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We present a measurement protocol for discriminating between two different quantum states of a qubit

with high fidelity. The protocol, called null value, is comprised of a projective measurement performed on

the system with a small probability (also known as partial collapse), followed by a tuned postselection. We

report on an optical experimental implementation of the scheme. We show that our protocol leads to an

amplified signal-to-noise ratio (as compared with a straightforward strong measurement) when discerning

between the two quantum states.
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The notion of ‘‘measurement’’ was part of the early
framework of quantum mechanics. Since early develop-
ments, the discord between information acquisition on the
system and the corresponding disturbance of the system’s
state became clear. The contest of obtaining information
while keeping minimal disturbance is still an active and
vibrant field of study that has branched off into many
subtopics. Of note and of great practical interest in quan-
tum information processing is the study of quantum state
discrimination [1–4]. The ability to optimally discriminate
between nonorthogonal quantum states depends on the
fidelity of the measurement apparatus and on the amount
of prior knowledge one has on the states between which he
wants to distinguish.

Here we introduce a novel procedure to enhance the
discrimination fidelity between two quantum states. Our
procedure introduces the notion of quantum measurements
with postselection in the field of quantum information
processing. Our two-step measurement protocol is related,
but differs from, the celebrated weak value (WV) measure-
ment protocol, where postselected quantum measurements
were first introduced [5].We choose to demonstrate our new
approach by focusing on a specific discrimination problem.
In conjunction with our theoretical analysis, we report on
experimental results involving classical light, which dem-
onstrate the practicality of our measurement protocol,
denoted ‘‘null value’’ (NV) measurement protocol.

In the original works on quantum state discrimination,
the observer is handed a single copy of the state to be
discriminated, which may be either one of the a priori
known pure states jAi and jBi. Well adapted to this task is
the approach known as minimum error state discrimination
[1], for which it was shown that the minimum error is
obtained by optimizing the axis of a standard two-outcome
measurement. A second approach is the unambiguous state

discrimination [6–8] where the measurement produces
either an error-free or an inconclusive result; i.e., the
measurement apparatus is oriented such that it has three
outcomes—the state is either A, B, or unknown.
Developments on the original works led to many vari-

ants of state discrimination, such as discrimination
between two a priori unknown pure states [9,10], as well
as discrimination between mixed states [11,12]. Further
works (see, e.g., Refs. [13,14]) introduced also the notion
of multicopy state discrimination (employing a number of
copies of the state to be discriminated). For such schemes,
the notion of individual vs collective measurements was
introduced depending on whether the strategy consists of
individual measurements each of which performed sepa-
rately on a single copy, or a single measurement which is
performed on all the copies as a whole. Notably, however,
in most standard measurement procedures one performs
individual measurements on N single copies. Thus, it is
necessary to define statistical tests to quantify the fidelity
of the discrimination [15].
In the present scheme, we study a specific variant of

the quantum state discrimination problem: the observer
prepares a device (a protocol) that should discriminate
whether the provided state is equal to the known state
jc 0i or not, i.e., is some other nearby state jc �i. Noting
the context of earlier works on state discrimination, our
variant applies to both single-copy and many-copy analy-
ses [16]. In the former, due to the a priori unknown
orientation of jc �i, a minimum error state discrimination
is underconstrained. Additionally, an unambiguous state
discrimination is impossible as the unknown state would
generate both erroneous and inconclusive results. Such a
case, dubbed ‘‘intermediate discrimination scheme’’ has
been treated for discrimination between two different
states (see, e.g., Refs. [17–19]).
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We present our analysis henceforth for discrimination
between two-level states (qubits). Assuming that the
probability distribution of jc �i is uniform on the Bloch
sphere in some area around jc 0i, we have analyzed the
single-copy minimum error and the single-copy intermedi-
ate schemes vis-a-vis our discrimination problem [16]. For
the former, we obtain that, regardless of the area of the
distribution, minimum error is obtained for a standard
measurement in the direction orthogonal to jc 0i. For the
latter, we recall that a three-outcome measurement on a
qubit can be realized by two-consecutive measurements
[3]. Their optimal orientations depend on the area of the
distribution. For discrimination between nearby states
(jc 0i or not jc 0i), the optimal orientations of both mea-
surements are nearly orthogonal to jc 0i. By contrast, when
the probability distribution of jc �i covers the entire Bloch
sphere the first of the two measurements is oriented in the
direction of jc 0i itself.

Alas, a single-copy approach is unfit for most experi-
mental situations due to measurement device imperfec-
tions and noise. One then resorts to a multicopy
approach. Here one considers a statistical test (signal-to-
noise ratio, SNR) that, given N replicas of the state, would
result in a discrimination outcome (jc 0i or not jc 0i) with
some given fidelity. Below we define such SNRs and
employ them to compare a multicopy version of both the
minimum error scheme and the intermediate scheme,
focusing on a discrimination between nearby states. For
the intermediate scheme we consider a correlated signal,
dubbed null value signal, for a reason that will be made
clear below. The SNR obtained by a NV signal proves to be
higher than that obtained by single von Neumann measure-
ments. We further show that the analysis in terms of
optimal SNR fully agrees with a minimization of error
probability in the single-copy cases [16].

Let us begin with analyzing the SNR of the discrimina-
tion, achieved through individual standard strong measure-
ment, Ms, on N copies of a qubit. In this benchmark case,
the occupation of the state jMi, defined by polar angle �M,
is measured [20]. The probabilities to detect the qubit
states jc 0i and jc �i with polar angles 0 and � in jMi
in any single attempt are PðMs;0Þ ¼ jhMjc 0ij2 and

PðMs;�Þ ¼ jhMjc �ij2, respectively. We define a statistical

measure to be the difference between the number of posi-
tive detections

Sstd ¼ NjPðMs;�Þ � PðMs;0Þj ffi jNs;� � Ns;0j; (1)

where the right-hand side is the measured estimator. The
signal is a function of two variables SstdðNs;�; Ns;0Þ. The
uncertainty in the signal is then given by

�Sstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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We assume Poissonian noise (which is dominant for coher-
ent light experiments discussed below), i.e., �N2

s;� ¼ Ns;�

and �N2
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; (3)

where the approximation is for � � 1. Indeed, in this
approach the maximal SNR is obtained when the measure-
ment orientation, jMi, is orthogonal to jc 0i. This corre-
sponds to the optimal measurement orientation obtained by
the single-copy analysis.
Turning to the multicopy intermediate discrimination,

we define a SNR by constructing a correlated outcome out
of the three-outcome measurement. Recall that such a
measurement is implemented by measuring the qubit state
twice (cf. Fig. 1) [16]. The first measurement Mw is a
strong (projective) measurement which is performed on
the system with small probability. Here the basis states
fj �Mi; jMig are measured with probabilities fp0; p1g,
respectively. For simplicity, hereafter, we assume that
only the state jMi is measured with probability p1 ¼ p
and p0 ¼ 0. If the detector ‘‘clicks’’ (the measurement
outcome is positive), the qubit state is destroyed. Very
importantly, having a ‘‘null outcome’’ (no click) still
results in a back action on the system. We refer to this
stage of the measurement process as ‘‘partial collapse’’
[21]. Subsequently the qubit state is (strongly) measured a
second time (postselected), Ms, to be in the state jc fi
(click) or j �c fi (no click), where jc fi has a polar angle

of �f. We propose to discriminate between the two possible

initial qubit states by individual application of this mea-
surement protocol on N copies of jc 0i and jc �i.
Motivated by WVs, the compared observables are the
countercausal conditional outcome of (having a click the
first time conditional to not having a click the second time),
denoted by PðMw;0j �Ms;0Þ and PðMw;�j �Ms;�Þ, respectively.
Events in which the qubit is measured strongly (in the

FIG. 1 (color online). A tree diagram of the qubit state evolu-
tion under subsequent partial-collapse measurements; the re-
spective probabilities are indicated: PðMwÞ [Pð �MwÞ] is the
probability that the detector ‘‘clicks’’ (no ‘‘click’’) upon the first
measurement. If it does ‘‘click,’’ the system is destroyed; hence,
there are no clicks upon further measurements [this is marked by
a (red) X]. Note that following Pð �MwÞ (null detection of the
qubit), the back action rotates jc i into jc pi.
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second measurement), Ms, are discarded. In other words,
we define our signal to be

SNV � NjPðMw;�j �Ms;�Þ � PðMw;0j �Ms;0Þj: (4)

Note that this procedure can also be written as a statistical
correlation between outcomes of a positive-operator
valued measure (POVM) [16].

Our protocol takes advantage of the statistical correla-
tions between the partial-collapse and strong measure-
ments. To shed some light on its outcome we calculate
explicitly the conditional probabilities following the
measurement procedure sketched in Fig. 1. For example,
if the first measurement results in a ‘‘click’’ the system’s
state is destroyed and any subsequent measurement on the
system results in a null result. This represents a classical
correlation between the two measurements. By contrast,
Pð �Msj �MwÞ embeds nontrivial quantum correlations [22].
Using Bayes theorem, we can write PðMw;�j �Ms;�ÞffiNw;�=
ðNw;�þNp;�Þ, where we used the measured estimator

for the conditional probability, namely, we denoted
Nw;� ffi NPðMw;�Þ as the number of clicks in the (first)

partial-collapse measurement and Np;� ffi NPð �Mw;�Þ �
Pð �Ms;�j �Mw;�Þ as the number of no clicks in the (second)

postselection [16]. This finally leads to the measured signal

SNV ffi N

�
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�
�
�
�
�
�
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�

: (5)

In complete analogy with the case of a single strong
measurement, the signal is now a function of four variables
SNVðNw;�; Np;�; Nw;0; Np;0Þ, and we can define the uncer-

tainty, �SNV, in the statistical test [cf. Eq. (2)] [16].
We focus on obtaining a large SNRNV ¼ SNV=�SNV for

discriminating between the two states. It depends on the
choice of the measurement orientations, jMi and jc fi. We

propose to perform a first measurement that will have a
back action on both states jc 0i and jc �i but is nearby the
optimal orientation of the single measurement case, i.e.,
taking �M ¼ �=2þ �M. We propose two possible mea-
surement schemes for obtaining a large SNRNV. In the first
scheme we choose the postselection such that the reference
state satisfies jh �c fjc 0ij2 ¼ 0. This means that the refer-

ence state jc 0i would have always clicked in the second
measurement had it not been first measured by the partial
collapse. We call this scheme A. Alternatively, in scheme
B, we choose the postselection such that jh �c fjc 0;pij2 ¼ 0:

the null outcome rotates the reference state and it always
clicks in the second measurement. For both schemes, we
obtain

SNRNVðNÞ � sin2½��
sin½�M þ �� ffiffiffiffi

p
p

ffiffiffiffi

N
p

; (6)

which becomes large for p ! 0 (weak partial collapse)
[16]. This is because the condition Nw;0 	 Np;0 is satisfied

vis-a-vis the NV signal of the reference state. Varying �

such that jhc �jc 0ij2 decreases corresponds to a decrease
ofNw;� and an increase ofNp;�. A large SNRNV is obtained

when PðMw;�j �Ms;�Þ crosses to a regime where Nw;� 

Np;�. This happens first with scheme A. Hence, scheme

A produces a larger SNRNV for smaller �; scheme B leads
to far larger SNRNV for larger �. Note, also, that taking the
partial-collapse measurement to be more orthogonal to
jc 0i (�M) increases the SNR for � � 1.
The postselection measurement orientations, which pro-

duce the high SNR, coincide with those obtained in the
single-copy analysis, i.e., jhMjc 0ij � 0, p � 1, for � � 1
[16]. This suggests that though the spirit of the present
multicopy analysis is quite different from the single-copy
analysis, both analyses give similar guidance for optimally
discriminating between nonorthogonal states. We reiterate,
however, that (as compared with the single-copy approach)
the statistical SNR approach (based on NV) is better suited
to most experimental settings in which noise and experi-
mental imperfections are present.
We measure the NV signal and its amplified SNR using

an optical technique sketched in Fig. 2. Here, the qubits are
replaced by photons from a dramatically attenuated coher-
ent beam, and the measurement device consists of polar-
ization optics and single-photon detectors. We encode the
states in the polarization degree of freedom by passing the
beam through a polarizer (P1), giving jc �i ¼ cos½��
�M�j0i þ sin½�� �M�j1i, where fj0i; j1ig correspond to
the horizontal and vertical polarization states, respectively.
We perform a (weak) partial-collapse measurement by
sending the photons through a glass window (W) set at
the Brewster angle. The window therefore weakly reflects
vertically polarized light, with probability p ¼ 0:15, and
passes horizontal light with near unit probability. We set
the second polarizer (P2) in the transmitted arm to strongly
project the photon into the state j �c fi which is represented

FIG. 2 (color online). A sketch of the experimental apparatus.
Single spatial mode light from a helium-neon laser (HeNe)
passes through a neutral density filter (ND) followed by a half-
wave plate (HWP) and polarizer (P1) to prepare the initial state.
During data acquisition, the HWP is used to maintain a constant
photon flux which is measured using a removable mirror (RM).
A glass window (W) weakly reflects vertically polarized light.
Photons that pass through the window are then projected onto a
linear polarization state with a second polarizer (P2). The
photons in each spatial mode are passed through colored glass
filters to block background, collected via a multimode fiber and
sent to single photon counting modules (DN , DW and DP).
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by Scheme A or B, as desired [23]. From the resulting
photon detections we obtain the values of Nw;�, Np;�, Nw;0,

and Np;0 and their variances [16].

We consider Schemes A and B for �M ¼ 0:1 rad and
plot the results in Fig. 3. We find that, for scheme A, we can
discriminate between the two states with a higher SNR
than the standard scheme nearly over the whole range of
angles considered. Similarly, while the SNR of the stan-
dard technique almost coincides with that of scheme B
for small angles, we see that the sensitivity of the two
schemes diverges quickly for larger angles; in this regime
(� � �M), the NV Scheme B is significantly better. The
discrepancy between theory and experiment is due to a
small amount of ellipticity incurred from the glass window
not included in the theory plot [16].

The described NV procedure leading to large SNR is
based on the conditional outcome of a quantum measure-
ment. As such, it resembles the well-established protocol
of WV measurement [5]. The WV protocol consists of

weakly measuring an operator Â of a system prepared in
an initial state jii by weakly coupling it to a detector. The
detector output is kept only if the system is eventually
measured to be in a chosen final state, jc fi—postselection.

The obtained conditional average of Â, hfjÂjii=hfjii, is

named the weak value, and can be anomalously large [5].
This property has been exploited for amplifying small
signals both in quantum optics [24–28] and in solid state
physics [29]. It is important to stress that the NV protocol is
different from the WV protocol. The former makes use of a

partial-collapse measurement of the operator Â, in which
the system experiences back action only for a subset of
all possible measurement outcomes, while a strong projec-
tion takes place for the remaining outcomes. This is not a
weak measurement, which is used by the WV protocol.

The obtained conditional average of Â is now the NV,

ð1=pÞPðMwj �MsÞ ¼ hijÂjii=Pð �MsÞ. It is quantitatively dif-
ferent from theWVeven when p is explicitly ‘‘weak’’ [30].
Moreover, while a large WV leads to an amplification of
the SNR for systems where the noise is dominated by an
external (technical) component [26,29], the method pre-
sented here leads to high fidelity discrimination between
quantum states on the background of quantum fluctuations.
In conclusion we have presented here a new protocol

based on a partial-collapse measurement followed by a
tuned postselection. Our protocol enables one to discern
between quantum states with better accuracy than a stan-
dard measurement would allow. By contrast to earlier
protocols [3] tuned to discriminate between two prescribed
states, the present one facilitates the study of an amplified
SNR for a wide range of possible polarizations of one of
the states, which is not a priori known. We have demon-
strated the feasibility and effectiveness of our protocol by
employing an optical setup for discriminating between
different polarization states of light. Notably, our present
approach is based on a statistical analysis, which makes it
particularly suitable for experiments.
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