ,ri |lk ,rk
(t − t ′)b̃lk ,rk |lj ,rj

(t ′ − t ′′)blj ,rj
(t ′′), (A21)

blj ,rj
(t ′′) is the probability amplitude that, up to time t ′′, j electrons with momenta lj were transmitted to momenta rj while

the dot was empty, b̃lk ,rk |lj ,rj
(t ′ − t ′′) is the time-dependent conditional probability amplitude to find the system at time t ′ in a

state with k electrons transmitted from left momenta lk to right momenta rk after a time evolution from time t ′′ at a presence of
a full dot, given that the aforementioned j electrons were transmitted up to time t ′′, and bli ,ri |lk ,rk

(t − t ′) is the time-dependent
conditional probability amplitude to find the system at time t in a state with i electrons transmitted from left momenta li to right
momenta ri after a time evolution from time t ′ at a presence of an empty dot, given that the aforementioned k electrons were
transmitted up to time t ′.

Similarly, the cotunneling event of an electron with energy ε to tunnel in and ε′ tunnels out with an initially full dot is

〈li ,ri ; f ; t |0 ; f ; t = 0〉(2) =
(

− i

�

)2 ∫ t

0
dt ′

∫ t ′

0
dt ′′〈li ,ri ; f |e−i(H0/�)(t−t ′)HT e−i(H0/�)(t ′−t ′′)HT e−i(H0/�)t ′′ |0 ; f 〉

= − t∗S tD

�2

∫ t

0
dt ′

∫ t ′

0
dt ′′

∑
j,k

∫ μL

−∞
dlkρk

L

∫ ∞

μR

drkρ
k
R

∫ μL

−∞
dlj ρ

j

L

∫ ∞

μR

drj ρ
j

R

× e−i[(ε−εd )t ′/�]e−i[(εd−ε′)t ′′/�]b̃li ,ri |lk ,rk
(t − t ′)blk ,rk |lj ,rj

(t ′ − t ′′)b̃lj ,rj
(t ′′). (A22)

Let us evaluate Eq. (A22) for the case of the toy model
described in the main text, i.e., for �̃ = 0. Notice that, in this
toy model regime, no transport occurs in the QPC when the dot
is full. As a result, in Eq. (A22), we can set j = 0 and i = k,
leading to a cancellation of the internal energy integrals in the
probability amplitude, which sum over higher-order coherent
transport through the QPC.

We begin with considering the probability amplitude for a
cotunneling through the dot in the presence of zero electrons
passing through the QPC. Using Eq. (A13), Eq. (A22) in this
case becomes

〈0 ; f ; t |0 ; f ; t = 0〉(2)

= − t∗S tD

�2

∫ t

0
dt ′

∫ t ′

0
dt ′′e−i[(ε−εd )t ′/�]e−i[(εd−ε′)t ′′/�]e−(D/2)t .

(A23)

Performing the time integrals and taking the modulo square
of the result yields a probability for this process to occur
for equal source and drain energies ε (different ε and ε′ have

zero probability). Taking the time derivative of this probability
results in the integrand of the rate appearing in Eq. (8).

We now consider the probability amplitude for a cotunnel-
ing through the dot in the presence of one electron passing
through the QPC. Using Eqs. (A13), (A14), and (A16), the
expression becomes

〈0 ; f ; t |0 ; f ; t = 0〉(2)

= − t∗S tD

�2

∫ t

0
dt ′

∫ t ′

0
dt ′′e−i[(ε−εd )t ′/�]e−i[(εd−ε′)t ′′/�]

× ei[(El1 −Er1 )(t−t ′)/�] �

El1 − Er1

× e−(D/2)(t ′−t ′′)[1 − ei[(El1 −Er1 )(t ′−t ′′)/�]]. (A24)

Here, too, the evaluation of Eq. (A24) followed by modulo
square of the result yields a probability for the process to
occur. The obtain rate is, then, integrated upon in Eq. (9).
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Scheller, D. M. Zumbühl, J. D. Zimmerman, and A. C. Gossard,
J. Low Temp. Phys. 175, 784 (2014).

[32] S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997).
[33] A. Romito, Y. Gefen, and Y. M. Blanter, Phys. Rev. Lett. 100,

056801 (2008).
[34] D. V. Averin and Y. V. Nazarov, Phys. Rev. Lett. 65, 2446

(1990).
[35] E. V. Sukhorukov, A. N. Jordan, S. Gustavsson, R. Leturcq,

T. Ihn, and K. Ensslin, Nat. Phys. 3, 243 (2007).
[36] J. J. Sakurai and S. F. Tuan, Modern Quantum Mechanics

(Addison-Wesley, Reading, MA, 1985), Vol. 1.
[37] A. N. Korotkov, Phys. Rev. B 49, 10381 (1994).
[38] J. Koch, F. von Oppen, and A. V. Andreev, Phys. Rev. B 74,

205438 (2006).
[39] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott,

M. Neeley, M. Steffen, E. M. Weig, A. N. Cleland, J. M.
Martinis, and A. N. Korotkov, Science (New York) 312, 1498
(2006).

[40] L. P. Pryadko and A. N. Korotkov, Phys. Rev. B 76, 100503
(2007).

[41] N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz,
E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M.
Martinis, and A. N. Korotkov, Phys. Rev. Lett. 101, 200401
(2008).

[42] O. Zilberberg, A. Romito, and Y. Gefen, Phys. Scr. T151, 014014
(2012).

[43] In Sec. III 1, we see that for our case where δD = D, one of
the back-action mechanisms of the QPC on the dot system is to
give the dot level a finite width �D. By increasing D one can
give the detector a sufficiently large bandwidth to detect single
cotunneling events, τcotD � 1, where τcot ∼ �/(μD − εd ) from
the Heisenberg’s uncertainty principle. This implies that, as soon
as D is large enough to give a large bandwidth to the detector,
the induced level broadening becomes comparable with the dot’s
energetic distance from the leads. Hence the QPC smears the
dot level into an incoherent sequential transport regime through
QPC-assisted transport.

[44] A. C. Hewson, The Kondo Problem to Heavy Fermions
(Cambridge University Press, Cambridge, 1997).

205413-13

http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevLett.102.173601
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevA.80.041803
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevA.82.011802
http://dx.doi.org/10.1103/PhysRevA.82.011802
http://dx.doi.org/10.1103/PhysRevA.82.011802
http://dx.doi.org/10.1103/PhysRevA.82.011802
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevLett.106.080405
http://dx.doi.org/10.1103/PhysRevLett.110.170405
http://dx.doi.org/10.1103/PhysRevLett.110.170405
http://dx.doi.org/10.1103/PhysRevLett.110.170405
http://dx.doi.org/10.1103/PhysRevLett.110.170405
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1103/PhysRevB.27.6178
http://dx.doi.org/10.1103/PhysRevB.90.085417
http://dx.doi.org/10.1103/PhysRevB.90.085417
http://dx.doi.org/10.1103/PhysRevB.90.085417
http://dx.doi.org/10.1103/PhysRevB.90.085417
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevLett.92.226801
http://dx.doi.org/10.1103/PhysRevLett.92.226801
http://dx.doi.org/10.1103/PhysRevLett.92.226801
http://dx.doi.org/10.1103/PhysRevLett.92.226801
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://dx.doi.org/10.1103/PhysRevLett.104.196801
http://dx.doi.org/10.1063/1.4729388
http://dx.doi.org/10.1063/1.4729388
http://dx.doi.org/10.1063/1.4729388
http://dx.doi.org/10.1063/1.4729388
http://dx.doi.org/10.1038/nphys2326
http://dx.doi.org/10.1038/nphys2326
http://dx.doi.org/10.1038/nphys2326
http://dx.doi.org/10.1038/nphys2326
http://dx.doi.org/10.1088/1367-2630/14/8/083003
http://dx.doi.org/10.1088/1367-2630/14/8/083003
http://dx.doi.org/10.1088/1367-2630/14/8/083003
http://dx.doi.org/10.1088/1367-2630/14/8/083003
http://dx.doi.org/10.1088/1367-2630/15/3/033011
http://dx.doi.org/10.1088/1367-2630/15/3/033011
http://dx.doi.org/10.1088/1367-2630/15/3/033011
http://dx.doi.org/10.1088/1367-2630/15/3/033011
http://dx.doi.org/10.1007/s10909-014-1169-6
http://dx.doi.org/10.1007/s10909-014-1169-6
http://dx.doi.org/10.1007/s10909-014-1169-6
http://dx.doi.org/10.1007/s10909-014-1169-6
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevLett.100.056801
http://dx.doi.org/10.1103/PhysRevLett.100.056801
http://dx.doi.org/10.1103/PhysRevLett.100.056801
http://dx.doi.org/10.1103/PhysRevLett.100.056801
http://dx.doi.org/10.1103/PhysRevLett.65.2446
http://dx.doi.org/10.1103/PhysRevLett.65.2446
http://dx.doi.org/10.1103/PhysRevLett.65.2446
http://dx.doi.org/10.1103/PhysRevLett.65.2446
http://dx.doi.org/10.1038/nphys564
http://dx.doi.org/10.1038/nphys564
http://dx.doi.org/10.1038/nphys564
http://dx.doi.org/10.1038/nphys564
http://dx.doi.org/10.1103/PhysRevB.49.10381
http://dx.doi.org/10.1103/PhysRevB.49.10381
http://dx.doi.org/10.1103/PhysRevB.49.10381
http://dx.doi.org/10.1103/PhysRevB.49.10381
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1103/PhysRevB.76.100503
http://dx.doi.org/10.1103/PhysRevB.76.100503
http://dx.doi.org/10.1103/PhysRevB.76.100503
http://dx.doi.org/10.1103/PhysRevB.76.100503
http://dx.doi.org/10.1103/PhysRevLett.101.200401
http://dx.doi.org/10.1103/PhysRevLett.101.200401
http://dx.doi.org/10.1103/PhysRevLett.101.200401
http://dx.doi.org/10.1103/PhysRevLett.101.200401
http://dx.doi.org/10.1088/0031-8949/2012/T151/014014
http://dx.doi.org/10.1088/0031-8949/2012/T151/014014
http://dx.doi.org/10.1088/0031-8949/2012/T151/014014
http://dx.doi.org/10.1088/0031-8949/2012/T151/014014



